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Abstract
Diabetes remains one of the most prevalent non-communicable diseases in the world, affecting over 400 million of people 
worldwide, causing serious complications leading to amputations and even death. Over the years, researchers have found 
that, in addition to genomic mutations, epigenetic mechanisms also play a role in the development of diabetes-specifically 
type-2 diabetes. Long noncoding RNAs (lncRNAs) have been linked to mediate epigenetic mechanisms, including those in 
late-stage diabetes. This study attempts to assess the unexplored topic of how lncRNAs could be used to assess the epigenetic 
mechanisms present in diabetic peripheral neuropathy (DPN); a serious complication of the disease often leading to amputa-
tion. Differential lncRNA expression analysis was done with a dataset containing DPN and healthy patients. Standard and 
corrected t test, and also LIMMA was applied. Results of this study indicates the usefulness of lncRNAs as an exploratory 
tool to elucidate the complexity of the epigenetic mechanisms of human DPN.
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Introduction

For the past couple of decades, diabetes still reigns as one 
of the most prevalent non-communicable diseases in the 
world. The number of people affected by the condition has 
quadrupled since 1980—reaching up to 422 million peo-
ple worldwide in 2014 (World Health Organization 2016b). 
The condition has been well-established to be a major cause 
of blindness, kidney failure, heart attacks, and lower limb 
amputation (World Health Organization 2016a). The link 
between diabetes and genetics has been established for at 
least a couple of decades; with multiple studies showing how 
even genomic mutations are a risk factor in type 2 diabetes 
mellitus (T2DM), despite it is believed being mostly caused 
by environmental factors (Dean and McEntyre 2004; Hara 

et al. 2014). However, it is becoming increasingly clear that 
genomics and proteomics-based points of views are insuf-
ficient to comprehend the holistic biomolecular mechanism 
of life (Parikesit et al. 2014). Thus, more feasible approach 
should be devised.

In recent years, researchers have found that heritable 
epigenetic mechanisms also have a role in the develop-
ment of diabetes, specifically in T2DM (Al-Haddad et al. 
2016; Karachanak-Yankova et al. 2015). The most common 
mechanisms include methylation, which generally results in 
gene silencing, and histone modifications, which either pro-
motes or represses gene expression (Al-Haddad et al. 2016). 
Moreover, there are noticeable trends that the proteomics 
is being supplemented with transcriptomics point of view. 
In this end, the role of RNA-based regulation is increas-
ingly important. Non-coding RNA that did not translated 
into protein, is considered playing an important role in the 
flow of genetic information (Amaral and Mattick 2008; Mat-
tick 2005). Interestingly, some forms of ncRNAs—namely 
Micro RNAs (miRNA) and long noncoding RNAs (lncR-
NAs)—were found as regulatory factors in epigenetic mech-
anisms, including in late-stage diabetes (Pullen and Rutter 
2014). Some examples include the lncRNAs HOTAIR and 
HOTTIP, which recruit the inhibitory polycomb repres-
sive complex (PRC) 2 and the activating Trithotax/MLL 
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chromatin modifiers; PRC2 and MLL, which mark distinct 
lysine residues within histones via trimethylation; and also 
ANRIL, which silences the INK4a tumor suppressor allele 
through trimethylation (Kornfeld and Brüning 2014). Thus, 
the important role of histone mark as inseparable regula-
tion factor in the development of the diseases could not be 
overruled, and this phenomenon already was confirmed with 
extensive computational studies (Prohaska et al. 2010).

One of the long-term complications of the disease is 
diabetic peripheral neuropathy (DPN), which is a condi-
tion where the peripheral nerves are damaged due to high 
chronic blood sugar, leading to foot ulceration, Charcot neu-
roarthropathy, and occasionally amputation (Boulton 2005). 
In this respect, epigenetics as the state-of-the-art biomarkers 
that did not undergone genetics-based mutation could play 
a role in the progression of this disease (Feinberg and Fal-
lin 2015; Swami 2009). The biological mechanisms of the 
condition have been well-documented, although the role of 
epigenetics has only recently been suggested (Reddy et al. 
2015). As recent development, epigenetics computation is 
still considered a very new field with limited number of 
experts for annotating the working database (Steiner et al. 
2012). In this end, This study aims to elucidate the epige-
netic mechanisms in DPN based on the lncRNA expression.

Methods

Data acquisition

The data series used for the analysis (accession: GSE95849) 
was acquired from the Gene Expression Omnibus (https​://
www.ncbi.nlm.nih.gov/geo/) from an unpublished diabetic 
study (Edgar et al. 2002). The expression profile was done 
on Phalanx Human lncRNA OneArray v1_mRNA platform, 
which includes 31,741 probesets relating to human mRNA 
and lncRNA; and used samples from 18 different partici-
pants, equally distributed between DPN, and healthy groups 
(Luo and Xu 2017).

Statistical analysis

Expression set creation and the whole analysis of the data 
series were done using R version 3.4.0 on RStudio (RStudio 
Team 2015). Bioconductor, an open-source analysis suite 
based on R language, was utilized to acquire the necessary 
analysis packages (Huber et al. 2015). GEOQuery package 
was installed to process the data series and create the expres-
sion set (Davis and Meltzer 2007).

After the expression set was created, normal t test was 
done between samples in healthy and DPN groups. Then, 
FDR and Bonferroni were applied to the t test. p value was 
adjusted to filter in only the most significantly differentially 

expressed genes. Limma (linear models for microarray data) 
package was also installed and used to do the differential 
expression quantification (Ritchie et al. 2015). The output 
was exported into a csv file, which was further analyzed 
using Microsoft Excel 2016. Information regarding the 
genes were taken from the GeneCards database (Belinky 
et al. 2013).

Visualization

A boxplot was generated from the normal t-test result. Vol-
cano plots were generated for the t test results of both type 
of corrections. Heatmap was also generated using the results 
from limma.

Results and discussions

According to normal t test, 14,599 genes in total were 
found to be differentially expressed between healthy and 
D patients with (p value < 0.05). Adjusting the p value to 
under 0.0000001, 38 genes were still found to be differen-
tially expressed (Fig. 1).

Using FDR adjustment, 17 genes were found to be dif-
ferentially expressed (p value < 0.00005); two of which are 
partly non-coding, namely MTHFSD and LMAN2L. Using 
Bonferroni adjustment, only two genes were found to be 
differentially expressed under the same cut-off, which was 
expected since the method has been known to be stricter. 
Those two genes—GDAP2 and TBC1D24—were both con-
sidered coding (Fig. 2).

Fig. 1   Boxplot showing the significant difference between healthy 
and DPN patients

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
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In comparison, 22 genes were found to be differentially 
expressed using lncRNA (p value < 0.00005). As shown in 
Table 1 below, only three of them were partly non-coding, 
and all of them were found to be significantly upregulated 
in the healthy samples.

As is evident on the generated heatmap, all the upregu-
lated and downregulated genes were uniformly clustered 

across the samples, showing clear differentiation of the 
expression in the two conditions (Fig. 3).

Across all three methods, both GDAP2 and TBC1D24 
were found to be globally differentially expressed. How-
ever, both are considered coding, hence not of interest to 
the analysis. No purely non-coding gene was actually found 
to be differentially expressed in any of the method with the 

Fig. 2   Volcano plots of the differentially expressed genes from DPN 
and healthy group resulted from t-test using FDR correction (a) and 
Bonferroni correction (b). Red dots represent genes that found to be 

differentially expressed through normal t test, while green dots repre-
sent genes differentially expressed through the respective correction 
methods (p value < 0.00005)

Table 1   The 22 most significantly differentially expressed genes based on the limma result (p value < 0.00005), ordered by level of significance

logFC AveExpr t P value Adj.P Val B Transcript type Gene_symbol

PH_hs_0002557 198.1722652 160.1043 23.49167 1.81E−10 1.16E−06 −3.926417315 Coding GDAP2
PH_hs_0016338 1087.268854 825.4318 25.6805 7.17E−11 1.16E−06 −3.924010444 Coding ORAI3
PH_hs_004871 5 576.0160043 473.676 25.00625 9.47E−11 1.16E−06 −3.924686516 Coding C14orf101
PH_hs_0024228 230.9747311 180.3551 23.47885 1.82E−10 1.16E−06 −3.926433373 Coding ATRN
PH_hs_0033322 249.6737199 184.7529 24.33634 1.26E−10 1.16E−06 −3.925413261 Coding CFDP1
PH_hs_001 081 2 562.9579024 456.5773 21.73393 4.06E−10 1.34E−06 −3.928882813 Coding ICMT
PH_hs_0003322 762.3157775 483.6633 22.02929 3.53E−10 1.34E−06 −3.928428182 Coding, non-coding MKKS
PH_hs_0014787 638.0567641 385.9836 22.2321 3.21E−10 1.34E−06 −3.928126121 Coding SLC3583
PH_hs_0016485 182.854354 151.8733 21.45752 4.64E−10 1.34E−06 −3.929324834 Coding SLC7A605
PH_hs_0031 51 I 434.7131981 285.526 21.62874 4.27E−10 1.34E−06 −3.929049097 Coding, non-coding NDUFAF1
PH_hs_0033430 411.9880082 300.9828 21.85007 3.84E−10 1.34E−06 −3.928701908 Coding PWWP2A
PH_hs_0023957 151.6927762 115.3525 20.56248 7.21E−10 1.40E−06 −3.930876306 Coding TBC1D24
PH_hs_0012263 98.79692443 98.79301 20.47929 7.52E−10 1.40E−06 −3.931030558 Coding ELOVL6
PH_hs_0016643 238.4405371 207.1681 21.008 5.78E−10 1.40E−06 −3.930080081 Coding, non-coding MTHFSD
PH_hs_0001712 169.5071385 102.6325 20.79776 6.41E−10 1.40E−06 −3.930449656 Coding METTL13
PH_hs_000521 7 2103.482659 1142.744 20.47895 7.52E−10 1.40E−06 −3.931031196 Coding GIMAP8
PH_hs_0014722 516.1806891 349.9946 20.53174 7.32E−10 1.40E−06 −3.930933087 Coding AGGF1
PH_hs_0049581 2059.348668 1427.644 20.322 8.14E−10 1.44E−06 −3.931327241 Coding MTIF3
PH_hs_0048441 118.0026118 96.16244 19.96768 9.76E−10 1.61E−06 −3.932020468 Coding UVRAG​
PH_hs_0009328 533.9497413 368.2993 19.79654 1.07E−09 1.61E−06 −3.932368222 Coding TFCP2
PH_hs_0022762 174.7790849 204.6318 19.8491 1.04E−09 1.61E−06 −3.932260497 Coding SMYD4
PH_hs_0048732 15,046.57014 8854.292 19.47687 1.26E−09 1.82E−06 −3.933041547 Coding MPEG1
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cut-off at p value < 0.00005. The only partly non-coding 
gene found to be differentially expressed in at least two 
methods was MTHFSD, which is a mostly protein-coding 
gene that has a role in nucleic acid binding and nucleotide 
binding (Ota et al. 2004). No information is currently avail-
able on the non-coding fragment of the gene, though one 
particular lncRNA, FENDRR, has been documented to be a 
prominent enhancer of MTHFSD (Safran et al. 2010; Stelzer 
et al. 2016). FENDRR itself has been found to be linked to 
both the PRC2 and TrxG/MLL complexes, suggesting that 
it acts as modulator of chromatin signatures and promotes 
methylation of the target genes (Grote et al. 2013).

LMAN2L was another partly non-coding gene selected 
based on the significance result (p value < 0.00005) in two 
statistical methods. The gene is also mostly protein coding, 
and no annotation is available on the function of the non-
coding fragments. Similar to MTHFSD, there was also an 
lncRNA that has been established as a significant enhancer 
to LMAN2L, which was LOC100506036 (Safran et al. 2010; 
Stelzer et al. 2016). LOC100506036 has been found to regu-
late immune functions in rheumatoid arthritis, possibly tak-
ing part In the hypomethylation and histone hyperacetylation 
mechanisms (Kolarz and Majdan 2017; Lu et al. 2016).

This study explored the 31,741 probe sets related to 
human mRNA and lncRNA from 18 participants. All data 
were normally distributed that were selected for the most 
significant only. Based solely on the limma result, there were 
three lncRNA genes found to be significantly differentially 
expressed. The most significantly differentially expressed of 
them all, LINC00324, has been found to be a target of both 

DNA methylation and histone modifications (Rouillard et al. 
2016). TUBA4B, which was found to be overexpressed in 
the DPN samples, has been well-studied to be a CpG meth-
ylation signature, specifically in diffuse gliomas (Bhat et al. 
2016; Louis et al. 2014). DHRS4-AS1 mediates repressive 
histone modifications and methylation of the dehydrogenase/
reductase genes DHRS4, DHRS4L1 and DHRS4L2 (Li et al. 
2012). These genes could be considered for further study 
by providing many samples and comprehensive analysis of 
gene expression between healthy and DPN group. However, 
there are only two genes found that make the findings weak. 
Therefore, a study with more participant will reveal many 
genes that significant different between healthy group and 
DPN group.

Conclusion

As limited as they are, the utilization of lncRNA-based 
analysis for assessment of epigenetic regulations may serve 
as a promising starting point for exploratory studies. The 
findings from this analysis show how dynamic the epigenetic 
mechanisms are in DPN, ranging from hypomethylation and 
hypermethylation, to histone modifications. Further stud-
ies with a larger dataset and validation through MeDIP and 
ChIP should give researchers a more holistic view of the 
epigenetic mechanisms in play in the disease.
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