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Abstract
Pantothenate is a crucial enzyme for the synthesis of coenzyme A and acyl carrier protein in Mycobacterium tuberculosis 
and Staphylococcus aureus. It is indispensable for the growth and survival of these bacteria. Amides analogs are designed 
and have been used as inhibitors of pantothenate synthetase. Molecular docking approach has been used to design and 
predict the drug activity of molecule to the specific disease. In this work, more than hundred amides have been screened 
by Discovery Studio molecular docking programme to search best suitable molecule for the treatment of Mycobacterium 
tuberculosis. Pharmacophore generation has been done to recognize the binding modes of inhibitors in the receptor active 
site. To observe the stability and flexibility of inhibitors molecular dynamics (MD) simulation has been done; Lipinski’s 
rule of five protocols is followed to screen drug likeness and ADMET (absorption, distribution, metabolism, excretion and 
toxicity) filtration is also used to value toxicity. DFT computation of optimized geometry and derivation of MOs has been 
used to correlate the drug likeness. The small difference in energy between HOMO and LUMO may help to activate the 
drug in the protein environment quickly. 2-Hydroxy-5-[(E)-2-{4-[(prop-2-enamido)sulfonyl]phenyl}diazen-1-yl]benzoic 
acid (M1) shows best theoretical efficiency against Mycobacterium tuberculosis (MTB) pantothenate synthetase and so does 
2-hydroxy-5-[(E)-2-{4-[(2-phenylacetamido)sulfonyl]phenyl}diazen-1-yl]benzoic acid (M2) against Staphylococcus aureus 
pantothenate synthetase. These compounds also bind to Adenine–Thymine region of tuberculosis DNA.
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Introduction

Virtually one-third of the human population of the world is 
suffering from Mycobacterium tuberculosis (MTB) infection 
(Onyango 2011). Despite the existence of approved drug 
against TB, it continues to claim approximately 1.5 million 
lives every year due to drug-resistant TB problem (multidrug 
resistant tuberculosis, MDR-TB and extensively drug resist-
ant tuberculosis, XDR-TB). So, there is an urgent need to 
develop new anti-TB drugs (Onyango 2011). In the search 
for MTB vaccine, growth and virulence of pantothenate syn-
thetase (panC) auxotrophs has been severely collaborated, 
sustaining the theory of the necessity of this enzyme and 
its prettiness as an antimicrobial target (White et al. 2007).

Pantothenate synthetase (PS) plays critical roles in many 
cellular processes like, fatty acid metabolism. It catalyzes 
the adenosine triphosphate (ATP)-dependent condensa-
tion of pantoate and β-alanine to form pantothenate (vita-
min B5), and key precursor for the synthesis of coenzyme 
A (CoA) and acyl carrier protein (ACP) (von Delft et al. 
2001). Upon action of fatty acid synthases on Acetyl-CoA 
and NADPH fatty acids are generated which combine with 
glycerol followed by phosphorylation could form phospho-
lipid (Leonardi and Jackowski 2007). The bulk of the lipid 
bilayers those make up cell wall and surround the organelles 
within the cells have been synthesized from phospholipids 
(Berg et al. 2002; Chaffey et al. 2003). Lipid-rich cell wall 
of MTB is an essential element of intracellular survival and 
pathogenicity, and also thought to contribute to the diffi-
culty of effectively delivering antimicrobial agents into the 
cell. The significance of this lipid-rich cell wall is under-
scored by the large number of genes (approximately 250) 
encoding enzymes in fatty acid metabolism present in the 
MTB genome, making this pathway a promising target for 
new antibacterial drug discovery (Cole et al. 1998). Indeed, 
several anti-tubercular agents are known to inhibit cell wall 
biosynthesis.

PanC is absent in mammals. It searches pantothenate from 
their diet using pantothenate permease, of which, there is no 
homolog in MTB (Table 1) (Grassl 1992; Vallari and Rock 
1985). Literature search shows that MTB mutant defective 
in the de novo biosynthesis of pantothenate is highly attenu-
ated in both immune compromised and immune competent 
mice. It points out that functionality of pantothenate in bio-
synthetic pathway is crucial (Fig. 1) for virulence of MTB 
(Wang and Eisenberg 2003). Different industries invest over 
50 billion dollars on research and development each year to 
identify potential new drug targets. Pantothenate Synthetase 

may explore an opportunity to design the drug resistant TB 
drugs (Overington et al. 2006).

Amides are known to play a crucial role in supramolecu-
lar anion sensing technology (McMurry et al. 2017). They 
may also be used as antibacterial agents against Gram posi-
tive and Gram negative bacteria in the future design of drugs 
(Stefańska et al. 2015). Amide derivatives (Table 2) show 
numerous types of biological features as anthelmintic, anti-
histaminic, antifungal, and antibacterial including Staphylo-
coccus aureus and Mycobacterium tuberculosis (Yildiz et al. 
2008; Jagessar and Rampersaud 2007; The Sulfa Derivatives 
in the Treatment of Tuberculosis 1944).

On the other hand, sulfa drugs show potent anti-micro-
bial activity and literature has shown that they are active 
against Mycobacterium tuberculosis and Staphylococcus 
aureus (Bartzatt et al. 2010; Holloway et al. 2016). In this 
work, a series of amide functionalized sulfa drugs have 
been designed by modifying sulfa drugs amides by structure 
based drug design. Amides have been docked to examine 
their action against Mycobacterium tuberculosis (MTB) and 
Staphylococcus aureus (SA).

According to some scientists at Lilly Research Labo-
ratories, Eli Lilly & Company, USA two compounds with 
4-cyano-1-methyl-3-(4-phenylphenyl)pyrrole-2-carboxylic 
acid core structure, inhibited MTB pantothenate synthetase 
(Kumar et al. 2013).The MIC50 values of the two compounds 
were high (55 and 118 µM. This suggested the growth inhibi-
tory properties were due to PanC-mediated inhibition[a].The 
IUPAC name of the compounds are 3‐{[1,1′‐biphenyl]‐4‐
yl}‐4‐cyano‐5‐(ethylsulfanyl)‐1‐methyl‐1H‐pyrrole‐2‐car-
boxylic acid (compound 1) and 3‐{[1,1′‐biphenyl]‐4‐yl}‐4‐
cyano‐5‐ethyl‐1‐methyl‐1H‐pyrrole‐2‐carboxylic acid 
(compound 2). In the present work it has been showed that 
2-hydroxy-5-[(E)-2-{4-[(prop-2-enamido)sulfonyl]phenyl}
diazen-1-yl]benzoic acid and 2-hydroxy-5-[(E)-2-{4-[(2-
phenylacetamido)sulfonyl]phenyl}diazen-1-yl]benzoic 
acid showed better docking score than compound 1 (C1) 
and compound 2 (C2). Sulfonamide, sulfamoyl groups as co-
crystalized structure in the crystal structure of pantothenate 
synthetase proves their efficiency in binding and inhibition.

Out of 154 different amides of sulfa drugs 93 deriva-
tives show higher docking score (binding affinity) than 
C1 (Table 3). For SA also some compounds exhibit dock-
ing score higher than C2 (Table 4) which are used to treat 
bacterial infection by susceptible microorganisms (Kumar 
et al. 2013; Wu et al. 2003). Molecular dynamics (MD) 
simulations have been done to observe the effect of explicit 
solvent molecules on protein (Pantothenate Synthetase) 
ligand (amides) complex structure and stability to achieve 
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time-averaged attributes of the bimolecular system, along 
with diverse thermodynamic parameters. Drug likeness has 
been examined following Lipinski’s rule of five filter (Lipin-
ski et al. 2001). The molecular orbitals are used to calculate 
the electronic configuration, molecular reactivity and stabil-
ity of the compounds by density functional theory (DFT) 
computational process (Rozhenko 2014). Pharmacophore 
map generation has also done to observe steric and elec-
tronic features of best docked amides that ensured the opti-
mal interactions with a receptor (Pantothenate Synthetase) 
and to block its biological response (Wermuth et al. 1998). 
ADMET (absorption, distribution, metabolism, excretion 
and toxicity) filtration has been applied to check toxicity of 
the compounds (Hou and Wang 2008). Two compounds out 
of 154 amides, 2-hydroxy-5-[(E)-2-{4-[(prop-2-enamido)
sulfonyl]phenyl} diazen-1-yl]benzoic acid (M1, Table 2) 
and 2-hydroxy-5-[(E)-2-{4-[(2-phenylacetamido)sulfonyl]
phenyl}diazen-1-yl]benzoic acid (M2, Table 2) exhibit bet-
ter theoretical drug potency than approved and have crossed 
ADMET and Lipinski’s rule of five filter (Table 2). These 
two compounds also bind to Adenine–Thymine region of 
tuberculosis DNA (Sirajuddin et al. 2013).

Methods and materials

Sequence alignment analysis

Functional similarity between two or more sequences of 
amino acids has been carried out by using in silico multiple-
sequence alignment (MSA) and is important for finding the 
functionality of proteins and evolution history of the species 
(Nguyen and Pan 2013).

High throughput virtual screening (HTVS)

Structure-based drug discovery is a vital process for fast and 
cost-effective lead discovery and proven to be more efficient 
than the conventional wet lab drug discovery (Lionta et al. 
2014; Pradhan and Sinha 2017). High-Throughput Screening 
(HTS) is an approach to drug discovery that has become a 
standard tool for structure-based drug discovery. It is basi-
cally a process of screening of large number of drug like 
molecules against selected and specific drug targets. HTS 
are used for screening of various types of libraries, includ-
ing combinatorial chemistry, genomics, protein, and peptide 
libraries (Szymański et al. 2012).

Drug‑like amide molecule preparation

We have collected 154 small Lipinski’s filter passed amide 
molecule compounds from the PubChem database which 
inhibit pantothenate synthetase enzyme (Database Resources Ta

bl
e 

1  
P

er
ce

nt
 id

en
tit

y 
m

at
rix

 (P
A

M
) f

or
 se

ar
ch

in
g 

si
m

ila
rit

ie
s b

et
w

ee
n 

di
ffe

re
nt

 sp
ec

ie
s c

on
ta

in
in

g 
Pa

nt
ot

he
na

te
 sy

nt
he

ta
se

Se
q.

 n
o.

PD
B

 c
ha

in
Sp

ec
ie

s
Si

m
ila

rit
ie

s i
n 

pe
rc

en
ta

ge

1
3N

8H
_A

|P
D

B
ID

|C
H

A
IN

|S
EQ

U
EN

C
E

Fr
an

ci
se

lla
tu

la
re

ns
is

10
0

36
.4

39
.4

6
38

.5
2

37
.9

3
35

.5
7

38
.6

7
34

.2
4

34
.4

37
.2

6
38

.5
8

36
.2

9
2

4E
FK

_A
|P

D
B

ID
|C

H
A

IN
|S

EQ
U

EN
C

E
M

yc
ob

ac
te

ri
um

 tu
be

rc
ul

os
is

36
.4

10
0

43
.9

3
43

.8
4

41
.7

9
43

.9
6

45
.7

1
39

.2
1

44
.8

1
41

.0
8

40
.3

6
36

.4
3

3
3Q

10
_A

|P
D

B
ID

|C
H

A
IN

|S
EQ

U
EN

C
E

Ye
rs

in
ia

 p
es

tis
39

.4
6

43
.9

3
10

0
71

.7
3

72
.8

2
44

.9
6

50
.1

8
40

.5
7

45
.4

2
44

.9
1

44
.2

4
38

.8
7

4
1I

H
O

_A
|P

D
B

ID
|C

H
A

IN
|S

EQ
U

EN
C

E
Es

ch
er

ic
hi

a 
co

li
38

.5
2

43
.8

4
71

.7
3

10
0

87
.9

9
44

.7
3

52
.1

6
40

.7
1

46
.8

9
45

.5
5

46
.7

6
40

.5
5

3M
U

E_
A

|P
D

B
ID

|C
H

A
IN

|S
EQ

U
EN

C
E

Sa
lm

on
el

la
 e

nt
er

ic
a

37
.9

3
41

.7
9

72
.8

2
87

.9
9

10
0

41
.0

1
49

.4
7

39
.8

6
45

.4
2

44
.5

6
43

.8
8

40
.2

8
6

3U
K

2_
A

|P
D

B
ID

|C
H

A
IN

|S
EQ

U
EN

C
E

Bu
rk

ho
ld

er
ia

th
ai

la
nd

en
si

s
35

.5
7

43
.9

6
44

.9
6

44
.7

3
41

.0
1

10
0

54
.4

8
40

.7
3

44
.7

8
45

.8
8

44
.5

3
37

.3
2

7
5K

W
V

_A
|P

D
B

ID
|C

H
A

IN
|S

EQ
U

EN
C

E
Ne

is
se

ri
a 

go
no

rr
ho

ea
e

38
.6

7
45

.7
1

50
.1

8
52

.1
6

49
.4

7
54

.4
8

10
0

37
.9

1
46

.1
43

.8
6

46
.7

2
38

.4
9

8
3A

G
6_

A
|P

D
B

ID
|C

H
A

IN
|S

EQ
U

EN
C

E
St

ap
hy

lo
co

cc
us

 a
ur

eu
s

34
.2

4
39

.2
1

40
.5

7
40

.7
1

39
.8

6
40

.7
3

37
.9

1
10

0
41

.8
2

43
.1

1
45

.7
1

42
.9

1
9

1U
FV

_A
|P

D
B

ID
|C

H
A

IN
|S

EQ
U

EN
C

E
Th

er
m

us
th

er
m

op
hi

lu
s

34
.4

44
.8

1
45

.4
2

46
.8

9
45

.4
2

44
.7

8
46

.1
41

.8
2

10
0

50
.9

1
51

.0
9

40
.1

5
10

3I
N

N
_A

|P
D

B
ID

|C
H

A
IN

|S
EQ

U
EN

C
E

Br
uc

el
la

m
el

ite
ns

is
37

.2
6

41
.0

8
44

.9
1

45
.5

5
44

.5
6

45
.8

8
43

.8
6

43
.1

1
50

.9
1

10
0

50
.3

6
41

.0
5

11
2E

JC
_A

|P
D

B
ID

|C
H

A
IN

|S
EQ

U
EN

C
E

Th
er

m
ot

og
a 

m
ar

iti
m

a
38

.5
8

40
.3

6
44

.2
4

46
.7

6
43

.8
8

44
.5

3
46

.7
2

45
.7

1
51

.0
9

50
.3

6
10

0
52

.3
3

12
3M

X
T_

A
|P

D
B

ID
|C

H
A

IN
|S

EQ
U

EN
C

E
C

am
py

lo
ba

ct
er

 je
ju

ni
36

.2
9

36
.4

3
38

.8
7

40
.5

40
.2

8
37

.3
2

38
.4

9
42

.9
1

40
.1

5
41

.0
5

52
.3

3
10

0



	 In Silico Pharmacology (2018) 6:9

1 3

9  Page 4 of 24

of the National Center for Biotechnology Information 2013). 
The compounds are drawn by compiling sulfa drugs with 
amides attached to the amino group of sulfa drugs by Accel-
rys Draw v4. The 3D coordinates and change of ionization 
are done by Discovery Studio 4 software’s ligand preparation 
wizard. Compounds are prepared using the “Prepare Ligand” 
protocol in Discovery Studio v4; default parameters towards 
performing the CDOCKER simulation with sdf files (The 
Sulfa Derivatives in the Treatment of Tuberculosis 1944).

a. Docking preparation of pantothenate synthetase

Pantothenate synthetase of MTB has been retrieved from 
RCSB PDB database with five bound-inhibitors. The protein 
data bank (pdb) file (pdb id: 4efk) showed a dimer of two 
chains. However, in the present study, only the monomeric 
unit (A-chain) has been used in the docking studies because 
it has two N, N-dimethylthiophene-3-sulfonamide bound 
inhibitors. The pantothenate synthetase of SA was retrieved 
from RCSB PDB with three bound-inhibitors (pdb id: 3ag6). 
The pdb file was a dimer of two chains, only the monomeric 
unit (A- chain) was used in the docking studies.

The bounded inhibitors from the pdb structure are removed 
before docking. Prepare Protein protocol has been executed 
such as inserting missing atoms in incomplete residues, mod-
eling missing loop regions, and removing waters from protein. 
The default parameter values are mostly kept the invariant in 
the Prepare Protein protocol of Discovery Studio 4.

b. Molecular docking

Molecular docking of 154 selected pantothenate synthetase 
inhibitors to the receptor enzyme has been carried out in the 
present study by using CDOCKER with Discovery Studio 
v4. To perform flexible docking, for the small-molecules 
all torsion angles are set to be free. CDOCKER is a pow-
erful CHARMm-based docking method that has been used 
to generate highly accurate docked poses. In this refinement 
application, the ligands were conceded to tilt around the rigid 
receptor (Wu et al. 2003). In the CDOCKER simulation the 
following parameters are used: top hits-10, random conforma-
tions-10, orientations to refine-10, and force field-CHARMm. 
For the assurance of potential relationships between pantoth-
enate synthetase and amides, predicted CDOCKER energy 
values of the best docked conformations of small-molecule 
inhibitors (amides and approved drugs) are selected as pre-
liminary binding conformations and saved for observing inter-
actions between pantothenate synthetase and amides.

Drug likeness

Lipinski’s rule of five (RO5) describes four simple phys-
icochemical factors ranges (MWT < 500, log P < 5, H-bond 
donors < 5, H bond acceptors < 10) related with 90% of 
orally active drugs that have accomplished phase II clinical 
status (Lipinski et al. 2001). These physicochemical factors 
are related with aqueous solubility, intestinal permeability 

Fig. 1   Activity of pantothenate synthetase
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Table 2   Selected amides (IUPAC names are given) showing docking score (CDOCKER energy) against Mycobacterial and Staphylococcus p.s. 
They have been passed the Lipinski’s rule and ADMET filter

IUPAC name of amides MTB SA Lipinski’s rule ADMET

A Sulfamethoxazole a.u. a.u.
1 (2S)-2-amino-4-({4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}carbamoyl)butanoic 

acid
− 44.63 − 46.94 + +

2 (2S)-2-amino-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-3-phenylpropana-
mide

− 46.53 − 55.40 + +

3 2-Amino-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}benzamide − 45.32 − 47.30 + +
4 2-Hydroxy-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}benzamide − 56.43 − 53.08 + +
5 4-({4-[(5-Methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}amino)benzene-1-sulfonamide − 48.41 − 48.83 + +
6 4-({4-[(5-Methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}amino)benzene-1-sulfonamide − 50.02 − 50.64 + +
7 4-Methyl-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}benzene-1-sulfonamide − 40.11 − 47.32 + +
8 5-({4-[(5-Methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}amino)naphthalene-1-sulfonamide − 35.012 − 52.06 + +
9 6-({4-[(5-Methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}amino)pyridine-3-carboxamide − 50.57 − 48.74 + +
10 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}acetamide − 37.12 − 36.75 + +
11 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}benzamide − 45.62 − 46.02 + +
12 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}hexanamide − 41.38 − 49.40 + +
13 N-(5-methyl-1,2-oxazol-3-yl)-4-(N-methylhydrazido)benzene-1-sulfonamide ND − 55.37 + +
14 4-(N-butylbenzenesulfonamido)-N-(5-methyl-1,2-oxazol-3-yl)benzene-1-sulfonamide − 38.70 − 38.31 + +
15 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}prop-2-enamide − 38.21 − 35.20 + +
16 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}pyrazine-2-carboxamide − 45.32 − 46.67 + +
17 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}pyridine-3-carboxamide ND − 47.12 + +
18 (2R)-4-carbamoyl-2-({4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}amino)butanoic 

acid
− 53.47 − 57.71 + +

19 (2R,3S)-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-3-[(4E,7E)-nona-4,7-
dienoyl]oxirane-2-carboxamide

− 44.86 − 62.80 + +

20 (2S)-2,6-diamino-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}hexanamide − 50.59 − 52.40 + +
21 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-1,3-benzothiazole-2-sulfonamide − 40.30 − 49.45 + +
22 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-1,3-thiazole-2-sulfonamide − 41.62 − 45.85 + +
23 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-2,3-dihydro-1H-indene-5-sulfon-

amide
41.73 − 47.61 + +

24 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-2-phenoxyacetamide − 42.48 − 49.78 + +
25 3-Amino-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}benzamide − 48.74 − 49.06 + +
26 N-(4-ethoxyphenyl)-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}acetamide − 44.95 − 50.17 + +
27 N-methyl-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}acetamide − 38.90 − 39.89 + +
28 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}thiophene-2-sulfonamide − 38.80 − 42.56 + +
29 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-1,2,3,4-tetrahydroisoquinoline-

7-sulfonamide
− 45.4053 − 49.9116 + +

30 1-Methyl-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-3-oxo-1,3-dihydro-
2,1-benzothiazole-5-sulfonamide

− 42.03 − 56.77 + +

31 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-2-propylpentanamide − 42.87 − 48.82 + +
32 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-3-oxo-N-[(3S)-2-oxooxolan-3-yl]

octanamide
ND − 63.91 + +

33 N-[2-({4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}amino)ethyl]isoquinoline-
5-sulfonamide

ND − 37.33 + +

34 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-2-oxopropanamide − 42.18 − 40.96 + +
35 4-(4-Chlorophenyl)-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}piperazine-

1-carboximidamide
ND ND + +

36 4-Amino-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-1H-imidazole-5-carbox-
amide

− 43.80 − 41.97 + +

37 5-Hydroxy-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}naphthalene-1-sulfon-
amide

− 39.17 − 51.45 + +

38 4-Benzenesulfonamido-N-(5-methyl-1,2-oxazol-3-yl)benzene-1-sulfonamide − 43.03 − 46.33 + +
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Table 2   (continued)

IUPAC name of amides MTB SA Lipinski’s rule ADMET

39 4-Hydroxy-3-methoxy-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}benzamide − 48.55 − 70.46 + +
40 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-N-phenyl-1H-pyrazole-5-carbox-

amide
− 48.013 − 50.82 + +

41 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-N-phenylformamide − 38.78 − 44.14 + +
42 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}piperidine-1-sulfonamide − 41.12 − 49.65 + +
43 4-[(1,2-Benzoxazol-3-yl)methanesulfonamido]-N-(5-methyl-1,2-oxazol-3-yl)benzene-

1-sulfonamide
− 41.82 − 49.84 + +

44 N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-1-benzothiophene-2-sulfonamide − 43.82 − 9.82 + +
45 4-(N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}acetamido)benzoic acid − 34.11 − 50.71 + +
46 (2R)-2-[(N-hydroxyformamido)methyl]-4-methyl-N-{4-[(5-methyl-1,2-oxazol-3-yl)

sulfamoyl]phenyl}pentanamide
ND − 59.30 + +

47 1,3-Dimethyl-N-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}-2-oxo-2,3-dihy-
dro-1H-1,3-benzodiazole-5-carboxamide

− 46.39 ND + +

B Sulfadiazine
48 (2S)-4-carbamoyl-2-({4-[(pyrimidin-2-yl)sulfamoyl]phenyl}amino)butanoic acid − 48.54 − 65.49 + −
49 (2S)-2-amino-3-phenyl-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}propanamide − 46.06 − 52.08 + +
50 2-Amino-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}benzamide − 44.51 − 43.50 + +
51 2-Hydroxy-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}benzamide − 46.65 − 44.73 + −
52 2-Phenyl-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}acetamide − 43.36 − 46.87 + +
53 4-Amino-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}benzene-1-sulfonamide − 41.56 − 48.64 + +
54 4-Methyl-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}benzene-1-sulfonamide − 47.37 − 49.44 + +
55 6-({4-[(Pyrimidin-2-yl)sulfamoyl]phenyl}amino)pyridine-3-carboxamide − 35.78 − 51.18 + +
56 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}acetamide − 35.78 − 37.34 + +
57 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}benzamide − 46.84 − 45.60 + +
58 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}hexanamide − 46.99 − 47.66 + +
59 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}formamide − 46.02 − 37.80 + +
60 4-(N-butylbenzenesulfonamido)-N-(pyrimidin-2-yl)benzene-1-sulfonamide − 37.22 − 50.71 + +
61 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}prop-2-enamide − 38.178 − 38.06 + +
62 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}pyrazine-2-carboxamide − 43.31 − 45.02 + +
63 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}pyridine-3-carboxamide − 45.56 − 44.12 + +
64 (2R,3S)-3-[(4E,7E)-nona-4,7-dienoyl]-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}

oxirane-2-carboxamide
ND − 61.01 + −

65 (2S)-2,6-diamino-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}hexanamide − 51.11 − 54.59 + −
66 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}-1,3-benzothiazole-2-sulfonamide − 48.19 − 47.25 + +
67 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}-1,3-thiazole-2-sulfonamide − 40.52 − 43.90 + +
68 2-Phenoxy-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}acetamide − 49.30 − 48.70 + +
69 3-Amino-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}benzamide − 47.69 − 49.00 + +
70 (2R)-4-carbamoyl-2-({4-[(pyrimidin-2-yl)sulfamoyl]phenyl}amino)butanoic acid − 53.28 − 60.18 + −
71 N-(4-ethoxyphenyl)-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}acetamide − 41.89 − 52.01 + +
72 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}acetamide − 35.78 − 37.34 + +
73 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}thiophene-2-sulfonamide − 42.40 − 43.95 + +
74 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}-1,2,3,4-tetrahydroisoquinoline-7-sulfona-

mide
− 44.78 − 52.40 + +

75 1-Methyl-3-oxo-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}-1,3-dihydro-2,1-benzothia-
zole-5-sulfonamide

− 40.17 − 43.95 + −

76 2-Propyl-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}pentanamide − 45.87 − 52.11 + −
77 3-Oxo-N-[(3S)-2-oxooxolan-3-yl]-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}octanamide − 41.03 − 56.66 + −
78 2-Oxo-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}propanamide ND − 41.98 + −
79 4-(4-Chlorophenyl)-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}piperazine-1-carboximi-

damide
− 42.016 − 49.23 + +

80 4-Amino-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}-1H-imidazole-5-carboxamide − 38.34 − 47.26 + +
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Table 2   (continued)

IUPAC name of amides MTB SA Lipinski’s rule ADMET

81 5-Hydroxy-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}naphthalene-1-sulfonamide − 43.3 − 46.86 + −
82 4-Benzenesulfonamido-N-(pyrimidin-2-yl)benzene-1-sulfonamide − 44.59 − 45.62 + +
83 N-ethyl-4-hydroxy-3-methoxy-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}benzamide − 40.13 − 49.39 + −
84 N-phenyl-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}-1H-pyrazole-5-carboxamide − 48.63 − 43.00 + +
85 N-phenyl-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}formamide ND − 51.9081 + +
86 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}piperidine-1-sulfonamide − 39.31 − 47.16 + +
87 4-[(1,2-Benzoxazol-3-yl)methanesulfonamido]-N-(pyrimidin-2-yl)benzene-1-sulfona-

mide
− 45.79 − 48.93 + +

88 N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}-1-benzothiophene-2-sulfonamide − 41.86 − 49.57 + +
89 4-(N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}acetamido)benzoic acid − 48.16 − 50.66 + +
90 (2R)-2-[(N-hydroxyformamido)methyl]-4-methyl-N-{4-[(pyrimidin-2-yl)sulfamoyl]

phenyl}pentanamide
ND − 51.64 + +

91 1,3-Dimethyl-2-oxo-N-{4-[(pyrimidin-2-yl)sulfamoyl]phenyl}-2,3-dihydro-1H-1,3-
benzodiazole-5-carboxamide

− 19.93 − 46.00 + +

C Sulfadoxine
92 (2S)-4-carbamoyl-2-({4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}amino)

butanoic acid
ND ND + −

93 (2S)-2-amino-N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-3-phenylpro-
panamide

− 40.08 ND + −

94 2-Amino-N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}benzamide − 41.83 − 49.59 + −
95 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-2-hydroxybenzamide ND − 71.28 + −
96 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-2-phenylacetamide − 44.46 − 48.99 + −
97 4-Amino-N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}benzene-1-sulfona-

mide
− 44.53 − 53.77 + −

98 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-4-methylbenzene-1-sulfona-
mide

− 44.03 ND + −

99 6-({4-[(5,6-Dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}amino)pyridine-3-carboxam-
ide

− 43.82 ND + −

100 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}acetamide − 41.15 − 42.00 + −
101 N-{4-[(5,6-Dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}benzamide − 46.17 ND + −
102 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}hexanamide − 42.91 − 51.01 + −
103 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}formamide − 47.49 − 40.98 + −
104 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}prop-2-enamide ND − 44.25 + −
105 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}pyrazine-2-carboxamide − 47.52 ND + −
106 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}pyridine-3-carboxamide − 46.09 − 51.93 + −
107 (2R)-4-carbamoyl-2-({4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}amino)

butanoic acid
ND ND + −

108 (2S)-2,6-diamino-N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}hexanamide − 46.87 ND + −
109 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-1,3-thiazole-2-sulfonamide ND ND + −
110 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-2-phenoxyacetamide − 47.79 − 56.89 + −
111 3-Amino-N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}benzamide − 52.91 − 50.61 + −
112 1-{4-[(5,6-Dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-3-(4-ethoxyphenyl)urea ND ND + −
113 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-N-methylacetamide ND − 47.15 + −
114 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}thiophene-2-sulfonamide ND − 50.31 + −
115 4-Amino-N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-1H-imidazole-

5-carboxamide
NA NA − NA

116 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-2-oxopropanamide − 46.87 − 46.82 + −
117 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-2-propylpentanamide ND − 53.05 + +
118 4-Amino-N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-1H-imidazole-

5-carboxamide
NA NA − NA

119 4-Benzenesulfonamido-N-(5,6-dimethoxypyrimidin-4-yl)benzene-1-sulfonamide − 53.75 − 51.50 − −
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Table 2   (continued)

IUPAC name of amides MTB SA Lipinski’s rule ADMET

120 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-N-phenyl-1H-pyrazole-5-car-
boxamide

ND ND − NA

121 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-N-phenylformamide − 41.87 − 53.59 + +
122 N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}piperidine-1-sulfonamide ND ND − −
123 4-(N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}acetamido)benzoic acid ND ND − NA
124 (2R)-N-{4-[(5,6-dimethoxypyrimidin-4-yl)sulfamoyl]phenyl}-2-[(N-hydroxyforma-

mido)methyl]-4-methylpentanamide
ND ND − NA

D Sulfasalaine
125 5-[(E)-2-(4-{[(1S)-3-carbamoyl-1-carboxypropyl]sulfamoyl}phenyl)diazen-1-yl]-

2-hydroxybenzoic acid
ND ND − −

126 5-[(E)-2-(4-{[(2S)-2-amino-3-phenylpropanamido]sulfonyl}phenyl)diazen-1-yl]-2-hy-
droxybenzoic acid

ND − 83.98 + +

127 5-[(E)-2-(4-{[(2-aminophenyl)formamido]sulfonyl}phenyl)diazen-1-yl]-2-hydroxyben-
zoic acid

− 47.53 − 82.68 + −

128 2-Hydroxy-5-[(E)-2-(4-{[(2-hydroxyphenyl)formamido]sulfonyl}phenyl)diazen-1-yl]
benzoic acid

− 47.56 − 60.56 + −

129 2-Hydroxy-5-[(E)-2-{4-[(2-phenylacetamido)sulfonyl]phenyl}diazen-1-yl]benzoic acid 
(M2)

− 62.18 − 85.41 + +

130 2-Hydroxy-5-[(E)-2-{4-[(4-methylbenzenesulfonyl)sulfamoyl]phenyl}diazen-1-yl]
benzoic acid

− 54.11 − 68.96 + −

131 5-[(E)-2-[4-(acetamidosulfonyl)phenyl]diazen-1-yl]-2-hydroxybenzoic acid − 50.51 − 57.42 + +
132 2-Hydroxy-5-[(E)-2-[4-(phenylformamido)sulfonylphenyl]diazen-1-yl]benzoic acid − 46.29 − 58.41 + +
133 5-[(E)-2-[4-(hexanamidosulfonyl)phenyl]diazen-1-yl]-2-hydroxybenzoic acid − 42.93 − 81.40 + +
134 2-Hydroxy-5-[(E)-2-(4-formamidosulfonylphenyl)diazen-1-yl]benzoic acid − 61.32 − 74.46 + +
135 2-Hydroxy-5-[(E)-2-{4-[(prop-2-enamido)sulfonyl]phenyl}diazen-1-yl]benzoic acid 

(M1)
− 66.41 − 70.68 + +

136 2-Hydroxy-5-[(E)-2-(4-{[(pyridin-3-yl)formamido]sulfonyl}phenyl)diazen-1-yl]
benzoic acid

− 68.67 − 66.03 + −

137 5-[(E)-2-{4-[(4-aminobenzenesulfonyl)sulfamoyl]phenyl}diazen-1-yl]-2-hydroxyben-
zoic acid

NA NA − NA

138 2-Hydroxy-5-[(E)-2-{4-[(4-methylbenzenesulfonyl)sulfamoyl]phenyl}diazen-1-yl]
benzoic acid

NA NA − NA

139 2-Hydroxy-5-[(E)-2-(4-{[(pyrazin-2-yl)formamido]sulfonyl}phenyl)diazen-1-yl]
benzoic acid

NA NA + NA

140 2-Hydroxy-5-[(E)-2-{4-[(2-phenoxyacetamido)sulfonyl]phenyl}diazen-1-yl]benzoic 
acid

− 62.84 − 79.97 + −

141 5-[(E)-2-(4-{[(3-aminophenyl)formamido]sulfonyl}phenyl)diazen-1-yl]-2-hydroxyben-
zoic acid

− 56.08 − 77.70 + +

142 5-[(E)-2-(4-{[N-(4-ethoxyphenyl)acetamido]sulfonyl}phenyl)diazen-1-yl]-2-hydroxy-
benzoic acid

ND − 29.85 + +

143 2-Hydroxy-5-[(E)-2-{4-[(N-methylacetamido)sulfonyl]phenyl}diazen-1-yl]benzoic acid − 50.24 − 78.35 + −
144 2-Hydroxy-5-[(E)-2-{4-[(thiophene-2-sulfonyl)sulfamoyl]phenyl}diazen-1-yl]benzoic 

acid
− 71.17 − 75.69 + −

145 5-[(E)-2-(4-{[(1R)-3-carbamoyl-1-carboxypropyl]sulfamoyl}phenyl)diazen-1-yl]-
2-hydroxybenzoic acid

NA NA − NA

146 5-[(E)-2-(4-{[(2S)-2,6-diaminohexanamido]sulfonyl}phenyl)diazen-1-yl]-2-hydroxy-
benzoic acid

NA NA − NA

147 2-Hydroxy-5-[(E)-2-{4-[(1,3-thiazole-2-sulfonyl)sulfamoyl]phenyl}diazen-1-yl]
benzoic acid

NA NA − NA

148 2-Hydroxy-5-[(E)-2-{4-[(2-propylpentanamido)sulfonyl]phenyl}diazen-1-yl]benzoic 
acid

ND − 72.11 + +

149 2-Hydroxy-5-[(E)-2-{4-[(2-oxopropanamido)sulfonyl]phenyl}diazen-1-yl]benzoic acid − 46.87 − 72.11 + −
150 5-[(E)-2-{4-[(benzenesulfonyl)sulfamoyl]phenyl}diazen-1-yl]-2-hydroxybenzoic acid − 53.75 − 78.77 + −
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and oral bioavailability. Because all parameters can be eas-
ily computed, the RO5 (or its variants) has become the 
most widely useful filter in virtual library design (Lipinski 
2004).

Quantum chemistry calculation

DFT (density functional theory) calculations have been 
performed by Gaussian 09W (Frisch et al. 2009). Gauss-
ian calculation setup has been done in Gaussian 09 soft-
ware using Becke’s three-parameter exchange potential 
and Lee–Yang–Parr correlation functional (B3LYP) the-
ory with basis set 6–31G (Becke 1993; Gill et al. 1992; 
Devlin et  al. 1995). The surfaces (molecular orbital, 
density, potential) and electrostatic potential charges 
(EPS) have calculated the highest occupied molecu-
lar orbital (HOMO) and lowest unoccupied molecular 
orbital (LUMO) (Fukui et al. 1952). Chemical reactiv-
ity, intermolecular interactions and kinetic stability of 
molecules are characterized by the energy difference of 
HOMO–LUMO functions (Rauk 1994; Fleming 2011; 
Strom and Wilson 2013; Brownell et al. 2013). Interac-
tion between the HOMO of the drug (amides) and the 
LUMO of the receptor (pantothenate synthetase) is the 
key factor of drug activity. Tight binding of drugs with 
the receptor can be achieved by increasing HOMO energy 
and decreasing LUMO energy in the drug molecule (El-
Henawy et al. 2013).

Pharmacophore generation

A pharmacophore model is an ensemble of steric and elec-
tronic features that is necessary to ensure the optimal supra-
molecular interactions with a specific biological target and 
to trigger (or block) its biological response (Wermuth et al. 
1998). The generated pharmacophore models based on 
receptor-ligand interactions have confirmed all substantial 
interactions in the compound-receptor interaction modes 

(Meduru et al. 2016). In a structure-based pharmacophore 
model, possible interaction area between the drug target 
(receptor) and ligands are examined (Böhm 1992).

The structure-based pharmacophore (SBP) method 
employed in Discovery Studio is a typical example of a mac-
romolecule-based approach. SBP converts LUDI interaction 
maps within the protein-binding site into catalyst pharmaco-
phoric features: H-bond acceptor, H-bond donor and hydro-
phobe. The computer program LUDI is a new method for 
the de novo design of enzyme inhibitors (Böhm 1992; Yang 
2010). Its interaction maps comprise of a large number of 
catalyst features (Yang 2010).

In the present work, pharmacophore generation executed 
by receptor-ligand pharmacophore generation with Discov-
ery Studio 4 for study the interactions between protein and 
ligand. The receptor-ligand pharmacophore generation pro-
duces few pharmacophore models from a receptor-ligand 
complex. The model is generated from the features that are 
related to the receptor-ligand docking interactions. The fol-
lowing ligand features types are considered: hydrogen bond 
acceptor, hydrophobic feature, ionizable feature and aro-
matic ring.

Drug–DNA interaction

Drugs (amides) can interact with different coordinates 
(groove) of DNA, creating different binding patterns 
(Chaires 1998). Each pattern has its own significance (Chen 
et al. 1993). Study and recognition of these patterns lead to 
fruitful estimate of binding modes and site selectivity which 
will be contributory for developments in the understanding 
of new drug molecules as potent and selective gene-regula-
tory drugs (Chaires 1998; Chen et al. 1993).

To find the binding pattern of Amides with MTBDNA 
(pdb id: 3pvp), docking method is used. Drug-DNA dock-
ing is done by autodock vina software on Windows platform 
with 8 Gb RAM and Intel I 5 processor (Trott and Olson 
2010).

Table 2   (continued)

IUPAC name of amides MTB SA Lipinski’s rule ADMET

151 2-Hydroxy-5-[(E)-2-{4-[(N-phenylformamido)sulfonyl]phenyl}diazen-1-yl]benzoic 
acid

− 41.85 − 58.47 + +

152 5-[(E)-2-(4-{[(4-amino-1H-imidazol-5-yl)formamido]sulfonyl}phenyl)diazen-1-yl]-
2-hydroxybenzoic acid

NA NA − NA

153 2-Hydroxy-5-[(E)-2-{4-[(piperidine-1-sulfonyl)sulfamoyl]phenyl}diazen-1-yl]benzoic 
acid

NA NA − NA

154 5-[(E)-2-(4-{[N-(4-carboxyphenyl)acetamido]sulfonyl}phenyl)diazen-1-yl]-2-hydroxy-
benzoic acid

NA NA − NA

155 C1 (MTB) − 40.58 NA + +
156 C2 (SA) NA − 44.31 + +

In the table ‘ND’ denotes there were no docking pose for the molecules, ‘NA’ denotes the molecules hadn’t passed the Lipinski rule. ‘+’ sign 
denotes that the amides have passed Lipinski’s rule and ADMET filter, ‘−’ denotes they haven’t passe Lipinski’s rule and ADMET filter



	 In Silico Pharmacology (2018) 6:9

1 3

9  Page 10 of 24

ADMET

Before a drug applies pharmacodynamics effect on the body 
via interaction with its target, it must transport through 
the body to reach the site of drug action. Pharmacokinet-
ics denotes to the expedition of the drug from its point of 
entrance to the site of action. Generally speaking, this pro-
cess can be defined by the following phases: absorption, dis-
tribution, metabolism, excretion and toxicity called ADMET 

(Roncaglioni et al. 2013). Competence of the drug to reach 
pharmacologically active concentration at the drug targets 
without any undesirable effect is taken care by ADMET 
properties which include the calculation of a series of fac-
tors (Lin et al. 2013).

In the present study, ADMET has been carried out by 
evaluating water solubility, human intestinal absorption, oral 
bioavailability, blood–brain barrier penetration, transporter, 
plasma protein binding, volume of distribution, CYP450, 

Table 3   Selected sulfonamides of higher docking score than C1 with 
MTB pantothenate synthetase and passed the Lipinski’s rule and 
ADMET filter. IUPAC names (Serial No. Table  2) and CDOCKER 

energy (CDE). The name of the drug group are given below. Added 
functional groups are in coloured circle
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toxicity etc. by support vector machine (SVM) algorithm 
(Cheng et al. 2012).

Molecular dynamics simulation

Molecular dynamics simulation (MD simulation) is calcu-
lated to confirm further the interaction strength and stability 

of the receptor-ligand complex determined from molecular 
docking by Discovery Studio’s standard dynamics cascade 
wizard.

The same pdb file which is modified for docking and 
2-hydroxy-5-[(E)-2-{4-[(prop-2-enamido) sulfonyl] phe-
nyl} diazen-1-yl] benzoicacid are taken as protein–ligand 
complexes. For DNA MD simulation, same DNA is 

Table 4   Selected sulfonamides of higher docking score than C2 
with SA pantothenate synthetase and passed the Lipinski’s rule and 
ADMET filter. IUPAC names (Serial no; Table  2) and CDOCKER 

energy (CDE).The name of the drug group are given below. Added 
functional groups are in coloured circle
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chosen. Prior to performing MD simulations, charm force 
field has been applied to each of the protein–ligand com-
plexes and solvation is set to explicit periodic boundary 
(Brooks et al. 1983). The parameters for MD simulations 
are set with following conditions: both steepest descent 
of energy minimization and steps of conjugate gradient 
minimization are done in order to obtain constant and 
reasonable conformation of biomolecules (Petrova and 
Solov’ev 1997; Hestenes and Stiefel 1952). The system 
was heated from an initial temperature of 50 K to the 
target temperature of 300 K, and the equilibration steps 
are done. Moreover, the parameters of electrostatics are 
chosen as particle mesh Ewald (PME) for long-range 
electrostatic constrains (Darden et al. 1993). The total 
production time of 53 ps simulations and are performed 
with NVT (dynamics without temperature/pressure con-
trol) (Beard and Qian 2010). Default setting values are 
adopted for other parameters.

Results and discussions

Sequence alignment analysis

The sequence alignment analysis has been carried out by 
Clustal Omega and the results are tabulated in Table 1. 
These results used to observe similarities between different 
pantothenate synthetase (Sievers and Higgins 2014). There 
is no significant match between MTB pantothenate syn-
thetase and other pantothenate synthetase. Clustal Omega 
reveals that Neisseria gonorrhoeae pantothenate synthetase 
has 45.71% similarity with MTB pantothenate synthetase.

Clustal Omega with the support of percent identity 
matrix (PIM) shows that SA pantothenate synthetase has 
45.71% similarity with Thermotoga maritima pantothenate 
synthetase (Chenna et al. 2003). These sequences give an 
idea of biological species evolution. The sequence similar-
ity would be a motive for drug designers to work with other 
species containing pantothenate synthetase.

Fig. 2   Docked comprehensive 
perception of MTB pantothen-
ate synthetase and M1 after 
docking. a p.s is represented by 
ribbon and M1 is represented by 
stick and coloured according to 
elements. b secondary structure 
of p.s represented by hydropho-
bic surface and M1 represented 
is by stick model, c interactions 
of M1 with p.s amino acids. 
Bonds are in dots. M1 surround-
ing amino acids are in three 
letters code, represented in blue



In Silico Pharmacology (2018) 6:9	

1 3

Page 13 of 24  9

Docking and bond analysis

The specific binding of a ligand (drug) to a drug target mol-
ecule is the key to drug action. Each ligand binds favorably 
to a specific site on the surface of the target molecule. Iden-
tification of the ligand-binding site for each specific protein 
molecule is crucially important when trying to find a suit-
able drug molecule for the target, and it is also important to 
understand the function of the protein (Soga et al. 2007). The 
docking analysis scores of 93 compounds with MTB and SA 
pantothenate synthetase have been recorded in Table 2. On 
comparing with CDOCKER energy of C1 and C2, useful 
tuberculosis drugs A (Table 1) and B (Table 2) show best 
score for MTB. The CDOCKER energy of M1 − 66.41 a.u. 
(MTB pantothenate synthetase) and energy of C1 is − 40.58 
a.u. M2 shows best score for SA, and CDOCKER energy 
is − 70.69 a.u. and − 44.31 a.u. for C2.

2‑Hydroxy‑5‑[(E)‑2‑{4‑[(prop‑2‑enamido)sulfonyl]phenyl}
diazen‑1‑yl]benzoic acid (M1) and pantothenate synthetase

M1 is docked in the active site of pantothenate synthetase 
of MTB. It forms 9 hydrogen bonds with amino acids of the 
pantothenate synthetase in the ranging distance 2.78–3.34 Å 
(Table 5, Fig. 2). It also forms 2 electrostatic bonds with 
amino acids of the ps. The hydrogen bond forming amino 
acids are asparagine (ARG278), arginine (ARG198), serine 
(SER197 and SER19), tyrosine (TYR82). The CDOCKER 
energy is − 66.41 a.u. and CDOCKER energy is − 39.54.

C1 and pantothenate synthetase

C1 (Table 1) is docked in the active site of pantothenate 
synthetase of MTB. It forms three hydrogen bonds with 
amino acids of the pantothenate synthetase within the rang-
ing distance of 2.23–3.09 Å (Table 5, Fig. 3).The hydrogen 

Fig. 3   Docked comprehensive 
perception of pantothenate syn-
thetase and C1 interaction after 
docking. Picture legends repre-
sentation are same as Fig. 1
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bond forming amino acids are Glycine (GLY158), Tyros-
ine TYR82, Glycine GLN164, Aspartate ASP161. The 
CDOCKER energy is − 40.58 a.u. and CDOCKER energy 
is − 5.52 a.u (Fig. 3).

5‑[(E)‑2‑{4‑[(4‑aminobenzenesulfonyl) sulfamoyl] 
phenyl} diazen‑1‑yl]‑2‑hydroxybenzoic acid (M2) 
and Staphylococcus aureus pantothenate synthetase

M2 is docked in the active site of Staphylococcus aureus 
pantothenate synthetase. It forms twelve hydrogen bonds 
ranging between 1.67 and 3.08 Å (Table 6, Fig. 4). It also 
forms an electrostatic interaction at a distance of 3.60 Å. The 
hydrogen bond forming amino acids are serine (SER186), 
glutamine (GLN154), lysine (LYS150), arginine (ARG188) 
histidine (HIS38), methionine (MET31) and threonine 
(THR30). The CDOCKER energy is − 85.41 a. u. followed 

by CDOCKER energy is 57.64 a.u. It also forms 1 electro-
static bonds with amino acids of the ps

C2 and pantothenate synthetase

C2 is docked in the active site of SA pantothenate syn-
thetase. It forms three hydrogen bonds with amino acids 
of the pantothenate synthetase within the ranging distance 
of 1.9–3.9 Å (Table 6, Fig. 5).The hydrogen bond forming 
amino acids are Arginine (ARG122,ARG188, ARG273), 
Histidine (HIS38), Lysine(LYS150), Threonine (THR30), 
Methionine(MET31). It also forms 1 electrostatic bonds with 
amino acids of the ps. The CDOCKER energy is − 44.31 a.u 
and CDOCKER energy is − 9.07 a.u.

Fig. 4   Docked comprehensive 
perception M2 and Staphylococ-
cus aureus pantothenate syn-
thetase after docking. Picture 
legends representation is same 
as Fig. 2
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Table 5   Noncovalent bond distances between 2-hydroxy-5-[(E)-2-{4-[(prop-2-enamido) sulfonyl] phenyl} diazen-1-yl] benzoic acid, C1 and 
pantothenate synthetase

Noncovalent bond distances between 
M1 (Lig1) (Table 1) and MTB ps

Distance (Å) Bonding category Noncovalent bond distances between 
C1 (Lig2) and MTB pantothenate 
synthetase

Distance (Å) Bonding category

A:ARG198:NH2—Lig1:O26 2.70 Electrostatic A:GLY158:HN—Lig2:N21 2.23 Hydrogen bond
A:ARG278:NH1—Lig1:O9 2.78 Hydrogen bond Lig2:H44—A:TYR82:OH 3.043 Hydrogen bond
A:ARG198:NH1—Lig1:O9 2.83 Hydrogen bond A:GLN164:HE22—Lig2 3.09 Hydrogen bond
A:ARG278:NH1—Lig1:O8 2.87 Electrostatic A:ASP161:OD2—Lig2 3.53 Electrostatic
A:SER197:OG—Lig1:O23 3.20 Hydrogen bond
A:SER197:N—Lig1:O23 3.28 Hydrogen bond
A:TYR82:OH—Lig1:O25 3.34 Hydrogen bond
A:ARG198:NH2—Lig1 3.52 Hydrogen bond
A:ASP161:OD2—Lig1 3.53 Hydrogen bond
A:ARG132:NH2—Lig1:O8 3.60 Hydrogen bond
A:ARG198:NH1—Lig1:O8 3.81 Hydrogen bond

Fig. 5   Comprehensive percep-
tion of C2 and Staphylococcus 
aureus pantothenate synthetase 
interaction after docking. Pic-
ture legends representation are 
same as Fig. 2
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ADMET property analysis

There are total 26 parameters in ADMET data which were 
available in literature (Cheng et al. 2012). In the present 
work a ‘+’ sign is marked when 23 parameters are positive 
(81%) and ‘++’ is assigned (Table 7) when more than 23 
parameters are passed (Cheng et al. 2012). Pharmacokinetic 
properties and toxicities are predicted by ADMET which can 

predict permeability for BBB (blood–brain barrier), HIA 
(human intestinal absorption), P-glycoprotein substrate/
inhibitor, renal organic cation transporter, etc. ADMET 
result shows 2-hydroxy-5-[(E)-2-{4-[(prop-2-enamido)sulfo-
nyl]phenyl}diazen-1-yl]benzoic acid and 2-hydroxy-5-[(E)-
2-{4-[(2-phenylacetamido)sulfonyl]phenyl}diazen-1-yl] 
benzoic acid are positive (+) in HIA, BBB permeability. 
It suggests that the molecules are well absorbed in human 

Fig. 6   a, b HOMO and LUMO 
plots of M1. The positive 
electron density has been shown 
in green color while negative in 
violet. c, d HOMO and LUMO 
plots of C1. The positive elec-
tron density has been shown in 
red color while negative in blue

Table 6   Recognizable bonds between M2, C2 and Staphylococcus aureus Pantothenate synthetase

Noncovalent bond distances 
bonds between M2 (LIG3) 
and SA pantothenate 
synthetase

Distance (Å) Bonding category Noncovalent bond distances 
between C2 (Lig4) and 
SA ps

Distance (Å) Category

A: LYS150:HZ3 - :LIG3: O 1.67 Hydrogen bond; Electro-
static

A:ARG188:HH22—
:LIG4:O

1.9 Hydrogen bond; Elec-
trostatic

A: SER186: HG - :LIG3: O 1.91 Hydrogen bond A:HIS38:HE2 - :LIG4:O 2.11 Hydrogen bond
A: GLN154:HE22 - :LIG3: 

O
1.93 Hydrogen bond A:LYS150:HZ3 - :LIG4:N 2.43 Hydrogen bond

A: LYS150:HZ2 - :LIG3: O 2.15 Hydrogen bond; Electro-
static

A:LYS150:HZ2 - :LIG4:N 2.63 Hydrogen bond

A:ARG188:HH22 - 
:LIG3:N

2.26 Hydrogen bond A:THR30:HA - :LIG4:O 2.72 Hydrogen bond

A: HIS38:HE2 - :LIG3: O 2.38 Hydrogen bond A:ARG273:HH11 - 
:LIG4:O

2.75 Hydrogen bond; Elec-
trostatic

A: MET31: HN - :LIG3: O 2.45 Hydrogen bond A:MET31:HN - :LIG4:O 2.77 Hydrogen bond
A: THR30: HA - :LIG3: O 2.51 Hydrogen bond A:THR30:HB - :LIG4:O 2.78 Hydrogen bond
A: SER186:HB2 - :LIG3: O 2.68 Hydrogen bond A:ARG122:NH2 - :LIG4:O 2.83 Electrostatic
A: LYS150:HE1 - :LIG3: O 2.69 Hydrogen bond A:HIS38:HD2 - :LIG4:O 2.94 Hydrogen bond
A: SER186:HB2 - :LIG3: O 2.81 Hydrogen bond A:ARG122:NH2 - :LIG4:O 2.95 Electrostatic
A: SER186: HA - :LIG3: O 3.08 Hydrogen bond A:ARG122:NH2 - :LIG4:O 3.00 Electrostatic
A:ARG188:NH2 - :LIG3 3.60 Electrostatic A:ARG188:NH2 - :LIG4 3.19 Electrostatic

A:ARG188:HH11 - 
:LIG4:O

3.20 Hydrogen bond; Elec-
trostatic

A:ARG188:NH2 - :LIG4:O 3.90 Electrostatic
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Fig. 7   The result of pharmacophore features of M1 based on receptor-ligand pharmacophore generation. The hydrogen bond acceptor, hydrogen 
bond donor, positive ionizablefeature, aromatic ring and negative ionizable features are shown as green, orange and blue respectively

Fig. 8   The result of pharmacophore features of M2 based on receptor-ligand pharmacophore generation. The hydrogen bond acceptor, hydrogen 
bond donor, positive ionizablefeature, aromatic ring and negative ionizable features are shown as green, orange, and blue respectively
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body (Table 7). Inhibition and initiation of P-glycoprotein 
have been reported as the causes of drug–drug interactions 
(Lin and Yamazaki 2003). Two best docked molecules (M1 
and M2) are P-glycoprotein non-inhibitor. Data in Table 8 
show the best fitted ligand in permissible limit (Lin et al. 
2013). Organiccation transporters are responsible for drug 
absorption and disposition in the kidney, liver, and intes-
tine (Zhang et al. 1998). ADMET result of two best docked 
molecules shows that they are non-inhibitor of renal organic 
cation transporter. The human cytochromes P450 (CYPs), 
particularly isoforms 1A2, 2C9, 2D6 and 3A4 are responsi-
ble for about 90% oxidative metabolic reactions. Inhibition 
of CYP enzymes will lead to inductive or inhibitory failure 
of drug metabolism (Uttamsingh et al. 2005).

The Ames test is a widely employed method that uses 
bacteria to test whether a given chemical can cause cancer. 

More formally, it is a biological assay to assess the muta-
genic potential of chemical compounds (Ames et al. 1972; 
Mortelmans and Zeiger 2000).

Human Ether-à-go–go-Related Gene (hERG) is a gene 
sensitive to drug binding (Sanguinetti and Tristani-Firouzi 
2006). ADMET results show that the drugs M1, M2 are 
weak inhibitor and non-inhibitor of hERG (predictor I and 
II) (Sanguinetti and Tristani-Firouzi 2006). The aqueous 
solubility (logS) of a compound considerably affects its 
absorption and distribution properties. The predicted logS 
values of the studied compounds are within the acceptable 
limit (Vyas et al. 2013). The solubility (logS) of organic 
molecules in water is considered in the ADMET, because 
this parameter generally has important impact on many 
ADMET concerned properties of drugs, such as uptake, 
distribution, transport and eventually bioavailability (Hou 

Fig. 9   M1 interaction with 
Tuberculosis’s DNA in minor 
groove. a Drug is represented 
by stick and double helical 
DNA structure is represented 
by ladder and rings, b dou-
ble helical structure of DNA 
represented by M1 represented 
by stick model and are coloured 
according to elements, c interac-
tions of ligand with DNA base 
pairs (A, T, G, C); the interac-
tion types. Hydrogen bonds are 
in green. Ligand surrounding 
base pairs are in three letters 
code represented in black
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et al. 2004). Understanding of ADMET properties together 
with their measurement and prediction gives an idea about 
the dose size and dose frequency, drugs solubility, metabo-
lism of drug and its toxicity. Before synthesizing drug like 
molecules in laboratory, a profound knowledge of drug prop-
erties will save time and resources.

Density functional theory analysis

HSFs from the best binding pose have been transferred to 
Gauss view 5 and the difference in HOMO and LUMO 
energy, known as band gap, indicates the electronic excita-
tion energy, necessary to compute the molecular reactivity 
and stability of the compounds (Becke 1993; Gill et al. 1992; 

Devlin et al. 1995; Fukui et al. 1952). For 2-hydroxy-5-[(E)-
2-{4-[(prop-2-enamido)sulfonyl]phenyl} diazen-1-yl] ben-
zoic acid, eigen values of HOMO and LUMO are − 0.182773 
and − 0.138828 eV respectively and the HOMO–LUMO gap 
is − 0.043945. For compound 1, eigen values of HOMO 
and LUMO are − 0.213889 and − 0.053971 eV and the 
HOMO–LUMO gap is − 0.159918 eV (Figs. 5, 6; Table 6).

Pharmacophore generation

The generated pharmacophore models based on receptor-
ligand interactions by docking have confirmed all major 
interactions in the drug-receptor interaction modes. The 
number of features, feature set and selectivity score from 

Table 7   ADMET properties of M1 and C1

ADMET properties M1 C1

Value Probability Value Probability

Absorption
Blood–brain barrier + 0.6541 + 0.8722
Human intestinal absorption + 0.8131 + 0.9727
Caco-2 permeability – 0.6518 + 0.5769
P-glycoprotein substrate Non-substrate 0.8458 Non-substrate 0.8551
P-glycoprotein inhibitor Non-inhibitor 0.8955 Non-inhibitor 0.8246

Non-inhibitor 0.8994 Inhibitor 0.7104
Renal organic cation transporter Non-inhibitor 0.9100 Non-inhibitor 0.7486
Distribution
Subcellular localization Mitochondria 0.5965 Mitochondria 0.7434
Metabolism
CYP450 2C9 substrate Non-substrate 0.5802 Non-substrate 0.6852
CYP450 2D6 substrate Non-substrate 0.8518 Non-substrate 0.8225
CYP450 3A4 substrate Non-substrate 0.6784 Non-substrate 0.6153
CYP450 1A2 inhibitor Non-inhibitor 0.8434 Non-inhibitor 0.5117
CYP450 2C9 inhibitor Inhibitor 0.8248 Inhibitor 0.6145
CYP450 2D6 inhibitor Non-inhibitor 0.8765 Non-inhibitor 0.8789
CYP450 2C19 inhibitor Non-inhibitor 0.7830 Inhibitor 0.5904
CYP450 3A4 inhibitor Non-inhibitor 0.7587 Non-inhibitor 0.8283
CYP inhibitory promiscuity Low CYP inhibitory promiscuity 0.7264 High CYP inhibitory promiscuity 0.8456
Toxicity
Human Ether-a-go–go-related gene 

inhibition
Weak inhibitor 0.9825 Weak inhibitor 0.9972

Non-inhibitor 0.8904 Non-inhibitor 0.7206
AMES toxicity Non AMES toxic 0.7342 Non AMES toxic 0.7595
Carcinogens Non-carcinogens 0.5385 Non-carcinogens 0.8117
Fish toxicity High FHMT 0.9977 High FHMT 0.9710
Tetrahymena pyriformis toxicity High TPT 0.8832 High TPT 0.8240
Honey bee toxicity Low HBT 0.7391 Low HBT 0.7051
Biodegradation Not ready biodegradable 0.9836 Not ready biodegradable 0.9936
Acute oral toxicity III 0.6643 III 0.4468
Carcinogenicity (three-class) Non-required 0.5722 Non-required 0.5471
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Table 8   ADMET properties of M2 and C2

ADMET properties M2 C2

Value Probability Value Probability

Absorption
Blood–brain barrier + 0.6917 + 0.8646
Human intestinal absorption + 0.7727 + 0.9974
Caco-2 permeability – 0.7290 + 0.6995
P-glycoprotein Substrate Non-substrate 0.8093 Non-substrate 0.7334
P-glycoprotein Inhibitor Non-inhibitor 0.9111 Non-inhibitor 0.8353

Non-inhibitor 0.8988 Non-inhibitor 0.6629
Renal organic cation transporter Non-inhibitor 0.8985 Non-inhibitor 0.7101
Distribution
Subcellular localization Mitochondria 0.5996 Mitochondria 0.7147
Metabolism
CYP450 2C9 Substrate Non-substrate 0.5626 Non-substrate 0.6468
CYP450 2D6 substrate Non-substrate 0.8561 Non-substrate 0.8068
CYP450 3A4 substrate Non-substrate 0.6266 Non-substrate 0.5928
CYP450 1A2 inhibitor Non-inhibitor 0.8540 Non-inhibitor 0.6955
CYP450 2C9 inhibitor Inhibitor 0.7520 Inhibitor 0.5256
CYP450 2D6 inhibitor Non-inhibitor 0.8908 Non-inhibitor 0.9153
CYP450 2C19 inhibitor Non-inhibitor 0.7418 Non-inhibitor 0.6502
CYP450 3A4 inhibitor Non-inhibitor 0.8894 Non-inhibitor 0.7977
CYP inhibitory promiscuity Low CYP inhibitory promiscuity 0.5715 High CYP inhibitory promiscuity 0.7357
Toxicity
Human Ether-a-go–go-related gene 

inhibition
Weak inhibitor 0.9740 Weak inhibitor 0.9905

Non-inhibitor 0.8964 Non-inhibitor 0.8962
AMES toxicity Non AMES toxic 0.7293 Non AMES toxic 0.8398
Carcinogens Non-carcinogens 0.5519 Non-carcinogens 0.8317
Fish toxicity High FHMT 0.9604 High FHMT 0.9634
Tetrahymena pyriformis toxicity High TPT 0.6599 High TPT 0.8293
Honey bee toxicity Low HBT 0.7513 Low HBT 0.8206
Biodegradation Not ready biodegradable 0.9449 Not ready biodegradable 0.9806
Acute oral toxicity III 0.6801 II 0.6630
Carcinogenicity (three-class) Non-required 0.5950 Non-required 0.6214

Table 9   Noncovalent bond 
distances between M1 and DNA 
(A and B chain)

Bonds Distance (Å) Category Type

M1:H2 - :M1:O 2.30036 Hydrogen bond Conventional hydrogen bond
M1:H9 - A:DT106:O2 2.36896 Hydrogen bond Conventional hydrogen bond
M1:H9 - A:DC107:O4′ 3.0371 Hydrogen bond Conventional hydrogen bond
A:DC107:H4′ - :M1:O 2.57249 Hydrogen bond Carbon hydrogen bond
B:DA208:H2 - :M1:O 2.50191 Hydrogen bond Carbon hydrogen bond
B:DA210:H5′2 - :M1:O 2.91783 Hydrogen bond Carbon hydrogen bond
B:DA210:H4′ - :M1:O 2.95761 Hydrogen bond Carbon hydrogen bond
B:DA211:H2 - :M1:O 2.69911 Hydrogen bond Carbon hydrogen bond
B:DC212:H4′ - :M1:O 2.54721 Hydrogen bond Carbon hydrogen bond
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pharmacophore generation are observed from the 
two best docked molecules. Pharmacophore genera-
tion of 2-Hydroxy-5-[(E)-2-{4-[(prop-2-enamido) sul-
fonyl]phenyl} diazen-1-yl]benzoic acid (M1) and 

2-hydroxy-5-[(E)-2-{4-[(2-phenylacetamido)sulfonyl] phe-
nyl}diazen-1-yl]benzoic acid (M2) are shown in Figs. 7 and 
8, respectively.

Drug–DNA interaction

The drug (amides)–DNA interactions have been compu-
tationally examined by docking techniques used to study 
interactions between DNA and small ligand molecules those 
are potentially pharmaceutical interest. Autodock vina soft-
ware is used for docking (Trott and Olson 2010). Drug-DNA 
interaction gives an idea about binding pattern of drug with 
DNA. Amides compounds (drug) docked with M. tubercu-
losis’s DNA is used to understand the drug-DNA interac-
tion. We have observed that amide compounds interact with 
AT-rich regions (represented by red and turquoise coloured 
rings respectively) of DNA in the minor groove by forming 
hydrogen bonding and hydrophobic interactions (Fig. 9). 
The amino group of guanine (represented by green ring) 
prevents 2-hydroxy-5-[(E)-2-{4-[(prop-2-enamido) sulfonyl] 
phenyl} diazen-1-yl] benzoic acid from binding to the G·C 
base pairs by steric hindrance (Table 9), and thus conferring 
AT-selectivity on the drug molecule. Minor groove binding 
molecules are usually constructed of a series of heterocy-
clic or aromatic hydrocarbon rings that possess rotational 
freedom. This allows these molecules to fit into the minor 
groove, with displacement of water; these drugs can form 
hydrogen bonds to bases (Sangeetha Gowda et al. 2014).

Molecular dynamics simulation

The MD simulation study of best docked molecules with 
Mtb and S. aureus pantothenate synthetase and Mtb DNA 
are carried out for 53 ps by 50 thousand steps. MD produc-
tion run and the trajectory of the various energy profiles are 
created and analyzed.

Fig. 10   Shows bond energy graph of M1, other four molecules of 
Table  3 and C1 with pantothenate synthetase of Mycobacterium 
tuberculosis. Bond energy and number of trajectory frames are plot-
ted along X- and Y-axis respectively. Best docked molecule is in blue 
and C1 is in pink. (Series numbers are maintained as in Table 3)

Fig. 11   Shows bond energy graph of M2 with pantothenate syn-
thetase of S. aurues. X axis and Y-axis represent the bond energy and 
number of trajectory frames respectively. Best docked molecule is in 
pink and C2 is in blue. (Series numbers are maintained as in Table 4)

Fig. 12   Shows bond energy graph of 2-hydroxy-5-[(E)-2-{4-[(prop-
2-enamido) sulfonyl] phenyl} diazen-1-yl] benzoic acid and C1 
with DNA of Mycobacterium tuberculosis. X-axis and Y-axis repre-
sent bond energy and number of trajectory frames respectively. Best 
docked molecule is in green and C1 is in violet

Fig. 13   Shows results of molecular dynamics, last conformation 
(structure) superimposed (red) with first conformation (blue) of pan-
tothenate synthetase of Mycobacterium tuberculosis 
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Potential energy of M1 after MD simulation was 
− 14,633 kcal/mol and C1 − 14,607.2 kcal/mol and bond 
energy was 1526.3 and 1503.13 kcal/mol respectively. Same 
for S. aureus pantothenate M2 − 16,245.9 kcal/mol bond 
energy was 1642.68 and 1533.34 kcal/mol respectively.

For Mtb DNA and 2-hydroxy-5-[(E)-2-{4-[(prop-2-
enamido) sulfonyl]phenyl} diazen-1-yl] benzoic acid 
potential energy was − 2394.2 kcal/mol and bond energy 
was 398.096  kcal/mol. For C1 potential energy was 
− 2357.67 kcal/mol bond energy 334.856 kcal/mol. Bond 
energy graphs are shown in Figs. 10, 11 and 12.

As the graphs revealed that in all situations for the best 
docked molecules, the bond strength are increased from ini-
tial position, ended from the starting point of bond strength 
and it was higher till then end compared to corresponding 
drugs. So it can be clearly predicted that molecules formed 
stable conformation with Mtb and S. aureus pantothenate 
synthetase and DNA. Super imposed structures of first con-
formation (trajectory frame) and last conformation of Mtb 
pantothenate synthetase show the deviation of end point of 
the dynamics from the initial point of dynamics (Fig. 13).

Conclusion

Amide functionalized sulfa drugs show potent anti-microbial 
activity and also active against MTB and S. aureus in vivo. 
The best docked compounds have better docking score than 
approved drugs and also show better ADMET efficiency.

Out of 154 compounds, 2-hydroxy-5-[(E)-2-{4-[(prop-
2-enamido)sulfonyl]phenyl}diazen-1-yl] benzoic acid and 
2-hydroxy-5-[(E)-2-{4-[(2-phenylacetamido)sulfonyl]phe-
nyl}diazen-1-yl] benzoic acid exhibit significantly higher 
docking score than approved drugs, C1 and C2. Molecular 
orbital, pharmacophore, drug likeness and ADMET pre-
dicted the idea about electrostatic pharmacological and non-
toxic properties. Molecular dynamics simulation enriches 
the knowledge of stability of drug like molecule. We hope, 
will open new avenues to amide drug research. This com-
putational prediction about a better tuberculosis drug will 
encourage and assist experimentalists to a great extent to 
design and synthesize potential new drugs for removal of 
this epidemic disease, spreading globally with a rapid span.
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