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Abstract
The inhibition of abnormal amyloid β (Aβ) aggregation has been regarded as a good target to control Alzheimer’s disease. 
The present study adopted 2D-QSAR, HQSAR and 3D QSAR (CoMFA & CoMSIA) modeling approaches to identify the 
structural and physicochemical requirements for the potential Aβ aggregation inhibition. A structure-based molecular docking 
technique is utilized to approve the features that are obtained from the ligand-based techniques on 30 curcumin derivatives. 
The combined outputs were then used to screen the modified 10 compounds. The 2D QSAR model on curcumin deriva-
tives gave statistical values R2 = 0.9086 and SEE = 0.1837. The model was further confirmed by Y-randomization test and 
Applicability domain analysis by the standardization approach. The HQSAR study (Q2 = 0.615, R2

ncv = 0.931, R2
pred = 0.956) 

illustrated the important molecular fingerprints for inhibition. Contour maps of 3D QSAR models, CoMFA (Q2 = 0.687, 
R2

ncv = 0.787, R2
pred = 0.731) and CoMSIA (Q2 = 0.743, R2

ncv = 0.972, R2
pred = 0.713), depict that the models are robust and 

provide explanation of the important features, like steric, electrostatic and hydrogen bond acceptor, which play important 
role for interaction with the receptor site cavity. The molecular docking study of the curcumin derivatives elucidates the 
important interactions between the amino acid residues at the catalytic site of the receptor and the ligands, indicating the 
structural requirements of the inhibitors. The ligand–receptor interactions of top hits were analyzed to explore the pharma-
cophore features of Aβ aggregation inhibition. The Aβ aggregation inhibitory activities of novel chemical entities were then 
obtained through inverse QSAR. The newly designed molecules were further screened through machine learning, prediction 
of toxicity and nature of metabolism to get the proposed six lead compounds.
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Introduction

Alzheimer’s disease (AD), a devastating neurodegenerative 
disease, remains epidemic for public health in the twenty-
first century (Alzheimer’s Association 2017). AD is charac-
terized by the disintegration of the nervous system, which 
results in episodic memory problems leading to abnormal 
behavior and is the leading cause of dementia (Citron 2010). 
The presence of the extracellular deposits of misfolded and 

aggregated amyloid-β (Aβ) peptides in the brain is widely 
considered to be critically concerned in the progression of 
AD (Hardy and Selkoe 2002; Jack et al. 2010). The sequen-
tial enzymatic actions of β-secretase and γ-secretase result in 
the proteolytic cleavage of amyloid precursor protein (APP) 
(Selkoe 1997). The formation of Aβ is a two-step process 
which involves the cleavage of APP by BACE1 to form a 
β-secretase derived C-terminal fragment of APP, followed 
by an action of γ-secretase to generate Aβ isoforms ranging 
from 37 to 42 amino acid residues. Aβ40 is the most abundant 
isoform, whereas the Aβ, which is mainly associated with 
AD pathogenesis, is aggregated Aβ42 (Selkoe 1994; Golde 
et al. 2000). Thus in AD, Aβ monomers form undesirable Aβ 
aggregates of long insoluble fibrils. They aggregate in the 
extracellular deposits known as senile plaques. These abnor-
mal changes in Aβ induce abnormal hyperphosphorylation 
of tau and tangle formation as well as neuronal loss, bringing 
about cognitive impairment (Haass and Selkoe 2007). The 

 *	 Indira G. Shibi 
	 igshibi@sncollegechempazhanthy.ac.in

1	 Department of Chemistry, Sree Narayana College, 
Chempazhanthy, Thiruvananthapuram, Kerala 695587, India

2	 Department of Chemistry, Vidya Bharati College, Camp, 
Amravati, Maharashtra 444 602, India

3	 Division of Organic Chemistry, CSIR-National Chemical 
Laboratory, Pune 411 008, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s40203-018-0049-1&domain=pdf


	 In Silico Pharmacology (2018) 6:12

1 3

12  Page 2 of 19

inhibition of abnormal Aβ aggregation is considered as one 
of the most important etiological agents and is an attractive 
therapeutic target to control AD (Xiao et al. 2015).

Curcumin is a bioactive phenolic compound present in 
the rhizome of Curcuma longa L. (Zingiberaceae). Cur-
cumin exhibits various biological and pharmacological 
activities like anti-inflammatory (Jin et al. 2014), antioxidant 
(Nishikawa et al. 2013), antimicrobial (Dubey et al. 2008), 
anti-fungal (Nguyen et al. 2014), and antibacterial activities 
(Negi et al. 1999). Moreover, various in vivo and in vitro 
experiments reveal the effects of curcumin on treating or 
preventing AD pathology (Caesar et al. 2012; Garcia-Alloza 
et al. 2007; Hamaguchi et al. 2009; Ma et al. 2013). One of 
the most significant features of curcumin is that it directly 
inhibits the formation and extension of fibrillar Aβ aggre-
gates and also destabilizes preformed fibrillar Aβ aggre-
gates (Ono et al. 2004). It was reported that chronic dietary 
curcumin lowered Aβ deposition in Alzheimer Transgenic 
Mouse (Lim et al. 2001). Some researchers have reported 
that AD model mice treated with curcumin displayed a 
reduction in Aβ accumulation in the brain (Begum et al. 
2008; Yang et al. 2005a, b). The unique benefit of the cur-
cumin is that it is nontoxic to human even with high dosage 
(Sharma et al. 2001).

Nowadays, the in vitro assessment of Aβ aggregation 
inhibitors is still a time consuming and labor intensive task. 
So we are interested in identifying potential novel leads as 
Aβ aggregation inhibitors using techniques based on Com-
puter Aided Drug Design (CADD). (Kapetanovic 2008). 
Molecular modeling in combination with Quantitative 
Structure–Activity Relationship (QSAR) is used to test the 
activity of a ligand and the type of interaction into the active 
site of the protein (Elfiky and Elshemey 2016; Saleh 2015; 
Aswathy et al. 2017).

The ligand-based molecular modeling techniques used 
are Pharmacophore mapping and QSAR analysis. The 
pharmacophore model gives information regarding hydro-
phobic properties, hydrogen binding properties (acceptor 
or donor) and aromatic functionality of the compounds in 
the dataset. The 3D-QSAR studies, which include CoMFA 
(Cramer et al. 1988) and CoMSIA (Klebe et al. 1994), 
cover an entire force field around a molecule instead of 
only spotlighting the pharmacophoric information (Cru-
ciani and Watson 1994). Various properties like elec-
trostatic, steric, hydrophobic and hydrogen-bond donor/
acceptor factors were considered in 3D-QSAR for the 
force field calculations which give the best results when 
target-recognizing ligands share a unique structural scaf-
fold (Ballante and Ragno 2012; Shibi et al. 2015; Jisha 
et al. 2017). Molecular docking studies have been exten-
sively employed to identify the exact conformation of 
ligands in the precise location of the binding cavity of a 
protein receptor molecule (Lengauer and Rarey 1996). It 

also predicts the affinity between the ligand and the active 
site residues of the protein receptor. Therefore, these can 
be useful to find out the best lead molecule and their fur-
ther modification by rational drug design approach. On 
this ground, we chose 30 curcumin derivatives with Aβ 
aggregation inhibition values reported by Yanagisawa 
et al. (2015) for the present study.

Materials and methods

Dataset preparation

A desirable set comprising 30 structurally diverse com-
pounds which inhibit abnormal Aβ aggregation has been 
considered for the study. In this study, the IC50 values of 
these compounds were converted to pIC50 (− log IC50). 
The structures of the compounds along with their pIC50 
values are specified in Table  1. The compounds were 
divided into 80% training and 20% test sets. While divid-
ing datasets, a wide range of activity data was confirmed 
in training as well as test sets. The inhibitory activities on 
Aβ aggregation (pIC50) have been used as the dependent 
variables for doing QSAR studies.

Calculation of descriptors

Using powerMV software, about 179 descriptors, which 
include Pharmacophore fingerprints, weighted burden 
number and eight drug-like properties were computed 
for the development of 2D-QSAR analysis. Using PAdel-
Descriptor, about 15,345 descriptors were also calculated 
(Yap 2011). In addition, by employing the QuaSAR mod-
ule of Molecular Operating Environment (MOE), a total 
of 365 descriptors belonging to three classes: 2D descrip-
tors, which use the atoms and connection information of 
the molecules, external 3D (x3D), which uses 3D coordi-
nate information with an absolute frame of reference and 
internal 3D (i3D), which uses 3D coordinate information 
about each molecule, were calculated. Thus a total pool of 
15,889 descriptors was generated for this study.

The pool of 15,889 descriptors was then reduced to 
1495 by removing those descriptors that have the same 
value for 90% of the dataset using “General” descriptor 
selection algorithm. It is further reduced to 137 by elimi-
nating descriptors highly correlated using “CORCHOP” 
descriptor selection algorithm. Finally by applying subjec-
tive selection using Genetic algorithm method, the pool 
of descriptors was eventually reduced to six. These six 
descriptors were used to build the 2D-QSAR model.
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2D QSAR study

In the present work, the multiple linear regression (MLR) 
based QSAR model was developed, to obtain specific infor-
mation regarding the contribution of different structural and 
physicochemical characteristics of the compounds towards 
the inhibitory activity.

Validation of 2D‑QSAR model

The leave-one-out (LOO) cross-validation method was 
used as an internal validation tool to check the predictive 

ability of the built 2D-QSAR model (Tetko et al. 2001). 
The internal predictabilities of the model were verified 
by LOO cross-validated regression coefficient (Q2). Inter-
nal validation parameters like standard error of estimate 
(SEE), the square of correlation coefficient (R2), adjusted 
R2 (RA

2), variance ratio (F) and predicted residual sums of 
squares standard deviation (PRESS) were used, along with 
parameters like rm

2(LOO) and ∆ rm
2(LOO) (Roy et al. 2015a, 

b). For external validation, the parameter R2
pred was used, 

to verify the predictive ability of the model on the test set. 
External validation parameters (without scaling) like r2, 

Table 1   Molecular structures and corresponding experimental pIC50 values of the curcumin derivatives

ID R1 R2 R3 R4 R5 pIC50

O

R5

R4

O
R1

R2
R3

1 CH3O HO H CH3O HO 5.6990

2 CF3O HO CH3 CF3O HO 5.4949

3a CF3O HO H CF3O HO 5.5850

4 CF3O HO CH3O–CO–CH2–CH2 CF3O HO 5.3565

5 CF3O HO HOOC–CH2–CH2 CF3O HO 5.0862

6 CF3O HO CH3O–CO–CH2 CF3O HO 5.2441

7a CF3O HO CH3O–CO–CH2–CH2–CH2 CF3O HO 5.4559

8 CF3O HO CH3–CH2–O–CO CF3O HO 5.8861

9 CF3O HO CH3–CH2O–CO–CH2–CH2 CF3O HO 5.4202

10 CF3O HO (CH3)3C–O–CO–CH2–CH2 CF3O HO 5.1871

11 CF3O HO (CH3)2CH–O–CO–CH2–CH2 CF3O HO 5.4089

12 O O

OH OH

F

O O

F

FF

5.2291

13 CF3O HO (CH3)2 CF3O HO 3.9931

14 CF3O CH3O CH3 CF3O CH3O 3.7905

15a CF3O HO CH3O–CH2–O–CH2–CH2–CH2 CF3O HO 5.3010

16 CF3O CH3O–CH2–
O

CH3O–CO–CH2–CH2 CF3O CH3O–CH2–O 4.3270

17a CF3O CH3O–CH2–
O

(CH3)3C–O–CO–CH2–CH2 CF3O CH3O–CH2–O 3.6925

18 CH3O HO CH3O–CO–CH2–CH2 CH3O HO 5.4949
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r0
2, Concordance Correlation Coefficient (CCC), Q2

F1, Q2
F2, 

Q2
F3 were also used. Golbraikh and Tropsha (2002) met-

rics were also found out. Y-randomization technique and 
Applicability domain analysis were also performed for the 
MLR model to ascertain the robustness, significance, and 
reliability of the 2D-QSAR model (Tropsha et al. 2003). 
The parameter cRp

2 was taken into consideration as the 
validation parameters for the Y-based randomization test 
(Ojha and Roy 2011).

HQSAR

Hologram QSAR (HQSAR) module available at SYBYL-
X software v.1.3 was used for the generation of HQSAR 
models (Sybyl 1.3, Triops Inc, St). A predefined set of rules 
was used to have a molecule into a molecular fingerprint that 
encoded the frequency of occurrence of different molecu-
lar fragment types. Then the molecular fingerprint was cut 
into strings at a fixed interval as specified by a hologram 
length (HL) parameter. All of the generated strings were 

Table 1   (continued)

19 CF3O HO
OCH2CH2CH2

O CF3O HO 5.5086

20 CF3O HO
O(CH2CH2O)3CH2CH2

O CF3O HO 5.0315

21a

OOH

OH
O F

F F

O

O

F
F

F

4.9101

22 CF3O HO HO–(CH2–CH2–O)3–CH2–CH2 CF3O HO 4.7328

23 CF3O HO (CH3)2N–CO–CH2–CH2 CF3O HO 5.3010

24a CF3O HO
OCH2CH2OCH2CH2

O CF3O HO 5.1871

25 CF3O HO HO–CH2–CH2–O–CH2–CH2 CF3O HO 5.1549

26 CF3O HO
OCH2CH2

O CF3O HO 5.2441

27

O
OH

OH

O

O
F

F
F

F
F

F

O

5.6026

28 CH3O HO H CH3O CH3O–CO–
CH2–O

5.8539

29 CH3O HO H CH3O HOOC–CH2–O 5.5086

30 O O

OH

O

O O

F

F F

O
5.1871

a Test compounds
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hashed into a fixed length array. HQSAR does not neces-
sitate 3D alignment for model generation. HQSAR uses 
different parameters such as atom count, hologram length, 
and fragment distinction, which are the most important fac-
tors involved in the model development. 21 different models 
were derived using the default fragment size (4–7 atoms) 
and various combinations of fragment distinctions (A-atoms; 
C-connections; B-bonds; H-hydrogen; Ch-chirality; DA-
donor and acceptors of hydrogen bonds).

3D‑QSAR

Molecular modeling and alignment

The partial atomic charges for electrostatic contribution were 
calculated by the method of Gasteiger–Hückel. Tripos force 
field was employed for optimization and energy minimiza-
tion of the compounds with the convergence criterion of 
0.01 kcal/mol Å. The most active molecule, compound 8, 
which has the minimum energy conformation, was selected 
as a reference molecule (Fig. 1). The remaining compounds 
were aligned on it by the common substructure alignment.

CoMFA model

The CoMFA model illustrates steric (S) and electrostatic (E) 
features of the scaffold for showing the selective inhibition 
of the target. The S and E fields were calculated at each lat-
tice with a grid size of 2 Å. A sp3 hybridized carbon atom 
was used with + 1 charge serving as a probe atom. Column 
filtering was set to 1.0 kcal/mol to reduce noise and improve 
the outcomes of the built model. The cut-off value for steric 
and electrostatic fields was set to 30 kcal/mol.

CoMSIA model

The CoMSIA model helps to understand the hydrogen 
bond acceptor (A) and donor (D), the hydrophobic (H) 
features in addition to the ‘S’ and ‘E’ features. The same 

lattice box utilized for the creation of the CoMFA model 
was also employed during the CoMSIA calculation. CoM-
SIA descriptors were calculated based on a sp3 hybrid-
ized carbon as a probe atom with + 1 positive charge, 
+ 1 hydrophobicity, + 1 hydrogen bond donor and + 1 
hydrogen bond acceptor at each lattice and grid spacing 
of 2.0 Å.

Validation of 3D‑QSAR models

The partial least squares (PLS) were adopted for the regres-
sion analysis to build the 3D-QSAR equations. The optimal 
number of components and the cross-validation correlation 
coefficient (Q2) were determined by leave-one-out (LOO) 
cross-validation procedures. Then, the non-cross-validated 
analysis was performed to calculate the non-cross-validation 
correlation coefficient (R2), SEE and F value.

The predictive abilities of the 3D-QSAR models were 
identified by a test set of 6 compounds, and their pIC50 
values were predicted using the following Eq. (1):

where Ypredicted, Yobserved and Ymean are predicted, 
actual and mean values of the activity, respectively. 
∑

(Ypredicted − Yobserved)
2 is the predictive sum of squares 

(PRESS).

Generation of a pharmacophore model

Using the MOE pharmacophore consensus search module, 
a pharmacophoric model was generated to highlight the 
most important key features shown by each group of com-
pounds belonging to the dataset. It was comprised of four 
different annotation points such as H-bond donor, H-bond 
acceptor, hydrophobic and aromatic features.

(1)R2
pred

= 1 −

∑

(Ypredicted − Yobserved)
2

∑

(Yobserved − Ymean)
2

Fig. 1   Structure of the template 
compound (8) and the three 
regions A, B and C

Region A

Region B

Region C

O O

OH OH

O O

F F

F

FF

F

O O



	 In Silico Pharmacology (2018) 6:12

1 3

12  Page 6 of 19

Molecular docking

Primary and secondary structure prediction and validation 
of the protein molecules

For physico-chemical characterization, theoretical iso-
electric point (pI), total number of positive and negative 
residues, aliphatic index (AI) (Ikai 1980), instability index 
(II) (Guruprasad et al. 1990), extinction co-efficient (EC) 
(Gill and Von Hippel 1989) and grand average hydropathy 
(GRAVY) (Kyte and Doolittle 1982) were computed using 
the Expasy’s ProtParam server (Gasteiger et al. 2005).

The secondary structural features of the proteins were 
studied using Self-Optimized Prediction method With Align-
ment (SOPMA) (Geourjon and Deléage 1995). It give details 
of Alpha helix, Pi helix, Beta bridge, Extended strand, Beta 
turn, Bend region, Random coil and Ambiguous states.

Protein–ligand molecular docking analysis

Molecular docking studies representing the correct con-
formation of the curcumin derivative in protein binding 
sites was performed using MOE (Chemical Computing 
Group Inc, Montreal, Quebec, Canada). The 3D structure 
of the protein complex was downloaded from the Protein 
Databank (http://www.rcsb.org) with the PDB ID 2BEG 
(Lührs et al. 2005). This structure was 3D protonated and 
energy minimized in a MMFF94x force field to a gradient 
of 0.0001 kcal/mol/Å (Halgren 1996). The active site of 
the protein molecule was generated using the MOE-Alpha 
site finder. Then the dummy atoms were created from the 
obtained alpha spheres. The default settings for all of the 
parameters including Ligand Placement (Triangle Matcher) 
and Rescoring (London dG) were found to be suitable for 
reproduction of the ligand–receptor complexes. After molec-
ular docking, LigX feature of MOE was used to locate the 
hydrogen bonding interactions between ligand and receptor 
protein. The top scoring ligand poses from each docking run 
were used for calculation of binding energy.

Machine learning model

In machine learning approach, predictive models were gen-
erated with the help of a set of known active compounds 
and their extracted properties were used to predict the 
activity of unknown compounds (Wahi et al. 2015). In the 
present study, random forest (RF) was employed as a clas-
sifier (Shibi et al. 2016). RF is chosen as the classifier, due 
to its suboptimal performance in cases of strongly unbal-
anced data (Dong et al. 2015; Hsu et al. 2015; Janitza et al. 
2013). The RF algorithm parameters include a forest of ten 

classification trees with ten attributes randomly selected 
for splitting at each node, and predictions are based on a 
majority vote. The WEKA (Waikato University, Hamilton, 
New Zealand, v3.7), data mining software, was used for 
the classification. It contains tools for data pre-processing, 
regression, clustering, association rules, classification, and 
visualization. The PubChem bioassay dataset AID 647 was 
selected for model generation which contains 1420 actives 
and 820 inactives. The machine learning based classifica-
tion model was generated using training set (80%) and 
the quality of the generated model was assessed through 
test set (20%) with tenfold cross validation. Sensitivity, 
specificity, accuracy and receiver operating characteristic 
(ROC) were used to understand the performance of the 
classifier. True positive rate (TPR) or sensitivity is defined 
as the ratio of true actives, correctly classified as active. 
True negative rate (TNR) or Specificity is defined as the 
ratio of true inactives, correctly classified as inactive. The 
overall effectiveness is assessed by the accuracy.

Prediction of metabolic behavior and ADME properties 
of the virtual molecules

The metabolic information about compounds in the drug 
discovery pipeline is critical because of the fact that an 
extensive first-pass metabolism can result in low bioavail-
ability. Metabolism that occurs too rapidly causes a short 
therapeutic window requiring a frequent dosing schedule. 
On the contrary, metabolism that proceeds too slowly 
can cause an accumulation of the drug molecule in the 
body which could result in an increase in the risk of toxic 
effects.

The cytochrome P450s (CYPs) are heme-thiolate 
enzymes that can metabolize a variety of xenobiotics. 
There are 57 CYP isoforms in humans, out of which five 
CYP isoforms, CYP3A4, 2D6, 2C19, 2C9, and 1A2, are 
accountable for ~ 90% of drug metabolism. Molecular 
docking method can be utilized to identify the binding 
conformations of the curcumin derivatives into the site of 
CYP enzymes (Mannu et al. 2011).

The crystal structures of human CYP3A4 in the unli-
ganded form (1WOE) (Chatake et al. 2005) and bound to 
substrate (1WOF) (Yang et al. 2005a, b) are downloaded 
from Protein Data Bank. The protein 1WOE is a wild-type 
enzyme, except that the N-terminal membrane insertion 
peptide has been removed to increase solubility for crystal-
lization. There was no substrate or inhibitor bound in the 
active site of this crystal structure.

In vitro human intestinal absorption (HIA), Caco2 
and blood brain barrier (BBB) penetration values were 
obtained using web based PreADMET program (https​://
pread​met.bmdrc​.kr/).

http://www.rcsb.org
https://preadmet.bmdrc.kr/
https://preadmet.bmdrc.kr/


In Silico Pharmacology (2018) 6:12	

1 3

Page 7 of 19  12

Results and discussion

2D‑QSAR

The Aβ aggregation inhibitory activities of the molecules 
are mainly dominated by the type of substituent and the sub-
stituted positions on curcumin framework. Therefore, 2D 
QSAR technique can exert its advantages on discovering the 
dependence of activity on their molecular structures.

A 2D QSAR model was developed through the MLR 
analysis and the obtained model is depicted in the Eq. (2).

The negative coefficient of the MDEC-44 in the model 
suggests that a lower value favors the biological activity. 
MDEC-44 is Molecular distance edge between all quater-
nary carbons. Similarly, ExtFP728 and GraphFP295 also 
show negative contribution. WK.eneg is Non-directional 
WHIM, weighted by Mulliken atomic electronegativities and 
the descriptor, GraphFP912 show positive contribution to 
the biological activity.

S E E  =  0 . 1 8 3 7 ;  R 2 =  0 . 9 0 8 6 ;  R A
2 =  0 . 8 7 6 3 ; 

PRESS = 0.5734; F = 28.162; r2 = 0.8987; r0
2 = 0.8098; 

Q2
F1 = 0.8211; Q2

F2 = 0.8073; Q2
F3 = 0.7062; CCC = 0.8656; 

|r0
2  −  r′02| = 0.2576, [(r2  −  r0

2)/r2] = 0.0989, [(r2  −  r′02)/
r2]  = 0.3856,  k = 0.9939,  k ′  = 1.0032;  Average 
r2

m(test) = 0.5063; ∆r2
m(test) = 0.2421 indicate a good predic-

tive capability.
Since the R2

m(Overall) value is 0.712 and is more than 0.6, 
indicates the acceptable overall fitting of the developed 
model. The predicted versus experimental pIC50 values are 

(2)

pIC50 = 5.17173(± 0.03835) − 5.687(± 0.60642)MDEC − 44

+ 1.29883(± 0.2094)WK.eneg − 0.20612(± 0.1117)ExtFP728

− 0.36098(± 0.09881)GraphFP295 + 1.20961(± 0.12137)GraphFP912

+ 0.0091(± 0.0057)PEOE_VSA + 4

shown in Fig. 2a. The predicted Aβ aggregation inhibitory 
activities of the developed model obtained are shown in 
Table 2.

The robustness of the built 2D-QSAR model was further 
assessed by applying Y-randomization test. The test is car-
ried out by shuffling the biological activity (pIC50) at 100 
random trials for the same number of training set molecules, 
and the new QSAR models have low R2 values in the range 
from 0.033 to 0.573 and Q2 values in the range of − 0.537 
to − 0.243. But the R2 and Q2 value of the 2D-QSAR model 
is significantly greater (R2 = 0.908; Q2 = 0.747). Also, for 

an acceptable QSAR model, the average correlation coeffi-
cient (Rr) of randomized models should be less than the cor-
relation coefficient (R) of the non-randomized model. The 
extent of the difference in the values of the mean squared 
correlation coefficients of the randomized (Rr

2) and that of 
the non-randomized (R2) models is reflected in the value of 
cRp

2 parameter. The value of cRp
2 should be more than 0.5 for 

passing Y-randomization test.

Since the cRp
2 value obtained is 0.780, the Y-randomiza-

tion test was passed for our model.
Applicability domain plays a vital role in checking the 

reliability of the QSAR models by filtering the chemical 
structures that cannot be tolerated by the model. We have 
used applicability domain using standardization approach 
which uses the molecular descriptors used to build the 

(3)cR2
p
= R ×

√

R2 × R2
r

3.5 4.0 4.5 5.0 5.5 6.0 6.5
3.5

4.0

4.5

5.0

5.5

6.0

6.5

 Training set

Pr
ed

ic
te

d 
pI

C
50

Experimental pIC50

(a)
 Test set

3.5 4.0 4.5 5.0 5.5 6.0 6.5
3.5

4.0

4.5

5.0

5.5

6.0

6.5

 Training set

(b)
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d 
pI

C
50

Experimental pIC50

Fig. 2   Correlations between actual and predicted pIC50 in the training and test sets for a 2D QSAR and b HQSAR
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QSAR model and to predict activity values (Roy et al. 
2015a, b). If the training set of the compounds contains 
properties very dissimilar to the rest of the compounds, 
then these compounds are considered as X-outliers. In 
the test set, molecules which are not similar to any of the 
training set of molecules are considered outside the appli-
cability domain. In our 2D-QSAR model, no compound 
from the training set or test set was found as X-outlier. 
As all the compounds of the dataset used to develop 
2D-QSAR model fell inside the domain of applicability, 
our model was not obtained by mere chance.

HQSAR

A total of 21 HQSAR models were constructed by varying 
the fragment distinction and maintaining the default frag-
ment size (4–7 atoms) with the endeavor of evaluating the 
influence of the descriptors on the robustness of the models 
(Table 3). For each constructed model, we also accessed the 
influence of the hologram length (HL) by building models 
varying HL as 53, 59, 61, 71, 83, 97, 151 199, 257, 307, 353 
and 401 bins. All constructed models showed acceptable 
LOO validation coefficients (Q2) indicating that the HQSAR 
method is suitable to generate robust statistical models. 
According to the highest Q2 value, the best HQSAR model 
was constructed with A/B/C/Ch. The model had a higher Q2 
value and lowered standard error of prediction (SEP) than 
the two second best models (A/C/DA and A/B/C/H/Ch/DA).

The model A/B/C/Ch was subjected to external valida-
tions employing the test set of compounds. The predicted 
pIC50 values for all test set of compounds showed a residual 
error lower than 1 log unit. The predictive potential for the 
test set (Rm

2) is equal to 0.910 and the predictive potential for 
all compounds (R2

m overall) is equal to 0.849. The graphical 
plot of predicted versus actual pIC50 values is represented in 
Fig. 2b. The predicted Aβ aggregation inhibitory activities 
of the developed model A/B/C/Ch are shown in Table 2.

Contour maps of the HQSAR analysis (Fig. 3) show the 
different colors of the atoms or fragments, which determine 
the overall contribution to the activity profiles of the mol-
ecules. The contributions of (i) red colour indicates a bad 
contribution less than − 0.244 (ii) red–orange color indicates 
a bad contribution ranging from − 0.244 to − 0.146, (iii) 
orange color ranges from − 0.146 to − 0.098 (iv) the white 
color indicates an average contribution ranging from − 0.098 
to 0.0303, (v) a yellow color indicates a good contribution of 
0.0303 to 0.045, and (vi) the green color signifies the maxi-
mum contribution of 0.076 and above. The most significant 
green contribution is observed in the benzene ring (Fig. 3). 
Backbone alkyl chains also depict the average contribution 
as per the most active compound. The contour map of the 
least active compound 17 is assigned red-orange and yellow 
color, indicating the most unfavorable fragment contributing 
to the activity and has a negative impact towards the inhibi-
tory activity.

CoMFA analysis

CoMFA study analysis is implemented by the most 
potent ligand compound 8, used as a template to align 
all the ligands. The training set is used to build the 
CoMFA model. The statistical parameters derived from 
the CoMFA studies are provided in Table 4. The devel-
oped CoMFA model has a cross-validated Q2 of 0.687, 
with five Optimum Number of Components (ONC), a 

Table 2   Experimental and predicted activities (pIC50) of the com-
pounds

a Test compounds

Compounds Actual 
pIC50

Predicted pIC50

2D QSAR HQSAR CoMFA CoMSIA

1 5.699 5.698 5.854 5.384 5.395
2 5.495 5.312 5.054 5.412 5.445
3a 5.585 5.331 5.703 5.407 5.414
4 5.357 5.332 5.390 5.343 5.304
5 5.086 5.208 5.339 5.345 5.372
6 5.244 5.516 5.246 5.314 5.283
7a 5.456 5.523 5.472 5.365 5.328
8 5.886 6.050 5.862 5.417 5.462
9 5.420 5.428 5.369 5.347 5.324
10 5.187 4.919 5.135 5.304 5.296
11 5.409 5.306 5.293 5.345 5.322
12 5.229 5.148 5.241 5.368 5.386
13 3.993 4.144 4.092 4.172 4.158
14 3.791 3.987 3.964 3.426 3.431
15a 5.301 5.305 5.398 5.378 5.419
16 4.327 4.212 4.093 4.786 4.747
17a 3.693 4.246 3.838 2.987 2.996
18 5.495 5.679 5.541 5.375 5.359
19 5.509 5.296 5.541 5.405 5.455
20 5.032 4.924 4.916 5.284 5.268
21a 4.910 5.065 5.134 5.266 5.307
22 4.733 4.828 4.843 5.139 5.083
23 5.301 5.417 5.359 5.353 5.359
24a 5.187 4.939 5.147 5.338 5.382
25 5.155 5.122 5.062 5.304 5.297
26 5.244 5.456 5.262 5.310 5.307
27 5.602 5.401 5.411 5.395 5.406
28 5.854 5.610 5.624 5.453 5.467
29 5.509 5.526 5.564 5.424 5.437
30 5.187 5.222 5.126 5.337 5.382
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non-cross-validated R2
ncv of 0.787, F-value of 181.42 and 

low SEE of 0.246. Thus the resulted CoMFA model is 
statistically significant in depicting the novel curcumin 
derivative’s inhibitory activities.

The predictive ability of the developed model is assessed 
by a test set of six ligands. The estimated predictive 

correlation coefficient (R2
pred) of the CoMFA model on the 

test set is 0.731.
The calculated pIC50 values of the compounds for the 

CoMFA model are listed in Table 2. The correlation between 
the experimental pIC50 and the calculated ones for the 
CoMFA model is displayed in Fig. 4. Most of the ligands 

Table 3   Statistical results of 
the 21 initial HQSAR models 
obtained from the variation 
of the fragment distinction 
and maintaining the default 
fragment size (4–7 atoms)

Selected model is given in bold

Fdist Q2 SEP R2
ncv HL PCs R2

pred

A/B/C 0.543 0.353 0.928 257 5 0.423
A/B/H 0.549 0.408 0.921 61 6 0.317
A/C/H 0.446 0.428 0.876 151 4 0.489
A/B/Ch 0.439 0.455 0.948 353 6 0.386
A/C/Ch 0.550 0.349 0.942 97 5 0.138
A/B/DA 0.512 0.424 0.943 83 6 0.168
A/C/DA 0.609 0.380 0.946 257 6 0.423
A/B/C/H 0.438 0.431 0.852 307 4 0.861
A/B/C/Ch 0.615 0.306 0.931 257 5 0.956
A/C/H/Ch 0.434 0.432 0.878 151 4 0.909
A/C/H/DA 0.565 0.400 0.954 53 6 0.538
A/B/H/Ch 0.484 0.413 0.812 59 4 0.848
A/B/C/DA 0.577 0.384 0.917 59 5 0.948
A/H/Ch/DA 0.542 0.400 0.897 199 5 0.891
A/B/Ch/DA 0.502 0.417 0.934 401 5 0.418
A/B/H/DA 0.527 0.406 0.936 257 5 0.898
A/B/C/H/Ch 0.424 0.436 0.851 307 4 0.887
A/B/C/Ch/DA 0.568 0.388 0.910 401 5 0.948
A/B/H/Ch/DA 0.522 0.408 0.916 307 5 0.876
A/B/C/H/DA 0.578 0.373 0.912 83 4 0.899
A/B/C/H/Ch/DA 0.585 0.370 0.915 83 4 0.904

Fig. 3   Contribution map generated by HQSAR model
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are located on or nearer to the trend line (R2 = 0.798) speci-
fying that the predictive power of the developed model is 
good. The analysis of statistical results from CoMFA and 
graphical output (Fig. 5a) of the correlation analysis reveals 
that the predicted pIC50 values are in line with the experi-
mental pIC50.

The higher contributions of electrostatic field (55.4%) 
than the steric field (44.6%) demonstrate that the electro-
static field is more dominant than the steric field to the 
inhibitory activity for CoMFA model.

CoMFA contour plots

The information about the steric and electrostatic fields sur-
rounding the molecule can be acquired from the polyhedral 
contour plots. The contour plots show the regions in 3D 
space where the variation of the molecular fields is highly 
related to the corresponding changes in biological activity. 
The contour plots showing various fields’ contribution of 

Table 4   Statistical results of CoMFA and the best CoMSIA models

a Cross-validated correlation coefficient
b Non cross-validated correlation coefficient
c Standard errors of estimate
d Predicted correlation coefficient for the test set

CoMFA CoMSIA (Model 6)

aQ2/ONC 0.687/5 0.743/3
bR2

ncv 0.787 0.972
cSEE 0.246 0.094
dR2

pred 0.731 0.713
F value 181.420 230.975
Field contribution
 Steric 55.4 19.7
 Electrostatic 44.6 52.0
 H-bond acceptor – 28.3

Fig. 4   Contour maps of CoMFA: a electrostatic and b steric based on compound 8

3.5 4.0 4.5 5.0 5.5 6.0 6.5
2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

(a)

 Test set

Pr
ed

ic
te

d 
pI

C
50

Experimental pIC50

Training set

3.5 4.0 4.5 5.0 5.5 6.0 6.5
2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

(b)

Training set

Experimental pIC50

Pr
ed

ic
te

d 
pI

C
50  Test set
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CoMFA model is demonstrated with the template compound 
8. Figure 4 represents the steric and electrostatic contour 
plots of CoMFA respectively. The favorable and unfavorable 
steric interactions are shown in green and yellow colored 
polyhedrons (80 and 20% contributions) respectively, while 
the favorable electropositive and electronegative interactions 
are given in the blue and red polyhedron (80 and 20% contri-
butions) respectively. 3D color contour plots offer valuable 
contributions for the change in the design of new ligands.

Steric contour maps (Fig. 4a) indicate that if the bulky 
groups of the compounds are oriented towards the green 
region, then it can increase the biological activity. The 
opposite is true for yellow contours. In template compound 
8, which is the most active compound, the contour map 
shows three large green contours around regions A, B and 
C, while these regions also show small yellow contours 
around regions A and C, and large contour around region B, 
indicating that bulkier substituents are not favorable in these 
regions. A favorable steric contour around region C can be 
supported with the good inhibitory potency (pIC50 = 5.854) 
shown by compound 28, having bulky CH3O–CO–CH2–O 
group when compared with compound 1 (pIC50 = 5.699). 
The (CH3)3C–O–CO–CH2–CH2 group attached in the region 
B of compound 10 is embedded in the yellow region, and the 
CH3O–CO–CH2–CH2 group in the same region of the com-
pound 4 seems partially embedded in the yellow contour. 
Thus compound 4 shows highest activity (pIC50 = 5.357) 
than compound 10. Compounds 20 and 24 with pIC50 
value of 5.032 and 5.187, respectively, have poor activity 
due to the presence of the bulkier groups in the region B 
oriented in the yellow region. Similarly, for compound 17 
(pIC50 = 3.692), compound 22 (pIC50 = 4.733), and com-
pound 10 (pIC50 = 5.187), having bulkier groups at the B 
region oriented towards the yellow region indicates poor 
activity for these compounds.

Electrostatic contour maps are shown in Fig. 4b, wherein 
the blue area specifies the favorable region for electroposi-
tive groups and the red area specifies an unfavorable region 
for electropositive groups. There are 80 and 20% contribu-
tions to favorable and unfavorable areas, respectively. Elec-
trostatic contour maps show that the red contour is present 
over the HOOC–CH2–CH2 group in the region B of the com-
pound 5 with low activity value of pIC50 = 5.086. Compound 
23 (pIC50 = 5.301) showed good inhibitory activity due to 
the blue contour present around the (CH3)2N–CO–CH2–CH2 
group at the B region of the compound. Compounds 18 and 7 
(pIC50 = 5.495 and 5.456, respectively) showed good inhibi-
tory activity due to the red region present over the electron-
egative oxygen of the carbonyl group of these compounds. 
Electronegative oxygen of the carbonyl group and hydroxyl 
group were oriented towards the blue contour, indicating 
poor activity of compound 22 (pIC50 = 4.733) and compound 
16 (pIC50 = 4.327), respectively. Compounds 20, 24 and 26 

(pIC50 = 5.031, 5.187 and 5.244, respectively) contain elec-
tronegative oxygen atom oriented towards the blue region, 
showing lower activity.

CoMSIA analysis

Different combinations of 5 fields (S, E, D, A and H) are 
combined to generate a total of 16 CoMSIA models. The 
statistical results of the constructed 16 CoMSIA models are 
summarized in Table 5. Out of these we selected the model 
6 as it has Q2 value greater than 0.5, high F value, high R2

ncv 
when compared to other models.

The statistical results of the CoMSIA studies are listed in 
Table 4. The generated CoMSIA model illustrated a Q2 LOO 
value of 0.743 (> 0.5) by three components. The non-cross 
validated PLS analysis with the ONC = 3 gave a non-cross-
validated R2 (R2

ncv = 0.972), a test set R2 (R2
pred = 0.713), 

SEE = 0.094, F value of 230.975, steric = 19.7%, electro-
static contribution = 52.0% and H-bond acceptor contribu-
tion = 28.3%. The obtained high R2

ncv, Q2 and F values along 
with the lower SEEncv indicated the satisfactory predictive 
ability of the derived model. The pIC50 values predicted by 
the CoMSIA model are listed in Table 2. Figure 5b demon-
strates the correlation between experimental and predicted 
pIC50 values by the CoMSIA model.

CoMSIA contour plots

The steric, electrostatic and H-bond acceptor contour 
maps derived from the CoMSIA model based on the ref-
erence compound 8 are shown in the Fig.  6. As shown 
in Fig. 6a, a large yellow contour is present near regions 
B, indicating that the bioactivity of molecules is influ-
enced by the introduction of bulky groups near these 
regions. The inhibitory activity would be decreased by 
the introduction of bulky groups in the B region, such 
as compounds 17 and 16 where the use of bulky groups 
((CH3)3C–O–CO–CH2–CH2>CH3O–CO–CH2–CH2) 
resulted in lower pIC50 values (3.693 < 4.327). This can 
also be observed by the comparison of molecules 22 (substi-
tuted by HO–(CH2–CH2–O)3–CH2–CH2 with pIC50 value of 
4.733) and 25 (substituted by HO–CH2–CH2–O–CH2–CH2 
with pIC50 value of 5.155). This can also be observed 
by a comparison of compounds 9 (substituted by 
CH3–CH2O–CO–CH2–CH2 with pIC50 value of 5.420) and 
11 (substituted by (CH3)2CH–O–CO–CH2–CH2 with pIC50 
value of 5.409).

Two large green contours are found in the regions A and 
C, which shows that bulky groups at these regions would 
lead to increase the inhibitory activity. In compound 28, 
the green region covers the CH3O–CO–CH2–O group at 
the region C, which can be supported with the good inhibi-
tory potency (pIC50 = 5.854) shown by compound 28. For 
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Table 5   Statistical parameters 
of CoMSIA models

Selected model is given in bold

Model Descriptors R2
LOO(Q2)/ONC R2

ncv/SEEncv F value R2
m (overall) R2

pred

1 S, D and A 0.661/1 0.802/0.238 88.968 0.7763 0.7092
2 S, H and A 0.718/3 0.974/0.091 245.649 0.8182 0.5971
3 E, D and H 0.674/1 0.807/0.235 91.854 0.7748 0.7219
4 E, A and H 0.683/1 0.807/0.234 92.100 0.7729 0.7174
5 S, E and H 0.692/3 0.963/0.108 173.486 0.8248 0.6131
6 S, E and A 0.743/3 0.972/0.094 230.975 0.7773 0.7127
7 S, E and D 0.673/1 0.807/0.235 91.907 0.7779 0.7167
8 D, A and H 0.660/1 0.802/0.237 89.359 0.7735 0.7135
9 D, A and E 0.672/1 0.811/0.232 94.306 0.7804 0.7210
10 S, D and H 0.664/1 0.790/0.245 82.890 0.7692 0.7114
11 S, E, D and A 0.698/1 0.820/0.227 99.913 0.7787 0.7194
12 S, E, D and H 0.699/1 0.816/0.229 97.252 0.7856 0.7228
13 S, E, A and H 0.726/3 0.944/0.132 112.754 0.8326 0.6382
14 D, A, H and S 0.690/1 0.812/0.232 94.753 0.7851 0.7119
15 D, A, H and E 0.697/1 0.819/0.227 99.511 0.7867 0.7036
16 S, E, D, A and H 0.714/1 0.827/0.222 105.027 0.7913 0.7197

Fig. 6   Contour maps of CoMSIA: a steric; b electrostatic and c H-bond acceptor based on compound 8
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instance, the agonist activity of compounds 29 (substituted 
by HOOC–CH2–O–) and 18 (substituted by –OH) was var-
ied in the order: 18 < 29. This can also be observed by com-
paring molecules 16 (having CH3O–CH2–O group at regions 
A and B) and 14 (having CH3O group at regions A and B), 
where using a bulky group influenced the outcome of pIC50 
values (4.327 > 3.790).

Electrostatic contour maps are displayed in Fig.  6b, 
wherein the blue region designates the favorable region for 
electropositive groups, and the red region designates an 
unfavorable region for electropositive groups. There are 80 
and 20% contributions to favorable and unfavorable areas, 
respectively. Electrostatic contour maps show that a medium 
red contour and a medium blue contour is present over the 
region B. The compound 5 (pIC50 = 5.086) showed good 
inhibitory activity due to the red region present over the oxy-
gen of the carboxyl group, when compared with compound 
14 (pIC50 = 3.790). Electronegative oxygen of the hydroxyl 
group was oriented towards the blue contour, indicating poor 
activity of compound 22 (pIC50 = 4.733). Compounds 7 and 
9 (pIC50 = 5.456 and 5.420, respectively) contain an elec-
tronegative oxygen atom at the region B oriented towards 
the red region, showing higher activity. In compound 17 
(pIC50 = 3.693) the electronegative oxygen of carbonyl group 
is oriented towards the blue region, justifying the poor activ-
ity of the compound.

H-bond acceptor contour maps are shown in Fig. 6c, 
wherein the magenta region shows the favorable region 
for H-bond acceptor groups and the cyan region shows 
an unfavorable region. Almost 80 and 20% contributions 
to the favorable and unfavorable region, respectively, are 
shown. The significantly increased potency of compound 
23 (pIC50 = 5.301) may be explained by its atom N as the 
H-bond acceptor at the region B is oriented towards the 
magenta contour compared to molecule 14 (pIC50 = 3.790) 
with a CH3 group at the same position. In fact, com-
pounds with significant activity, for instance compounds 
18 (pIC50 = 5.495), 7 (pIC50 = 5.456), 9 (pIC50 = 5.420), 11 

(pIC50 = 5.409), 4 (pIC50 = 5.237) and 15 (pIC50 = 5.301), all 
have such H-bond acceptor groups at the region B, oriented 
towards the magenta contour map, which are consistent with 
this contour implication. The compounds 13 (pIC50 = 3.993) 
and 14 (pIC50 = 3.790) exhibits reduced inhibitory affinity as 
these compounds do not have the H-bond acceptor.

Pharmacophore analysis

A pharmacophore is an incorporation of steric, electrostatic, 
H-bond donor, H-bond acceptor and hydrophobic charac-
teristics that were necessary to ensure the optimal molecu-
lar interactions with the biological target. Ten structurally 
diverse curcumin derivatives with high inhibitory activity 
were used for developing pharmacophore model. Results 
indicated that pharmacophore model generated have the fol-
lowing requirements: two hydrophobic & aromatic features, 
two hydrogen bond donor function, and one hydrogen accep-
tor function as seen in Fig. 7.

Molecular docking

Primary and secondary structure prediction and validation

Isoelectric point (pI) value is the pH at which a protein is 
stable and compact has no net charge. The computed pI 
value of 2BEG (5.31) is less than 7 (pI < 7) indicated that 
these proteins were acidic. The II value provides an assess-
ment of the stability of protein and when the value is smaller 
than 40, the protein is predicted as stable and when the value 
is above 40, the protein is predicted to be unstable. The II 
value for the protein 2BEG is found to be 18.17 suggesting 
that 2BEG is stable.

The AI is defined as the relative volume of a protein 
occupied by aliphatic side chains and is a positive factor 
for the increase of thermal stability of globular proteins. AI 
for 2BEG is found to be 97.38. The very high AI values of 

Fig. 7   Pharmacophore models a of all the 30 curcumin derivatives b most active compound 8
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the protein indicate that the protein may be stable for a wide 
temperature range.

The secondary structures analysis of the protein pre-
dicted by SOPMA shows that, the percentages of random 
coils were more in the protein molecule. The conformational 
entropy associated with the random coil state contributes to 
the energetic stabilization of the protein and accounts for 
much of the energy barrier to protein folding.

Protein–ligand molecular docking analysis

In the present study, the binding mode for 30 curcumin-
based molecular hybrids in the active site of the protein 
structure 2BEG was explored using molecular docking 
studies. The optimal conformations of these compounds 
when docked were identified. The active site of the protein 
2BEG contains the highly conserved residues. To further 
elucidate the interaction mechanism, we selected the most 
potent compound 8 and least potent compound 17, Aβ aggre-
gation inhibitor to perform the deeper docking study and 
discussion.

The results of the molecular docking studies are summa-
rized in Table 6. These docking results clearly indicate that 
the most active compounds in the study exhibited signifi-
cant binding affinities towards the active site of the protein 
(− 12.250 to − 11.110 kcal/mol), and the energy ranges are 
comparable to the Aβ aggregation inhibitor.

Molecular design of novel chemical entities

The detailed analysis of 2D-QSAR, HQSAR, 3D-QSAR, 
Pharmacophore and Molecular docking studies empower 
us to identify structural requirements for the observed 
inhibitory activity. According to the information derived 
from 2D-QSAR, HQSAR, 3D-QSAR, pharmacophore and 
molecular docking studies, some important facts about the 
chemical structures requirement was presented to examine 
the effect of each kind of group as the substituent for regions 

A, B and C on the inhibitory activity. The HQSAR result 
shows that the presence of hydroxyl group and oxygen would 
enhance the inhibitory activity. So it is retained in some 
of the molecules. 3D-QSAR studies indicate that the pres-
ence of bulky groups at regions A and C were considered to 
enhance the activity. However, the presence of bulky groups 
at region B would decrease the activity. Molecular docking 
studies demonstrate that the presence of hydroxyl and car-
bonyl groups increases the interaction with the active site 
of the protein moiety. Also, the presence of oxygen atom 
increases the inhibitory activity of the molecules. Based on 
these, some novel chemical entities were designed.

For predicting their biological activity, 2D-QSAR model 
is applied to these new molecules and the corresponding 
results are listed in Table 7. The descriptors of the newly 
designed virtual molecules were calculated using PaDEL-
Descriptor and MOE softwares. The results show that the 
eight compounds, M(1), M(2), M(5), M(6), M(7), M(8), 
M(9) and M(10) show predicted biological activity values 
higher than before, indicative of their good inhibitory activ-
ity. Therefore it is expected that these compounds perhaps 
should be regarded as the good candidate molecules for 
experimental synthesis.

Data mining

Data mining techniques can examine the main useful pat-
terns emerging from a set of data. Machine learning (ML) 
technique can be effective in generating a model out of such 
data, and the model can be further used to predict the activ-
ity any molecule present in a set of selected molecules. This 
provides good results and accurate information which can be 
helpful for solving many of the health-related problems. An 
understanding of the structural features of a set of molecules 
may thus throw light on the factors that are characteristic of 
the activity of the molecules.

WEKA (Waikato Environment for Knowledge Analysis) 
3.7.3 with ML method was used to screen and to recognize 
the Aβ aggregation inhibitory activity of the newly designed 
curcumin derivatives (Frank et al. 2005). The process of 
classification requires building a classifier (model) which is 
a mathematical function that assigns class (e.g., active/inac-
tive) labels to instances defined by a set of attributes (e.g., 
descriptors). The active (n = 1420) and inactive (n = 820) 
molecules present in the AID 647 dataset downloaded from 
PubChem were used for the development of classification 
models. For each molecule, 179 different molecular descrip-
tors were computed using the software called powerMV. The 
Random Forest (RF) algorithm of WEKA gives high accu-
racy and time efficiency for predictive data modeling and 
is regarded as the best classifier (Sajeev et al. 2013; Seal 
et al. 2012). Therefore in the present study, we tested the 
activity of the novel chemical entities’ using the classifier 

Table 6   Molecular docking scores (kcal/mol) of the active molecules 
in the binding site of the protein 2BEG

Compound ID E_score (kcal/mol)

5 − 11.5212
6 − 11.1483
11 − 11.9898
15 − 11.1105
16 − 11.3656
21 − 12.2503
23 − 11.4561
25 − 11.1258
29 − 12.2175
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based on RF. Using the tenfold cross-validation (CV), the 
RF classifier was evaluated. A cross-validation is a standard 
tool in analytics, which helps to develop and fine-tune data 
mining models. The model was used by taking 80% of the 
data as the training cum validation set and 20% of data as 
an independent test set.

Data mining results show that out of the ten novel chemi-
cal entities, molecules M(1), M(2), M(3), M(4), M(5), M(7), 
M(8) and M(9) were active. The model displayed better 
statistical indices like 63.24% accuracy, 84.8% sensitiv-
ity, specificity 30.2%, 63.2% BCR (Balanced Classification 
Rate). This model achieves a precision of 61.6% and recall 
of 63.2%. The classifier achieved an F-measure of 0.601 and 
ROC area of 0.644.

Prediction of site of metabolism and ADME properties

In drug design process, the information of site of metabolism 
(SOM) is vital to mitigate the toxicity issues and to improve 
the metabolic behavior of a molecule. For metabolite iden-
tification, we have used the Toxtreev2.6.13 software. The 
methylene group (–CH2–) in between two carbonyl groups 
is ranked as the best SOM in most of the compounds M(2), 
M(5), M(7), M(8) and M(9). This SOM involves aliphatic 
hydroxylation reaction for metabolism. For the compound 
M(1), the methylene group attached to the –NH2 group is 

ranked as the best SOM. In compound M(2), the double 
bonds of the benzene ring adjacent to the oxygen atom are 
regarded as the SOM with the second rank and the metabo-
lism occurs through aromatic hydroxylation. In compound 
M(4), the alkyl groups attached to the N atom, are consid-
ered as SOM with highest ranks. It undergoes N-dealkyla-
tion reaction. This site undergoes O-dealkylation reaction. 
In compounds M(8) and M(9), the –CH3 of the methoxy 
group is regarded as the SOM with second position. This 
site also undergoes O-dealkylation reaction for metabolism.

The ADME properties of the selected six compounds 
were studied using web based PreADMET program. It gives 
the details of properties such as HIA rate, BBB penetration 
and in vitro Caco-2 cell permeability (nm/s). The predicted 
values of these properties are shown in Table 8.

The BBB penetration values give us an idea whether a 
compound can pass across the BBB or not. A compound 
having BBB value > 2.0 is considered as highly absorbing to 
CNS (Central Nervous System), that with the value 2.0–0.1 
is considered as with middle absorption to CNS and that 
with the value < 0.1 is to be considered as low absorbing to 
CNS (Ma et al. 2005; Ajay et al. 1999). The result showed 
that the compounds M(5) and M(7) have high absorption to 
CNS and the compounds M(1), M(2), M(8) and M(9) have 
middle absorption to CNS.

Table 7   Predicted pIC50 values of novel chemical entities using inverse QSAR

ID R1 R2 R3 R4 R5 Predicted pIC50

O

R5

R4

O
R1

R2
R3

M(1) (CH3)3O HO (CH3)2CH–CH(NH2)–CO–O (CH3)3O HO 6.5814
M(2) (CH3)3O HO C6H5–CO (CH3)3O HO 6.5314
M(3) (CH3)3O (CH3)3O (CH3)3C–CH2–CH2 (CH3)3O (CH3)3O 5.4683
M(4) (CH3)3C (CH3)3C (CH3)2N(CH3) (CH3)3C (CH3)3C 5.5780
M(5) (CH3)3O HO CH3–CH2–C6H5 (CH3)3O HO 6.5886
M(6) C6H11O HO CH3 (CH3)3O C6H11O 6.8062
M(7) ((CH3)2CH) 3CO HO CH3–CH2 ((CH3)2CH) 3CO HO 6.5836
M(8) ((CH3)2CH) 3CO CH3O CH3–CO–O– ((CH3)2CH) 3CO CH3O 5.9633
M(9) Cl3O CH3O CH3–CO–O– Cl3O CH3O 5.9396
M(10) Cl3O CH3O CH3–CH2 Cl3O CH3O 6.7362

Table 8   ADME properties for 
novel chemical entities

Compound ID M(1) M(2) M(5) M(7) M(9) M(8)

BBB 0.1434 0.7918 4.8833 10.4024 0.9439 0.2978
Caco2 21.9193 36.4299 46.0038 51.4046 56.2054 22.8121
HIA 94.1330 95.7125 96.2881 96.5479 97.7153 98.0645
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For understanding the intestinal absorption of the com-
pounds under study, several in vitro methods have been 
used. Caco-2 cell permeability is suggested as a dependable 
in vitro model for the prediction of oral drug absorption. For 
a low permeable compound, Caco-2 value should be less 
than 4; while for a middle permeable one the value should be 
between 4 and 70; and one with more than 70 is considered 
as a highly permeable compound (Yamashita et al. 2000). In 
this study, the result demonstrated that the compounds M(1), 
M(2), M(5), M(7), M(8) and M(9) have moderate cellular 
permeability against Caco-2 cells.

The HIA data is the summation of absorption evaluated 
from the ratio of cumulative excretion and bioavailability. 
The HIA value for poorly absorbed compounds is between 
0 and 20%. For a moderately absorbed compound, the HIA 
value is 20–70%, and for the well-absorbed compounds, the 
HIA value ranges from 70 to 100% (Zhao et al. 2001). In this 
study, we obtained very good HIA values for the compounds 
M(1), M(2), M(5), M(7), M(8) and M(9).

Molecular docking studies were carried out to propose 
the binding pose for the identified hit compounds in the 
binding site of CYP3A4, which would lead to helpful 
insights for the development of new medications. Here, 
we present the molecular interactions of Aβ aggregation 

inhibitors with CYP3A4 using an in silico docking study. 
CYP3A4 is a complex heme-containing enzyme. It metab-
olizes more than 50% of the administered drugs. It is the 
isozyme most implicated in drug-drug interaction profiles 
(Gibbs and Hosea 2003). The active site of the CYP3A4 
enzyme is larger and considerably flexible. The results 
show that the molecules are not tightly locked into the 
CYP3A4 active site. They can dissociate and rebind during 
different stages of the metabolism cycle.

Molecular docking studies of the 10 new virtual active 
compounds were also performed in the binding pocket 
of the protein 2BEG. These docking results clearly indi-
cate that the new virtual active compounds in the study 
exhibited significant binding affinities towards the active 
site of the protein (− 12.625 to − 10.1492 kcal/mol), and 
the energy ranges are comparable to the Aβ aggregation 
inhibitor activity.

Thus compounds M(1), M(2), M(5), M(7), M(8) and 
M(9) (Fig. 8) are selected as the lead molecules metabolise 
through aliphatic hydroxylation, aromatic hydroxylation, 
N-dealkylation, and O-dealkylation reactions.
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Fig. 8   Structures of the lead molecules
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Conclusion

In the current study, an effort has been made by extract-
ing the relevant properties of a known Aβ aggregation 
inhibitory activity set and extrapolating this knowledge 
to develop predictive cheminformatic models for the 
classification, identification, and prioritization of new 
Aβ aggregation inhibitors. For the purpose, a series of 
30 curcumin derivatives which are reported as potent Aβ 
aggregation inhibitors were selected to develop various 
QSAR and pharmacophore models. The established 2D 
and 3D-QSAR models showed significant statistical qual-
ity and excellent predictive ability. To verify the reliability 
of the models, the inhibitory activities were evaluated and 
predicted. Molecular docking analyses of the representa-
tive inhibitors were performed to determine the binding 
modes of the inhibitors at the active site of the protein 
molecule 2BEG. Based on the QSAR and molecular dock-
ing results, some new potent inhibitors were designed, 
and their activities are then predicted using an inverse 
QSAR technique. These molecules were further filtered 
using data mining techniques by Weka, ADME properties 
were evaluated and the binding interactions understood 
by molecular docking studies. This resulted in the selec-
tion of six lead molecules, M(1), M(2), M(5), M(7), M(8) 
and M(9). Finally, our in silico results provide compelling 
evidence for the utility of curcumin derivatives as a pre-
ventive medication for neurodegenerative diseases such as 
Aβ1-42 induced AD. Further investigations are necessary 
to examine the mechanisms of these molecules and their 
in vivo effect. Yet, the results of the present study open 
up the possibility that these derivatives can be developed 
as promising therapeutics to reach to advanced studies for 
treatment against Alzheimer’s disease.

Acknowledgements  Aswathy L. is thankful to CSIR, New Delhi for 
the financial assistance in the form of Senior Research Fellowship. 
Jisha, R.S. is thankful to the University of Kerala, Thiruvananthapuram 
for providing financial assistance in the form of University Junior 
Research Fellowship for this work.

References

Ajay, Bemis GW, Murcko MA (1999) Designing libraries with CNS 
activity. J Med Chem 42:4942–4951. https​://doi.org/10.1021/
jm990​017w

Alzheimer’s Association (2017) 2017 Alzheimer’s disease facts 
and figures. Alzheimer’s Dement 13:325–373. https​://doi.
org/10.1016/j.jalz.2017.02.001

Aswathy L, Jisha RS, Masand VH et al (2017) Computational strate-
gies to explore antimalarial thiazine alkaloid lead compounds 
based on an Australian marine sponge Plakortis lita. J Bio-
mol Struct Dyn 35:2407–2429. https​://doi.org/10.1080/07391​
102.2016.12208​70

Ballante F, Ragno R (2012) 3-D QSAutogrid/R: an alternative proce-
dure to build 3-D QSAR models. methodologies and applications. 
J Chem Inf Model 52:1674–1685. https​://doi.org/10.1021/ci300​
123x

Begum AN, Jones MR, Lim GP et al (2008) Curcumin structure-func-
tion, bioavailability, and efficacy in models of neuroinflammation 
and Alzheimer’s disease. J Pharmacol Exp Ther 326:196–208. 
https​://doi.org/10.1124/jpet.108.13745​5

Caesar I, Jonson M, Nilsson KPR et al (2012) Curcumin promotes 
A-beta fibrillation and reduces neurotoxicity in transgenic dros-
ophila. PLoS ONE 7:e31424. https​://doi.org/10.1371/journ​
al.pone.00314​24

Chatake T, Tanaka I, Umino H et al (2005) The hydration structure of 
a Z-DNA hexameric duplex determined by a neutron diffraction 
technique. Acta Crystallogr D Biol Crystallogr 61:1088–1098. 
https​://doi.org/10.1107/S0907​44490​50155​81

Citron M (2010) Alzheimer’s disease: strategies for disease modifica-
tion. Nat Rev Drug Discov 9:387–398. https​://doi.org/10.1038/
nrd28​96

Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular 
field analysis (CoMFA). 1. Effect of shape on binding of steroids 
to carrier proteins. J Am Chem Soc 110:5959–5967. https​://doi.
org/10.1021/ja002​26a00​5

Cruciani G, Watson KA (1994) Comparative molecular field analysis 
using GRID force-field and GOLPE variable selection methods 
in a study of inhibitors of glycogen phosphorylase b. J Med Chem 
37:2589–2601. https​://doi.org/10.1021/jm000​42a01​2

Dong M, Lu X, Ma Y et al (2015) An efficient approach for automated 
mass segmentation and classification in mammograms. J Digit 
Imaging 28:613–625. https​://doi.org/10.1007/s1027​8-015-9778-4

Dubey SK, Sharma AK, Narain U et al (2008) Design, synthesis and 
characterization of some bioactive conjugates of curcumin with 
glycine, glutamic acid, valine and demethylenated piperic acid 
and study of their antimicrobial and antiproliferative properties. 
Eur J Med Chem 43:1837–1846. https​://doi.org/10.1016/j.ejmec​
h.2007.11.027

Elfiky AA, Elshemey WM (2016) IDX-184 is a superior HCV direct-
acting antiviral drug: a QSAR study. Med Chem Res 25:1005–
1008. https​://doi.org/10.1007/s0004​4-016-1533-y

Frank E, Hall M, Holmes G et al (2005) Weka. In: Maimon O, Rokach 
L (eds) Data mining and knowledge discovery handbook. 
Springer, Boston, MA, pp 1305–1314

Garcia-Alloza M, Borrelli LA, Rozkalne A et al (2007) Curcumin 
labels amyloid pathology in vivo, disrupts existing plaques, and 
partially restores distorted neurites in an Alzheimer mouse model: 
curcumin reverses amyloid pathology in vivo. J Neurochem 
102:1095–1104. https​://doi.org/10.1111/j.1471-4159.2007.04613​
.x

Gasteiger E, Hoogland C, Gattiker A et al (2005) Protein identifica-
tion and analysis tools on the ExPASy server. In: Walker JM (ed) 
The proteomics protocols handbook. Humana Press, Totowa, pp 
571–607

Geourjon C, Deléage G (1995) SOPMA: significant improvements in 
protein secondary structure prediction by consensus prediction 
from multiple alignments. Comput Appl Biosci 11:681–684

Gibbs MA, Hosea NA (2003) Factors affecting the clinical develop-
ment of cytochrome P450 3A substrates. Clin Pharmacokinet 
42:969–984. https​://doi.org/10.2165/00003​088-20034​2110-00003​

Gill SC, von Hippel PH (1989) Calculation of protein extinction coef-
ficients from amino acid sequence data. Anal Biochem 182:319–
326. https​://doi.org/10.1016/0003-2697(89)90602​-7

Golbraikh A, Tropsha A (2002) Beware of q2! J Mol Graph Model 
20:269–276

Golde TE, Eckman CB, Younkin SG (2000) Biochemical detection 
of Abeta isoforms: implications for pathogenesis, diagnosis, 

https://doi.org/10.1021/jm990017w
https://doi.org/10.1021/jm990017w
https://doi.org/10.1016/j.jalz.2017.02.001
https://doi.org/10.1016/j.jalz.2017.02.001
https://doi.org/10.1080/07391102.2016.1220870
https://doi.org/10.1080/07391102.2016.1220870
https://doi.org/10.1021/ci300123x
https://doi.org/10.1021/ci300123x
https://doi.org/10.1124/jpet.108.137455
https://doi.org/10.1371/journal.pone.0031424
https://doi.org/10.1371/journal.pone.0031424
https://doi.org/10.1107/S0907444905015581
https://doi.org/10.1038/nrd2896
https://doi.org/10.1038/nrd2896
https://doi.org/10.1021/ja00226a005
https://doi.org/10.1021/ja00226a005
https://doi.org/10.1021/jm00042a012
https://doi.org/10.1007/s10278-015-9778-4
https://doi.org/10.1016/j.ejmech.2007.11.027
https://doi.org/10.1016/j.ejmech.2007.11.027
https://doi.org/10.1007/s00044-016-1533-y
https://doi.org/10.1111/j.1471-4159.2007.04613.x
https://doi.org/10.1111/j.1471-4159.2007.04613.x
https://doi.org/10.2165/00003088-200342110-00003
https://doi.org/10.1016/0003-2697(89)90602-7


	 In Silico Pharmacology (2018) 6:12

1 3

12  Page 18 of 19

and treatment of Alzheimer’s disease. Biochim Biophys Acta 
1502:172–187

Guruprasad K, Reddy BV, Pandit MW (1990) Correlation between 
stability of a protein and its dipeptide composition: a novel 
approach for predicting in vivo stability of a protein from its pri-
mary sequence. Protein Eng 4:155–161

Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegen-
eration: lessons from the Alzheimer’s amyloid beta-peptide. Nat 
Rev Mol Cell Biol 8:101–112. https​://doi.org/10.1038/nrm21​01

Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, 
parameterization, and performance of MMFF94. J Comput Chem 
17:490–519

Hamaguchi T, Ono K, Murase A, Yamada M (2009) Phenolic com-
pounds prevent Alzheimer’s pathology through different effects on 
the amyloid-β aggregation pathway. Am J Pathol 175:2557–2565. 
https​://doi.org/10.2353/ajpat​h.2009.09041​7

Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s dis-
ease: progress and problems on the road to therapeutics. Science 
297:353–356. https​://doi.org/10.1126/scien​ce.10729​94

Hsu J-L, Hung P-C, Lin H-Y, Hsieh C-H (2015) Applying under-
sampling techniques and cost-sensitive learning methods on risk 
assessment of breast cancer. J Med Syst. https​://doi.org/10.1007/
s1091​6-015-0210-x

Ikai A (1980) Thermostability and aliphatic index of globular proteins. 
J Biochem 88:1895–1898

Jack CR, Knopman DS, Jagust WJ et al (2010) Hypothetical model 
of dynamic biomarkers of the Alzheimer’s pathological cas-
cade. Lancet Neurol 9:119–128. https​://doi.org/10.1016/S1474​
-4422(09)70299​-6

Janitza S, Strobl C, Boulesteix A-L (2013) An AUC-based permutation 
variable importance measure for random forests. BMC Bioinform 
14:119. https​://doi.org/10.1186/1471-2105-14-119

Jin W, Wang J, Zhu T et al (2014) Anti-inflammatory effects of cur-
cumin in experimental spinal cord injury in rats. Inflamm Res 
63:381–387. https​://doi.org/10.1007/s0001​1-014-0710-z

Jisha RS, Aswathy L, Masand VH et  al (2017) Exploration of 
3,6-dihydroimidazo(4,5-d)pyrrolo(2,3-b)pyridin-2(1H)-one 
derivatives as JAK inhibitors using various in silico techniques. 
In Silico Pharmacol. https​://doi.org/10.1007/s4020​3-017-0029-x

Kapetanovic IM (2008) Computer-aided drug discovery and devel-
opment (CADDD): in silico-chemico-biological approach. 
Chem Biol Interact 171:165–176. https​://doi.org/10.1016/j.
cbi.2006.12.006

Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices 
in a comparative analysis (CoMSIA) of drug molecules to cor-
relate and predict their biological activity. J Med Chem 37:4130–
4146. https​://doi.org/10.1021/jm000​50a01​0

Kyte J, Doolittle RF (1982) A simple method for displaying the hydro-
pathic character of a protein. J Mol Biol 157:105–132

Lengauer T, Rarey M (1996) Computational methods for biomolecular 
docking. Curr Opin Struct Biol 6:402–406

Lim GP, Chu T, Yang F et al (2001) The curry spice curcumin reduces 
oxidative damage and amyloid pathology in an Alzheimer trans-
genic mouse. J Neurosci 21:8370–8377

Lührs T, Ritter C, Adrian M et al (2005) 3D structure of Alzheimer’s 
amyloid-beta(1-42) fibrils. Proc Natl Acad Sci USA 102:17342–
17347. https​://doi.org/10.1073/pnas.05067​23102​

Ma X, Chen C, Yang J (2005) Predictive model of blood–brain barrier 
penetration of organic compounds. Acta Pharmacol Sin 26:500–
512. https​://doi.org/10.1111/j.1745-7254.2005.00068​.x

Ma Q-L, Zuo X, Yang F et al (2013) Curcumin suppresses soluble tau 
dimers and corrects molecular chaperone, synaptic, and behav-
ioral deficits in aged human tau transgenic mice. J Biol Chem 
288:4056–4065. https​://doi.org/10.1074/jbc.M112.39375​1

Mannu J, Jenardhanan P, Mathur PP (2011) A computational study 
of CYP3A4 mediated drug interaction profiles for anti-HIV 

drugs. J Mol Model 17:1847–1854. https​://doi.org/10.1007/
s0089​4-010-0890-6

Negi PS, Jayaprakasha GK, Jagan Mohan Rao L et al (1999) Antibacte-
rial activity of turmeric oil: a byproduct from curcumin manufac-
ture. J Agric Food Chem 47:4297–4300. https​://doi.org/10.1021/
jf990​308d

Nguyen TKC, Dzung TTK, Cuong PV (2014) Assessment of antifungal 
activity of turmeric essential oil-loaded chitosan nanoparticles. J 
Chem Bio Phy Sci Sec B 4:2347–2356

Nishikawa H, Tsutsumi J, Kitani S (2013) Anti-inflammatory and anti-
oxidative effect of curcumin in connective tissue type mast cell. J 
Funct Foods 5:763–772. https​://doi.org/10.1016/j.jff.2013.01.022

Ojha PK, Roy K (2011) Comparative QSARs for antimalarial endo-
chins: importance of descriptor-thinning and noise reduction prior 
to feature selection. Chemom Intell Lab Syst 109:146–161. https​
://doi.org/10.1016/j.chemo​lab.2011.08.007

Ono K, Hasegawa K, Naiki H, Yamada M (2004) Curcumin has potent 
anti-amyloidogenic effects for Alzheimer’s beta-amyloid fibrils 
in vitro. J Neurosci Res 75:742–750. https​://doi.org/10.1002/
jnr.20025​

Roy K, Kar S, Ambure P (2015a) On a simple approach for determin-
ing applicability domain of QSAR models. Chemom Intell Lab 
Syst 145:22–29. https​://doi.org/10.1016/j.chemo​lab.2015.04.013

Roy K, Kar S, Ambure P (2015b) On a simple approach for determin-
ing applicability domain of QSAR models. Chemom Intell Lab 
Syst 145:22–29. https​://doi.org/10.1016/j.chemo​lab.2015.04.013

Sajeev R, Athira RS, Nufail M et al (2013) Computational predictive 
models for organic semiconductors. J Comput Electron 12:790–
795. https​://doi.org/10.1007/s1082​5-013-0486-3

Saleh NA (2015) The QSAR and docking calculations of fullerene 
derivatives as HIV-1 protease inhibitors. Spectrochim Acta Part A 
Mol Biomol Spectrosc 136:1523–1529. https​://doi.org/10.1016/j.
saa.2014.10.045

Seal A, Passi A, Jaleel UA et al (2012) In-silico predictive mutagenicity 
model generation using supervised learning approaches. J Chem-
inform 4:10. https​://doi.org/10.1186/1758-2946-4-10

Selkoe DJ (1994) Cell biology of the amyloid beta-protein precursor 
and the mechanism of Alzheimer’s disease. Annu Rev Cell Biol 
10:373–403. https​://doi.org/10.1146/annur​ev.cb.10.11019​4.00210​
5

Selkoe DJ (1997) Alzheimer’s disease: genotypes, phenotypes, and 
treatments. Science 275:630–631

Sharma RA, McLelland HR, Hill KA et al (2001) Pharmacodynamic 
and pharmacokinetic study of oral Curcuma extract in patients 
with colorectal cancer. Clin Cancer Res 7:1894–1900

Shibi IG, Aswathy L, Jisha RS et al (2015) Molecular docking and 
QSAR analyses for understanding the antimalarial activity of 
some 7-substituted-4-aminoquinoline derivatives. Eur J Pharm 
Sci 77:9–23. https​://doi.org/10.1016/j.ejps.2015.05.025

Shibi IG, Aswathy L, Jisha RS et al (2016) Virtual screening techniques 
to probe the antimalarial activity of some traditionally used phy-
tochemicals. Comb Chem High Throughput Screen 19:572–591

Tetko IV, Tanchuk VY, Villa AE (2001) Prediction of n-octanol/water 
partition coefficients from PHYSPROP database using artificial 
neural networks and E-state indices. J Chem Inf Comput Sci 
41:1407–1421

Tropsha A, Gramatica P, Gombar V (2003) The importance of being 
earnest: validation is the absolute essential for successful appli-
cation and interpretation of QSPR models. QSAR Comb Sci 
22:69–77. https​://doi.org/10.1002/qsar.20039​0007

Wahi D, Jamal S, Goyal S et al (2015) Cheminformatics models based 
on machine learning approaches for design of USP1/UAF1 abro-
gators as anticancer agents. Syst Synth Biol 9:33–43. https​://doi.
org/10.1007/s1169​3-015-9162-1

Xiao Y, Ma B, McElheny D et al (2015) Aβ(1–42) fibril structure illu-
minates self-recognition and replication of amyloid in Alzheimer’s 

https://doi.org/10.1038/nrm2101
https://doi.org/10.2353/ajpath.2009.090417
https://doi.org/10.1126/science.1072994
https://doi.org/10.1007/s10916-015-0210-x
https://doi.org/10.1007/s10916-015-0210-x
https://doi.org/10.1016/S1474-4422(09)70299-6
https://doi.org/10.1016/S1474-4422(09)70299-6
https://doi.org/10.1186/1471-2105-14-119
https://doi.org/10.1007/s00011-014-0710-z
https://doi.org/10.1007/s40203-017-0029-x
https://doi.org/10.1016/j.cbi.2006.12.006
https://doi.org/10.1016/j.cbi.2006.12.006
https://doi.org/10.1021/jm00050a010
https://doi.org/10.1073/pnas.0506723102
https://doi.org/10.1111/j.1745-7254.2005.00068.x
https://doi.org/10.1074/jbc.M112.393751
https://doi.org/10.1007/s00894-010-0890-6
https://doi.org/10.1007/s00894-010-0890-6
https://doi.org/10.1021/jf990308d
https://doi.org/10.1021/jf990308d
https://doi.org/10.1016/j.jff.2013.01.022
https://doi.org/10.1016/j.chemolab.2011.08.007
https://doi.org/10.1016/j.chemolab.2011.08.007
https://doi.org/10.1002/jnr.20025
https://doi.org/10.1002/jnr.20025
https://doi.org/10.1016/j.chemolab.2015.04.013
https://doi.org/10.1016/j.chemolab.2015.04.013
https://doi.org/10.1007/s10825-013-0486-3
https://doi.org/10.1016/j.saa.2014.10.045
https://doi.org/10.1016/j.saa.2014.10.045
https://doi.org/10.1186/1758-2946-4-10
https://doi.org/10.1146/annurev.cb.10.110194.002105
https://doi.org/10.1146/annurev.cb.10.110194.002105
https://doi.org/10.1016/j.ejps.2015.05.025
https://doi.org/10.1002/qsar.200390007
https://doi.org/10.1007/s11693-015-9162-1
https://doi.org/10.1007/s11693-015-9162-1


In Silico Pharmacology (2018) 6:12	

1 3

Page 19 of 19  12

disease. Nat Struct Mol Biol 22:499–505. https​://doi.org/10.1038/
nsmb.2991

Yamashita S, Furubayashi T, Kataoka M et al (2000) Optimized condi-
tions for prediction of intestinal drug permeability using Caco-2 
cells. Eur J Pharm Sci 10:195–204

Yanagisawa D, Taguchi H, Morikawa S et al (2015) Novel curcumin 
derivatives as potent inhibitors of amyloid β aggregation. Bio-
chem Biophys Rep 4:357–368. https​://doi.org/10.1016/j.bbrep​
.2015.10.009

Yang F, Lim GP, Begum AN et al (2005a) Curcumin inhibits for-
mation of amyloid β oligomers and fibrils, binds plaques, and 
reduces amyloid in vivo. J Biol Chem 280:5892–5901. https​://doi.
org/10.1074/jbc.M4047​51200​

Yang H, Xie W, Xue X et al (2005b) Design of wide-spectrum inhibi-
tors targeting coronavirus main proteases. PLoS Biol 3:e324. https​
://doi.org/10.1371/journ​al.pbio.00303​24

Yap CW (2011) PaDEL-descriptor: an open source software to cal-
culate molecular descriptors and fingerprints. J Comput Chem 
32:1466–1474. https​://doi.org/10.1002/jcc.21707​

Zhao YH, Le J, Abraham MH et al (2001) Evaluation of human intes-
tinal absorption data and subsequent derivation of a quantitative 
structure-activity relationship (QSAR) with the Abraham descrip-
tors. J Pharm Sci 90:749–784

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/nsmb.2991
https://doi.org/10.1038/nsmb.2991
https://doi.org/10.1016/j.bbrep.2015.10.009
https://doi.org/10.1016/j.bbrep.2015.10.009
https://doi.org/10.1074/jbc.M404751200
https://doi.org/10.1074/jbc.M404751200
https://doi.org/10.1371/journal.pbio.0030324
https://doi.org/10.1371/journal.pbio.0030324
https://doi.org/10.1002/jcc.21707

	Design of novel amyloid β aggregation inhibitors using QSAR, pharmacophore modeling, molecular docking and ADME prediction
	Abstract
	Introduction
	Materials and methods
	Dataset preparation
	Calculation of descriptors
	2D QSAR study
	Validation of 2D-QSAR model
	HQSAR
	3D-QSAR
	Molecular modeling and alignment
	CoMFA model
	CoMSIA model
	Validation of 3D-QSAR models
	Generation of a pharmacophore model

	Molecular docking
	Primary and secondary structure prediction and validation of the protein molecules
	Protein–ligand molecular docking analysis
	Machine learning model
	Prediction of metabolic behavior and ADME properties of the virtual molecules


	Results and discussion
	2D-QSAR
	HQSAR
	CoMFA analysis
	CoMFA contour plots
	CoMSIA analysis
	CoMSIA contour plots
	Pharmacophore analysis
	Molecular docking
	Primary and secondary structure prediction and validation
	Protein–ligand molecular docking analysis
	Molecular design of novel chemical entities
	Data mining
	Prediction of site of metabolism and ADME properties


	Conclusion
	Acknowledgements 
	References




