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G R A P H I C A L A B S T R A C T

A B S T R A C T

The speckle tracking method allows one to quantify the temporal and spatial characteristics of myocardial
contraction. Importantly, it does not depend on a scanning angle and allows one to record the movement of
speckles in 2D mode in any direction, unlike tissue Doppler imaging. This examination is non-invasive, safe for
patients, and economically more beneficial in comparison with other modern methods of assessing heart
contractility: MRI and scintigraphy. Diagnostic thresholds are suggested for obtaining peak values of all types of
global strains and strain rates by sampling a healthy group, which can reveal early signs of left ventricle
contractility failure. Correlation relationships of deformation parameters between themselves and with left
ventricular hemodynamic indices, as well as anthropometric parameters in healthy subjects highlight the
features of heart contraction biomechanics. However, currently this method is scarcely studied because no
generally accepted normal range of strain values exists.
� It is necessary to have sufficient qualification and skills in dealing with the XStrainTM Esaote software to obtain
optimal values of myocardial deformation.
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The study results expand the database of this software for users and determine the normal range of the left
ventricular contractility parameters.
The revealed interrelationships of strain values in healthy individuals are relevant for understanding how the
contractility mechanisms are altered in patients, and open up the prospect of studying the heart’s
compensatory possibilities.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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ethod details

Studying tissue deformation is a new diagnostic method in cardiology that makes it possible to
uantify the regional contractility of the myocardium using two-dimensional echocardiography [1].
This technology allows one to record a unique pattern of gray scale spots, generated by ultrasound

assing through myocardial tissues. Displacement of the gray scale spot (set) picture reflects the
ovement of the myocardium during systole and diastole, and displacement between the spots,

espectively, the deformation of the myocardium (Fig. 1). This method is known as “speckle tracking”,
hich means “tracking of speckle points” [1–7].
This technique has a number of advantages, in particular, its independence from a scanning angle,

n contrast to tissue Doppler imaging [8]. Thus, it is possible to analyze myocardial strains and strain
ates along three spatial axes, accordingly to the physiology of the heart muscle [3,5]. Speckle-tracking
chocardiography provides a picture of complex heart biomechanics by defining myocardial
eformation in the longitudinal, circumferential, and radial directions (Fig. 2).
When using “speckle tracking”, no tethering effect exists because the strain is evaluated directly by

he motion of gray scale spots of a certain area of the myocardium [4]. This technique is highly
eproducible [1,9] and does not require a high frame rate.

Fig. 1. An example of gray scale spot imaging during inter-ventricular septum movement.
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This study is non-invasive, safe for patients and economically more beneficial, compared with
other modern methods of assessing heart contractility, namely, MRI and scintigraphy.

However, wide clinical application of this method is limited by the considerable variability of strain
indices when using different software packages [1].

Methods

A large-scale prospective study of 104 healthy volunteers (53 women and 51 men) was conducted
(Table 1). Prospective criteria for recruitment included age >18 years, no historyof cardiovascular or lung
disease, no symptoms, the absence of cardiovascular risk factors (e.g., hypertension, smoking, diabetes,
and dyslipidemia), no cardioactive or vasoactive treatment, and normal results on electrocardiography
and physical examination. Exclusion criteria were athletic training, pregnancy, and body mass index
>30 kg/m2. Blood pressure (BP) was measured in all participants immediately before the echocardio-
graphic examination. Height and weight were measured using a calibrated stadiometer and scale, and
body surface area was calculated according to the Dubois and Dubois formula. Body mass index was

Fig. 2. Directions of the left ventricular strain in three planes.

Table 1
Baseline characteristics of the healthy subjects.

Variables Value

Age, years 40 (26,5; 49)
Height, cm 175,2 � 10,85
Weight, kg 77,7 � 15,01
Body surface area, m2 1,9 � 0,2
Body mass index, kg/m2 26,0 � 4,17
Systolic blood pressure, mmHg 124 (120; 126)
Diastolic blood pressure, mmHg 80 (70; 80)
LV end-diastolic volume, mL 99,67 � 26,83
Indexed LV end-diastolic volume, mL/m2 52,14 � 11,82
LV end-systolic volume, mL 36,0 � 13,7
Indexed LV end-systolic volume, mL/m2 18,75 � 6,3
LV ejection fraction, % 63 (59,5; 69)
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alculated by dividing the weight in kilograms by the height in meters squared (kg/m2). This study was
pproved by the local ethics committee of Penza State University, and written informed consent was
btained from all volunteers before they were screened for study eligibility.
Echocardiography was carried out on the left side position with an ultrasonic scanner

yLabEsaote, a 2.5–5.5 MHz multidimensional sensor with a synchronized ECG from the extremities.
he video clips were registered to the short-axis contours at the level of the mitral valve and papillary
uscles, from the apical position of 5-, 4-, and 2-chamber images with respiratory arrest. Incorrect

rames, such as intermediate positions between the long and short axes from parasternal access, as
ell as the absence of the apex or any wall of the LV were considered inadmissible. The computer
nalysis was based on the processing of digital signals of dynamic images of the heart with a frame rate
n the range of 40–60 frames per second, using X-Strain software (Esaote, Italy), which allows one to
stimate the longitudinal, circumferential, and radial myocardial strain and strain rate. The software
lgorithm tracks the frame-by-frame shift of the gray scale spots and extracts information about the
train and the strain rate of a specific myocardial segment in a given geometric position.
For each patient, an initial image was selected at the end of diastole, which coincided with a QRS

eak on ECG [1]. Good visualization of the intra-cardiac border is essential for accurate measurement.
atients having poor visualization of their echograms were excluded from the study. To improve the
isualization of endocardium borders, we used the “gamma” option, which allows one to measure the
ray scale intensity (Fig. 3).
The anatomy of the analyzed segments should correspond to the LV scheme specified by the

oftware, with the possibility of manual selection. The boundaries of the endocardium and epicardium
ere traced as a sequence of dots in the semi-automatic mode, with visual correction by the

nvestigator. They should not be projected onto the papillary muscles and the aorta. Proper
etermination of endocardial borders is the most important condition for qualitative post-processing,

Fig. 3. Tracing the endocardium and epicardium borders in the 4-chamber position.
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requiring an examiner to have appropriate skills and sufficient experience in echocardiography.
The parameters governing the myocardial deformation characteristics were evaluated in 16 segments.
For each point, the strains and strain rates were automatically calculated, shown as vectors added to a
two-dimensional image. Based on the dynamics of the cardiac cycle’s digital values, the software
generates strain curves for each segment. We obtained strain values in the phase of interest in the
cardiac cycle on the panel of these graphs. In addition, the strains and strain rate values for each
segment were represented using color graphics (Fig. 4).

The global spatial and velocity indices were calculated as the arithmetic mean value of all segments
[1]. The peak global endocardial values of the longitudinal, circumferential, and radial strain (in %)
were determined, as well as the corresponding strain rates (sec-1) (Global Circumferential Strain/
Strain Rate – GCS/SR), (Global Radial Strain/Strain Rate – GRS/SR). Longitudinal and circumferential
strains have negative values in systole, and the radial one is characterized by positive values [3].

Regional deformation (strain) is a dimensionless value associated with changing the length of an
object and is expressed as a percentage of its initial form. For one-dimensional objects, the
deformation can be represented by elongation or shortening [1,3,7].

The rate of deformation (the strain rate) is the rate at which deformation occurs per unit time (c-1).
The strain rate, as well as the definition of deformation allows one to estimate the degree of
myocardial deformation [1,3,7].

From the echocardiographic parameters observed, the following were analyzed: the end-diastolic
volume (EDV), the end-diastolic volume index (EDVI), the end systolic volume (ESV), the end systolic
volume index (ESVI), the end diastolic LV dimension (EDD), the relative wall thickness (RWT), the
stroke volume (SV), the LV ejection fraction (EF) by Simpson at the four chamber level, along the long
axis of the left ventricle from the apical position, the left ventricular myocardial mass index (LVMI).

Fig. 4. Four-chamber position. The endocardial and epicardial strain rate is shown as vectors. Graphs of all segments of the
endocardial longitudinal strain. Longitudinal strain in the middle septal segment.
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tatistics

We constructed correlation models to determine the relationship between the contractile
arameters of the left ventricle and its hemodynamic parameters, as well as anthropometric
arameters, thus contributing to our understanding of heart biomechanics.
The correlation analysis methods with the Pearson coefficient (r) were used to determine the

elationship between the variables. The distribution normality was established using the Kolmogorov-
mirnov test. The sensitivity of the selective Pearson coefficient for the corresponding index was
etermined as the probability of detecting connection tightness (1-b) in the general population.

esults

Determining the descriptive characteristics of the left ventricular contractile function will
ontribute to refining the strain values, recorded on a MyLabEsaote scanner using XStrainTM Esaote
oftware among healthy subjects. Table 1 presents the average peak global values of all strains and
train rate types, as well as factors reflecting the extent of their variability (Table 2).
Among all deformation characteristics, the largest value of the mean is the radial strain, followed

y longitudinal and circumferential strains, which makes it possible to quantify the contribution of
ndividual muscle types to the overall contractility. However, the radial strain index is characterized by
igh variability, which may limit its practical application. In contrast, owing to their small variability
nd low standard error, GLS and GCS can provide a more accurate estimate of the rate of contractility of
he left ventricle. On this basis, we analyzed in detail the GLS score in healthy subjects in order to
ptimally determine the limits of its normal range. In addition, it has been established that a decrease
n the global longitudinal deformation of LV is a sensitive marker of myocardial ischemia, which affects
he cardiomyocytes’ contractile function at the subclinical stage of the disease [10].

The table also shows the values of all strains and strain rate types corresponding to the fifth, tenth,
fteenth, and twentieth percentiles. The mean values and standard deviations of the global
eformation parameters obtained in this study can serve as a guideline for developing the normal
ange, taking into account the desired accuracy and reliability of the confidence intervals.

Only 5% of healthy individuals have GLS values below 16.71%; 10% below 17.75%; 15% below 18.71%,
nd 20% below 18.67%. The median value of 20.68% indicates that half of patients have GLS values that
re both larger and smaller.
It is recommended to define cut-off values to distinguish between healthy and sick individuals to

etermine the normal range, taking into account the optimal “sensitivity-specificity” ratio. This
ethod, with high sensitivity, is useful for excluding the diagnosis, if the result is negative. However, a
ethod with high specificity is useful for including the diagnosis, along with other possible factors if

here is a positive result [11] (Fig. 5).
Table 3 presents the correlations of the spatial and velocity indices of contractility. The results are

resented as a correlation matrix. Owing to diagonal symmetry, the lower part of the matrix is not
lled in, since it does not include additional information. One can see that all correlation coefficients

able 2
ummary of the characteristics of all global strain types.

GLS GLSR GCS GCSR GRS GRSR

Mean 21,00 1,50 25,18 1,84 35,62 2,52
Median 20,68 1,42 24,93 1,79 34,45 2,41
Standard deviation 2,73 0,35 4,02 0,42 8,50 0,62
Range 14,83 2,04 18,88 2,18 68,72 4,32
Minimum 15,60 1,02 18,21 1,18 18,06 1,02
Maximum 30,43 3,06 37,09 3,36 86,78 5,34
Percentiles 5 16,71 1,08 19,08 1,27 25,98 1,73

10 17,75 1,13 19,68 1,36 27,70 1,96
15 18,17 1,21 20,45 1,45 28,16 2,02
20 18,67 1,25 21,79 1,48 29,56 2,10
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are statistically significant at the level of 0.05; therefore, 95% confidence intervals are calculated for
them.

According to the table, the closest relationship is observed at pairwise comparison of GLS and GCS,
with similar strain rate parameters, which is associated with a single structural-physiological
mechanism underlying the magnitude and the time of contraction. In addition, high correlation
coefficients are observed between GLS and GCS. This is due to the structural features of the two layers
of the myocardium: the external and internal ones, respectively (Fig. 6).

The external oblique and the internal longitudinal muscles are represented by the same fibers,
which start from the valve fibrous rings, go top-down, form a “vortex” at the apex of the heart and
return to the fibrous rings already as a component of the inner longitudinal layer (Fig. 7).

The smallest correlation values of radial deformation with other types of strains and strain rates
can be explained by the peculiarities of the distribution of the middle layer fibers, at right angles to the
subepicardial and subendocardial layers and, consequently, the independence of these fibers’
contraction. Nevertheless, the reliable dependence of the majority of the revealed deformation
characteristics indicates a well-coordinated cardiac contraction.

In analyzing the correlations presented in Table 4, note that statistically significant dependencies
between the global characteristics of the longitudinal and circumferential strains with hemodynamic,
structural heart parameters, as well as anthropometric parameters in healthy individuals are not
shown.

However, in the healthy population, there was a significant moderate direct relationship between
GRS and LVMI. On the one hand, this dependence must be interpreted with caution, since GRS has the
greatest variance. On the other hand, this regularity is justified, since the main thickness of the wall is

Fig. 5. The matrix of scattering diagrams for pairwise correlation of strains and strain rates in healthy subjects.
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Table 3
Pairwise correlation of the global peak strain and strain rate parameters in healthy individuals.

GLS GLSR GCS GCSR GRS GRSR

GLS Pearson's Correlation 1 0,705 0,423 0,399 0,339 0,279
Relevance 0,000 0,000 0,000 0,000 0,004
95% confidence interval 0,613 0,280 0,253 0,187 0,122

0,778 0,548 0,527 0,475 0,422

GLSR Pearson's Correlation 1 0,475 0,562 0,353 0,567
Relevance 0,000 0,000 0,000 0,000
95% confidence interval 0,339 0,440 0,202 0,446

0,592 0,664 0,488 0,668

GCS Pearson's Correlation 1 0,750 0,246 0,338
Relevance 0,000 0,012 0,000
95% confidence interval 0,669 0,087 0,186

0,813 0,393 0,474

GCSR Pearson's Correlation 1 0,242 0,571
Relevance 0,013 0,000
95% confidence interval 0,083 0,450

0,389 0,671

GRS Pearson's Correlation 1 0,340
Relevance 0,000
95% confidence interval 0,188

0,476

GRSR Pearson's Correlation 1
Relevance
95% confidence interval

Fig. 6. Graphs of the pairwise correlation of the myocardial deformation parameters in healthy individuals.
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the circumferential muscle, whose contraction causes radial deformation. In addition, the significant
dependence of GRSR on the anthropometric characteristics (e.g., BSA, weight, and BMI) could be
explained by the fact that a larger muscle size should contract in less time for effective cardiac output.
The above-described interrelationships between the radial strain indicators and anthropometric data
in healthy individuals are also reflected in other studies [12], which revealed higher values for the
radial strain in obese individuals (Table 5).

A correlation relationship (r), which exists within the entire population, with a probability of at
least 98%, was detected for a sample size of n = 104.

Discussion

In order to obtain the optimal values of left ventricular myocardial deformations by a
MyLab90 Esaote ultrasound scanner, one must know how to work effectively with the XStrain TM

Esaote software and how to monitor all obtained deformations, with the possibility of manual
correction at all stages of information retrieval offered by this software package. Therefore, we have
introduced specific practical guidelines intended for specialists.

The correlations of the strain indices in healthy individuals, revealed in this study, have not been
found in any available professional literature. The correlation patterns of deformation parameters
were obtained from a small group of patients, which is a limitation of this study. Therefore, the relative
reliability and high sensitivity of the obtained data, along with the correlation sensitivity coefficient,
were used for optimal interpretation and interpolation of these results for the general population.

The correlation relationships of certain types of strains and the strain rates between them highlight
the features of cardiac contraction biomechanics, which is relevant for understanding how the
contractility mechanisms are altered in patients. It also opens up the prospect of studying the heart’s
compensatory possibilities with optimal therapeutic and diagnostic correction. The other reliable
correlations that were revealed, in particular, the signficance of the radial strain parameters in healthy
individuals, indicate the dependence of cardiomyocyte contraction on body weight, which can predict
the expended myocardial resources and the extent of their compensatory possibilities.

Fig. 7. A pairwise correlation of the myocardial strain rates in healthy individuals.
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Determining the normal range of various physiological factors is a difficult task when a new
echnique is introduced into practical medicine. The problem of choosing the threshold values of
ontractility by the speckle tracking method has been solved in here only in part, since its sensitivity
an be determined by examining the population of patients with confirmation of the left ventricular
ontractility disturbance by other investigative methods. Therefore, we are planning a large-scale
tudy on deformation characteristics in patients with CHD using the results obtained in this study.

able 4
he pairwise correlation of all types of global peak strains and strain rates with hemodynamic, structural heart parameters and
nthropometric parameters in healthy individuals.

GCS GCSR GLS GLSR GRS GRSR

BSA Pearson's Correlation �0,030 �0,102 0,043 0,163 0,077 0,342
Relevance 0,849 0,510 0,783 0,292 0,620 0,023
95% confidence interval 0,190

0,478

Weight Pearson's Correlation �0,046 �0,077 0,006 0,173 0,084 0,353
Relevance 0,767 0,617 0,968 0,261 0,587 0,019
95% confidence interval 0,202

0,488

LVPW Pearson's Correlation �0,005 0,022 �0,198 0,025 0,066 0,084
Relevance 0,973 0,886 0,197 0,871 0,669 0,589
95% confidence interval

LVMMI Pearson's Correlation 0,154 �0,004 �0,131 �0,082 0,377 0,097
Relevance 0,319 0,981 0,398 0,597 0,012 0,532
95% confidence interval 0,228

0,508

BMI Pearson's Correlation 0,011 0,023 0,033 0,195 0,152 0,321
Relevance 0,942 0,885 0,831 0,205 0,326 0,034
95% confidence interval 0,167

0,460

EDVI Pearson's Correlation �0,096 �0,050 0,051 0,042 0,085 0,147
Relevance 0,536 0,749 0,741 0,784 0,585 0,342
95% confidence interval

ESVI Pearson's Correlation �0,160 �0,122 �0,006 0,028 �0,066 0,109
Relevance 0,301 0,432 0,967 0,857 0,669 0,480
95% confidence interval

IVS Pearson's Correlation 0,139 0,129 �0,160 0,068 0,152 0,253
Relevance 0,369 0,404 0,298 0,660 0,323 0,097
95% confidence interval

RWT Pearson's Correlation 0,053 0,147 �0,177 0,114 �0,029 0,205
Relevance 0,734 0,340 0,251 0,460 0,852 0,183
95% confidence interval

SV Pearson's Correlation �0,038 �0,031 0,039 0,076 0,149 0,256
Relevance 0,807 0,843 0,803 0,623 0,335 0,093
95% confidence interval

EF Pearson's Correlation 0,099 0,094 �0,002 �0,034 0,165 0,066
Relevance 0,521 0,542 0,988 0,824 0,286 0,672
95% confidence interval

ote: BSA-body surface area, LVPW-left ventricle posterior wall; LVMI-left ventricle myocardial mass index; BMI-body mass
ndex; EDVI-end-diastolic volume index; ESVI-end-systolic volume index; IVS-inter-ventricular septum; RWT-relative wall
hickness; SV-stroke volume; EF-ejection fraction.

34 V.E. Oleynikov et al. / MethodsX 5 (2018) 125–135



All conclusions are mathematically justified, the application conditions and the results of the
correlation analysis were verified, and exploratory regression analysis was performed.

Conclusions

When using the new “speckle tracking” method it is necessary to acquire reliable data on various
parameters of cardiac deformation. This will enable one to establish an algorithm for obtaining the
specific deformation values needed to reveal heart biomechanics regularities in healthy subjects, in
order to determine the normal values of these parameters for subsequent use in the diagnosis of
various heart diseases.
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