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Abstract

The importance of gut microbiota in gastrointestinal (GI) physiology was well described, but our 

ability to study gut microbial ecosystems in their entirety was limited by culture-based methods 

prior to the sequencing revolution. The advent of high-throughput sequencing opened new 

avenues, allowing us to study gut microbial communities as an aggregate, independent of our 

ability to culture individual microbes. Early studies focused on association of changes in gut 

microbiota with different disease states which was necessary to identify a potential role for 

microbes and generate novel hypotheses. Over the past few years the field has moved beyond 

associations to better understand the mechanistic implications of the microbiome in the 

pathophysiology of complex diseases. This movement also has resulted in a shift in our focus 

towards therapeutic strategies which rely on better understanding the mediators of gut microbiota-

host crosstalk. It is not surprising the gut microbiome has been implicated in pathogenesis of 

functional gastrointestinal disorders (FGIDs) given its role in modulating physiological processes 

such as immune development, GI motility and secretion, epithelial barrier integrity, and brain-gut 

communication. In this review, we focus on the current state of knowledge and future directions in 

microbiome research as it pertains to FGIDs. We summarize the factors which help shape the gut 

microbiome in humans. We discuss data from animal models and human studies to highlight 

existing paradigms regarding the mechanisms underlying microbiota-mediated alterations in 

physiological processes and their relevance in human interventions. While translation of 
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microbiome science is still in its infancy, the outlook is optimistic and we are advancing in the 

right direction towards precise mechanism based microbiota therapies.

INTRODUCTION

The human gut is home to a complex microbial ecosystem with bacteria, fungi, viruses, and 

archaea which exist in a mutualistic relationship with the host in homeostatic conditions. 

The microbial members along with their genetic content are often referred to as the gut 

microbiome and can be viewed as a “dynamic organ” capable of mediating a wide variety of 

biochemical transformations that directly impact host physiology in health and disease1, 2. 

However, a disruption in this equilibrium can lead to alteration of host physiology resulting 

in disease states such as functional gastrointestinal disorders (FGIDs).

The role for gut bacteria in FGIDs such as irritable bowel syndrome (IBS) has been well 

described. An estimated 10% of IBS cases begin after an episode of infectious 

gastroenteritis3. However, the study of intestinal microbial ecosystems was limited by our 

inability to identify bacteria without cultivating them in the laboratory. At the turn of the 

century, ground-breaking advances in the genomics era and sequencing technologies4, 5 gave 

way to culture-independent molecular approaches allowing us to not only identify and 

characterize microbial communities based on similarities in DNA sequences, but also 

provide knowledge that has significantly improved our ability culture bacteria that were 

previously considered unculturable6.

These advances have led to extensive characterization of microbial communities in FGIDs 

over the past decade. While no consistent “microbial signature” has been associated with 

FGIDs, several lines of evidence support a role for gut microbes in the development of FGID 

symptoms7. There has been a significant effort to move beyond describing associations 

between the gut microbiome and FGIDs to defining mechanisms underlying microbial 

contributions to the pathophysiology of FGIDs.

In this review, as a part of our effort to define a path from bench to bedside, we will 

summarize factors affecting the gut microbiome and describe a conceptual framework for 

the role of the gut microbiome in FGIDs. This foundation will allow us to identify gaps in 

our current body of knowledge and develop strategies to translate microbiome science into 

improved diagnosis, prognosis, and management of FGIDs.

Factors that shape the gut microbiota

Gut microbial composition and diversity is largely the consequence of host selection 

pressures such as genetics, habits, sex, and location within the gastrointestinal (GI) tract as 

well as environmental factors including diet (Figure 1). Gut microbial diversity varies with 

age, and substantial differences are seen at the extremes of life8. At birth, assembly of the 

gut microbiota begins with colonization from environmental microbes (e.g., maternal 

vaginal, fecal, skin microbiota). In the subsequent months to years, gut microbial 

communities continue to shift in response to key life events (e.g., exposure to solid foods, 

illnesses, antibiotics) with gradual increases in diversity and convergence to an “adult-like” 
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microbiota9–11. The adult gut microbiota is relatively stable over time and surprisingly 

resilient to temporary perturbations, changing as we get older to a distinct and less diverse 

microbiome12.

Sex associations (Figure 1) with the gut microbiota have been characterized by increased 

relative abundance of Firmicutes and lower Bacteroidetes in women compared to men and 

may be further influenced by body mass index13, 14. Host genetic influence15,16,1718, 19,20 on 

the gut microbiome is apparent from studies of monozygotic and dizygotic twin pairs that 

demonstrate shared community structures between related individuals21 and temporally 

stable heritable taxa17. However, the effect size is likely small given recent microbial-genetic 

association studies showing environmental factors to have substantially greater impact on the 

gut microbiome than genetics22. The impact of both short23 and long term dietary patterns24 

on the gut microbiome cannot be overstated25, 26. The role of diet27 in microbial alterations 

is of significant interest in FGIDs as dietary intolerances are commonly reported in FGIDs 

and patients may alter or restrict their diets based on perceived associations between 

symptoms and food28, 29. The interaction of diet, gut microbiome, and symptoms in FGIDs 

(reviewed in 30) has not been well studied and the long term consequences of current dietary 

interventions with reported benefit in IBS, such as supplementation with psyllium fiber and 

the low FODMAP (fermentable oligosaccharides, disaccharides, monosaccharides, and 

polyols) diet31, 32, on the gut microbiome remain to be seen.

Other modifying factors (Figure 1) include psychological stress33,34, physical activity35, 

tobacco use36, alcohol consumption37, and antibiotic exposure38, 39,40. In one population-

level analysis of gut microbiome variation, 69 factors were shown to correlate with 

microbiome community variation, with stool consistency emerging as the most influential 

covariate 41.

The distribution and composition of the gut microbiota changes along the length of the GI 

tract (Figure 2) and across the lumen, mucus layer, and the epithelium42, 43. Bacterial 

density increases from more proximal to distal sites44. Microbial abundance and community 

structure in the proximal intestine is affected by gastric acid, pancreaticobiliary secretions, 

and fast transit45. Spatial niche partitioning of microbial populations can also be a result of 

mucus from goblet cells 46 and differential oxygen tolerance47. Together, these factors lead 

to distinct microenvironments driving the biogeographical stratification of microbes across 

the GI tract.

EFFECT OF THE GUT MICROBIOTA ON HOST PHYSIOLOGY

Gut microbiota and gastrointestinal motility

Altered GI motility and transit have long been recognized in the pathobiology of FGIDs 

such as IBS48 and functional dyspepsia (FD)49, 50. GI motility and the gut microbiota have 

reciprocal effects (reviewed in 1), highlighting a bidirectional relationship (Figure 3). Gut 

microbes can accelerate GI transit51, 52. In turn, accelerated GI transit can alter the 

composition and spatial organization of microbial communities by creating luminal 

conditions suited for the growth of specific bacterial taxa or by affecting bacterial 

adherence1. Interestingly, GI motility related changes in the gut microbiome can further 
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perpetuate the alteration in GI motility as a positive feedback effect53. Several microbial 

mediators (Table 1) of GI motility have been identified (Figure 3), including short chain 

fatty acids (SCFAs) and bile acids. SCFAs are produced by fermentation of dietary starches 

or complex carbohydrates by gut bacteria54, while bile acid deconjugation and 

dehydroxylation by gut bacteria regulates the quantity and derivatives of bile acids in the 

colon. SCFAs and bile acids may affect gut motility (Table 1). Prokinetic effects of bile 

acids can be mediated by the G protein-coupled bile acid receptor TGR5 (or GPBAR1), 

expressed by enteric neurons and enteroendocrine cells based on findings from animal 

models55. Interestingly, microbial mediators of GI motility can vary by diet56, 57. For 

example, turmeric, a commonly used spice in Asian dishes, stimulates gallbladder 

contraction and increases intraluminal bile acids through its active ingredient, curcumin. 

Similarly, SCFA concentrations can vary based on dietary carbohydrate and protein intake. 

Other microbial products or metabolites (Table 1) that have been identified as potentially 

relevant in microbial regulation of GI motility include: bacterial lipopolysaccharide, which 

can improve survival of enteric neurons by activation of toll-like receptor 4 (TLR4)58. 

Preliminary studies support the roles of other microbial metabolites such as hydrogen 

sulfide59,60, tryptamine61, and hydrogen gas62 in regulation of human GI motility by their 

putative effects on GI smooth muscle and the enteric nervous system1.

Gut microbiota and gastrointestinal sensation

Abdominal pain in IBS48 and other FGIDs63 such as FD64 and functional abdominal 

bloating/distention65 has been attributed to visceral hypersensitivity to mechanical and 

chemical stimuli. Evidence for a role of the gut microbiome in regulating GI sensation 

(Figure 3) comes from gnotobiotic studies showing transfer of the visceral hypersensitivity 

phenotype following transplantation of gut microbiota from patients with IBS into germ-free 

(GF) mice 66. A recent study by Riba et al.67 demonstrated a correlation between visceral 

hypersensitivity and increase of Escherichia coli abundance followed by induction of 

hypersensitivity in response to E. coli gavage in mice. Disruption of the gut microbiota in 

early-life also has been associated with longterm changes in visceral sensitivity, emphasizing 

the importance of the gut microbiome in neurodevelopment of pain pathways68. The exact 

mechanisms by which bacteria affect visceral perception and sensation still need to be 

determined. A few putative mechanisms include: microbial induction of epithelial μ-opioid 

and cannabinoid receptors as shown with oral administration of Lactobacillus strains in 

rodents69; regulation of central70 and peripheral neuronal pathways71; anti-nociceptive 

effects from inhibition of transient receptor potential vanilloid as shown with administration 

of Lactobacillus reuteri72 in rats; microbial metabolites (e.g., organic acids) or byproducts 

(e.g. nitric oxide)73 altering sensation; and microbially-derived bioactive molecules such as 

γ-aminobutyric acid (GABA) as shown with administration of GABA-producing 

Bifidobacterium dentium74. The translation of findings from animal models to humans can, 

however, be challenging. For instance, rectal administration of butyrate increases colonic 

hypersensitivity in rats75

Gut microbiota and intestinal permeability

The intestinal epithelium and the overlaying mucus layer serve a key role in protecting the 

host by providing a physical and immunological barrier against potentially harmful 
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pathogens while also regulating fluid and nutrient absorption77. Increased permeability or 

disruption of the epithelial barrier has been implicated in the pathophysiology of 

FGIDs78, 79. Microbes(Figure 3) can directly alter expression of tight junction proteins such 

as claudin-380 and zonula occludens-181 or enhance expression of genes involved in tight 

junction signaling82. Microbial metabolites such as bile acids83,84 and SCFAs can also 

regulate intestinal permeability (Table 1). The mucus layer overlaying the epithelium is a 

reservoir of antimicrobial peptides and immunoglobulins and provides the first line of 

defense against gut bacteria85. The mucus layer is compositionally rich in polysaccharides 

which can serve as a nutrient source for subsets of bacteria. Hence microbial starvation such 

as with decreased consumption of fiber can increase microbial reliance on the mucus 

polysaccharides resulting in degradation of the mucus layer and increasing susceptibility to 

opportunistic pathogens and inflammation27, 86.

Gut microbiota, immune activation, and inflammation

Inflammation or immune activation involving both the innate and adaptive immune systems 

has been described in subsets of patients with FGIDs87,88. There are several lines of 

evidence in support of the activation of mucosal and systemic immune responses by gut 

microbiota (Figure 3). Post-infectious FD is associated with increased numbers of duodenal 

CD68+ cells and eosinophils when compared with other subtypes of FD (epigastric pain 

syndrome, post-prandial distress syndrome), and healthy states89. Increased expression of 

proinflammatory cytokines may be elicited through interactions between bacterial 

components and pattern recognition receptors including TLRs such as TLR2 and TLR4 that 

have been associated with IBS90. The gut microbiota can also influence immune activation 

via effects on lineage differentiation of T-cell subsets91, host-receptor mediated signaling as 

seen with L. reuteri activation of histamine H2 receptor signaling92, and production of 

microbial metabolites (Table 1).

Gut microbiota and intestinal secretion

Changes in small intestinal93 and colonic secretion represents another pathophysiologic 

disturbance in FGIDs that may be influenced by the gut microbiome48 (Figure 3). Secretory 

mechanisms are common therapeutic targets94, 95 of medications used to treat FGIDs. 

Microbial mediators of altered intestinal secretion96 include metabolites from breakdown of 

dietary polysaccharides as well as bile acids (Table 1). Specific bile acids, such as 

deoxycholate and chenodeoxycholate, can stimulate intestinal chloride secretion97, 98 which 

is accompanied by water. SCFAs, like bile acids, are important intraluminal determinants of 

mucus and water secretion through effects on sodium and water influx99, duodenal 

bicarbonate secretion100, and colonic epithelial 5-HT3 receptor expression101.

Gut microbiota and gastric function

Disturbances in gastric motor and sensory function, including impaired gastric 

accommodation and increased intragastric pressure, may underlie FGIDs and are often 

related to food intake102. There is a paucity of data in support of microbial regulation of 

gastric function. The administration of the prebiotic arabinoxylooligosaccharide in healthy 

volunteers was not associated with changes in gastric sensitivity, compliance, or 
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accommodation despite increased colonic fermentation102. Reported associations between 

the presence of small intestinal bacterial overgrowth (SIBO) and delayed gastric 

emptying103 have not discerned whether associations are a result of microbial mechanisms 

or merely representative of underlying impairment in small intestinal motility and other 

confounding factors including chronic acid suppression and opioid analgesics104. Recent 

evidence showing a similar gastric emptying time among patients with and without SIBO 

suggests that bacterial overgrowth does not necessarily predispose to impaired gastric 

emptying105, 106.

Gut microbiota and central nervous system function

The bidirectional microbiome-gut-brain axis (Figure 3) represents the reciprocal regulation 

of the gut microbiome and the central nervous system (CNS). Recent studies highlight the 

role of the gut microbiome in modulating brain-gut communication, which may significantly 

affect the pathophysiology of symptoms associated with FGIDs107,108. Signals from the 

CNS can influence GI physiology while simultaneously shaping the gut microbial 

fingerprint as seen in early life stress rodent models which exhibit alterations in gut 

microbial community composition109. Similar findings have been described in other rodent 

stress models33. Conversely, microbial colonization and community composition are critical 

to development of the hypothalamus–pituitary–adrenal axis as evidenced by the exaggerated 

adrenocorticotropic hormone and corticosterone release in germ-free (GF) mice. This 

exaggeration is attenuated following colonization with Bifidobacterium infantis110. A 

different strain within the same genus, Bifidobacterium longum NCC3001, decreases 

anxiety-like behavior in mice through vagally mediated pathways111. Microbial metabolites 

such as SCFAs and microbially-derived neurotransmitters such as GABA and 5-HT may 

further impact brain function and mental health108.

FUNCTIONAL GI DISORDERS

Role of gut microbiota in pathophysiology of irritable bowel syndrome

The gut microbiota of patients with IBS is an area of considerable interest, and has been the 

most extensively studied among the various FGIDs (reviewed in 44). Despite the lack of a 

uniform “IBS-microbiota” pattern, key observations include a decrease in α-diversity and 

alterations in relative abundance of specific taxonomic groups including an increased ratio of 

Firmicutes to Bacteroidetes, decreased Lactobacillus and Bifidobacterium, and increased 

Streptococcus and Ruminococcus spp.112. Cross-sectional analysis of extensively 

phenotyped cohorts also has revealed that while stool consistency is a significant contributor 

to gut microbiome compositional variation, the contribution imparted by IBS was much 

less41. These data highlight the importance of investigating specific pathophysiologic 

disturbances, beyond merely providing descriptive analyses of a heterogeneous patient 

populations in elucidating the role of the gut microbiome in IBS. Correlative associations 

between the gut microbiome and IBS have been followed by efforts to better characterize the 

mechanistic link between the microbiome and pathophysiology of symptoms associated with 

IBS (Table 2). Among the various aforementioned aspects of gut physiology that are 

affected by the gut microbiome, many are directly implicated in the pathophysiology of IBS.
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Summary of findings from animal studies—Animal models, although imperfect 

correlates to IBS pathophysiology in humans, have allowed us to explore putative 

interactions between the gut microbiome and mechanisms implicated in IBS such as altered 

motility, visceral hypersensitivity, increased permeability, immune activation, intestinal 

secretion, and disturbances in central mechanisms. De Palma et al.52 recently demonstrated 

that GF mice colonized with the fecal microbiota of diarrheapredominant IBS (IBS-D) 

patients exhibited faster GI transit, increased colonic permeability, increased anxiety-like 

behavior, and increased infiltration by CD3+ T lymphocytes compared to those colonized by 

microbiota from healthy controls. Study of specific IBS pathways include reports describing 

microbiota-induced hypersensitivity to colonic distension in GF rats inoculated with the 

fecal microbiota from IBS patients66. Microbial regulation of host immune responses may 

be further relevant to IBS. An increase in mucosal immune cells including mast cells, 

macrophages or monocytes, T-cells, and eosinophils has been reported in both pediatric and 

adult FGID populations79, 113, 114. Mast cells contain biologically active substances 

including histamine, tryptase, cytokines, and membrane-derived arachidonic acid 

metabolites (e.g., prostaglandins) that are released upon their activation. These mediators 

may alter nociceptive pathways in IBS115 or increase intestinal permeability116. 

Macrophages and monocytes are important in modulating the adaptive immune responses 

and producing proinflammatory cytokines such as IL-6 and IL-8 which in some studies are 

increased in IBS patients117. The role of gut microbes in these immune pathways remains 

unknown.

Summary of findings from studies in adult IBS patients—Numerous studies have 

examined microbiome-related effects on pathophysiological changes in IBS, building upon 

work performed in animal models. Interventional studies investigating the use of probiotic 

and antibiotic therapy in IBS have led to identification of potential microbial effects on 

transit (Table 2). Treatment with a probiotic containing Bifidobacterium lactis118 accelerates 

whole gut transit and improves symptoms in patients with constipation-predominant IBS 

(IBS-C), while treatment with the non-absorbable antibiotic rifaximin is associated with 

increases in both ascending colonic emptying and overall colonic transit rate at 48 hours119 

in non-constipated IBS patients. A role for the gut microbiome in immune modulation was 

suggested by findings from the clinical trial wherein B. infantis 35624 alleviated symptoms 

and was associated with normalization of abnormal IL-10/IL-12 ratios in IBS patients120. 

Colonic mucosal gene expression profiling of IBS patients also has found differential 

expression of genes associated with host immune responses against microbial invasion, 

further suggesting that immune activation may be shaped by microbial interactions121. 

Alterations in mucus-associated bacteria that may influence mucus integrity and intestinal 

secretion (e.g. Akkermansia muciniphila, Ruminococcus gnavus and Ruminococcus torques) 

also have been associated with IBS122. Microbially-mediated effects on intestinal secretion 

in IBS may be a consequence of differential bile acid biotransformation by the gut 

microbiome96. This concept is supported by the decreased concentrations of fecal 

unconjugated bile acids known to stimulate colonic secretion (deoxycholate and 

chenodeoxycholate) in IBS-C123. Regarding the role of the microbiome-gut-brain axis in 

IBS (reviewed in 124 and 125), probiotic therapy has been shown to modulate CNS function 

in healthy volunteers126 through effects on brain regions controlling processing of emotion 
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and sensation. More recently, in a recent placebo controlled trial in IBS patients, treatment 

with the probiotic B. longum NCC3001 was associated with improved symptoms of 

depression and changes in brain activation patterns measured by functional magnetic 

resonance imaging127.

Summary of findings from studies in pediatric IBS patients—Similar to adult 

studies, the composition of the gut microbiome differs between children with IBS and age-

matched healthy controls, despite lack of a uniform “IBS-microbiota” signature across 

studies. One study enrolling children ages 7–12 years found pediatric IBS to be associated 

with decreased relative abundance of Bacteroides spp. and increased relative abundance of 

the class Gammaproteobacteria, including Haemophilus parainfluenzae, along with 

increased abundance of novel taxa related to the genus Ruminococcus. In this cohort, 

microbiota composition correlated with abdominal pain severity and frequency, and could be 

used to distinguish IBS-C from unsubtyped IBS128. Another study of children ages 11–18 

years found IBS-D to be associated with increased abundance of the genera Veillonella, 

Prevotella, Lactobacillus, and Parasporobacterium, and with decreased abundance of 

Bifidobacterium and Verrucomicrobium129. By adding fecal metabolomic profiling to 

microbiome signatures, stool from children with IBS-D could be more accurately 

discriminated from that of healthy controls, with formate, pyruvate, and glucose being the 

most predictive metabolites130. Fecal microbial community composition also might be used 

to predict which children with IBS are more likely to respond to a low-FODMAP diet: in 

two separate studies, responders had distinct baseline microbiome signatures compared to 

non-responders131, 132.

Among the most studied probiotics in pediatric IBS is Lactobacillus rhamnosus GG, which 

was found in a meta-analysis of three randomized, placebo-controlled trials (RCTs) to 

confer a modest but significantly increased rate of treatment response versus placebo133. 

Two multicenter, randomized, double-blind, placebo-controlled crossover studies provide 

further evidence of microbiota involvement in pediatric IBS. One study found that VSL#3 

improved GI symptoms134, while the other reported that a combination of three 

bifidobacteria resolved abdominal pain and improved quality of life to a greater extent than 

placebo135. On the other hand, psyllium fiber reduced pain episodes in an RCT enrolling 

children with IBS without altering the composition of the gut microbiota based on 16S 

ribosomal RNA analysis136.

RCTs in children with functional abdominal pain (FAP) have revealed that L. reuteri DSM 

17938 is effective in treating abdominal symptoms. Jadrešin et al.137 demonstrated a 

reduction in days with pain and pain severity in children with IBS and FAP. In studies 

focused specifically on FAP, Romano et al.138 reported reduced pain severity and Weizman 

et al.139 and Maragkoudaki et al.140 both reported reduced pain severity and frequency in 

those treated with the probiotic compared with placebo.

In summary, both animal and human studies underscore the importance of the gut 

microbiome in mediating peripheral and central mechanisms implicated in IBS. Moreover, 

factors affecting gut microbiota composition are akin to the etiological factors in IBS and 

probiotic interventions have a generally beneficial effect. However, given the heterogenous 
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nature of the disease with multiple putative mechanisms, our broad nontargeted approach 

without consideration for the underlying physiological disturbance likely dilutes the overall 

impact and makes it difficult to ascertain the precise benefit of microbiota modulation. As 

we move forward, it will be important to phenotype patients based on the underlying 

physiological alterations so that we can develop targeted approaches directed towards 

specific microbes driving the host phenotype.

Role of gut microbiota in pathophysiology of functional dyspepsia

Similar to IBS, multiple pathogenic mechanisms including altered gastric function, visceral 

hypersensitivity, low grade inflammation or immune activation, increased duodenal 

permeability, and abnormal CNS function have been postulated to contribute to symptoms in 

FD141. As summarized above, gut microbiota have been shown to modulate the majority of 

these physiological functions. Although data on the gastroduodenal microbiome and its 

particular role in FD are sparse, there are a few studies that lay the groundwork for future 

work investigating the role of microbial community alterations in FD.

Summary of findings from animal studies—In general, animal studies investigating 

microbial effects on putative pathophysiologic mechanisms in FD are lacking given the 

absence of reliable models. The described effects are attributed to fermentative end products 

such as SCFAs. Bacterially-derived or ingested SCFAs can alter duodenal bicarbonate 

secretion100. In addition, the absorption of SCFAs can also influence the luminal bacterial 

population which may be relevant in FD100.

Summary of findings from studies in adult patients with functional dyspepsia
—There are few human studies describing the gut microbiome in patients with FD, hence 

the precise role of the microbiota remains unknown. SIBO has been proposed to trigger 

symptoms in FD142, although studies examining the role of SIBO in FD are limited by the 

relative inaccessibility of the more distal regions of the small intestine and concerns 

regarding accuracy and interpretation of available testing methods for the diagnosis of 

SIBO143. Recently, Zhong et al.144 found the relative abundance of the anaerobic genera 

Prevotella, Veillonella and Actinomyces were significantly decreased in the duodenal 

mucosa of nine patients with FD compared to controls. Interestingly, severity of symptom 

responses to a standardized meal was positively correlated with mucosal bacterial load, 

which in turn was inversely correlated with bacterial diversity. Igarashi et al145 found that 

gastric fluid samples from patients with FD were characterized by an increased 

Bacteroidetes to Proteobacteria ratio and absence of Acidobacteria. In contrast, healthy 

volunteers had a decreased Bacteroidetes to Proteobacteria ratio and presence of 

Acidobacteria. Non-blinded probiotic therapy with Lactobacillus gasseri OLL2716 was 

subsequently associated with shifts in gastric fluid microbial community composition 

similar to that found in healthy controls. In another RCT among patients with FD, rifaximin 

treatment was associated with significant improvement in global dyspeptic symptoms, 

belching, and postprandial fullness/bloating, further suggesting a potential role for the 

microbiome in FD146.
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Summary of findings from studies in pediatric patients with functional 
dyspepsia—Relatively little is known regarding the gut microbiome in pediatric FD. 

Although the previously highlighted multicenter, randomized, double blind, placebo 

controlled crossover study reported that a combination of three probiotic bifidobacteria 

improved pain scores and quality of life among 48 children with IBS, no benefit was 

observed among the 25 enrolled children who had FD, perhaps owing to the small number of 

patients treated135. Likewise, the moderate overall benefit associated with L. rhamnosus GG 

treatment in an RCT of children with IBS or FD was not observed in the subset of children 

with FD147. However, it would be premature to make definitive conclusions given the small 

sample size (n=20 with FD versus n=37 with IBS).

In summary, the gut microbiome can affect mechanisms underlying FD similar to IBS, but 

the microbial community composition of the stomach and small bowel remain elusive and 

much work is needed before we can target specific microbial mediators that drive symptoms 

in FD. The overall positive impact of probiotics is encouraging and highlights the need for 

better mechanistic understanding in order to develop more precise microbiota-based 

therapeutics.

Role of gut microbiota in pathophysiology of functional abdominal bloating

Abdominal bloating and distension are common complaints among patients suffering from 

FGIDs, and are among the most challenging symptoms to treat. The pathophysiologic 

mechanisms contributing to bloating are poorly understood, although SIBO and alterations 

in gut microbial communities have been hypothesized148 to play a role through microbial 

fermentation of dietary nutrients. As this is predominantly a subjective sensation, there are 

no animal models to mimic these symptoms.

Summary of findings from adult patients with functional abdominal bloating—
The majority of clinical studies investigating symptoms of bloating have been performed in 

IBS patients, with bloating and distension evaluated as secondary endpoints148. A recent 

study showed depletion of operational taxonomic units within Subdoligranulum and 

Anaerovorax, belonging to the families Ruminococcaceae and Eubacteriaceae, respectively, 

in IBS patients without bloating compared to those with bloating and to healthy controls149. 

Placebo-controlled studies of antibiotic (rifaximin) treatment in FGIDs and IBS have 

demonstrated significant reduction in bloating scores with rifaximin compared to 

placebo150–152. Efficacy of probiotic administration for symptoms of bloating have been less 

consistently reported153 although some studies in IBS patients have suggested benefit with 

specific probiotic strains including B. lactis DN-173118, Bifidobacterium animalis DN-173 

010154, and VSL#3155.

Summary of findings from pediatric studies—Little is known regarding the 

microbiome in functional abdominal bloating in children. The trial noted previously by 

Weizman and colleagues139, which reported benefit for abdominal pain with the probiotic L. 
reuteri DSM 17938, also reported a lower incidence of perceived abdominal distention and 

bloating. Similarly, patients in the VSL#3 trial had decreased abdominal bloating/gassiness 

compared to placebo134.
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In summary, while gut microbes can potentially impact these symptoms both via 

fermentative end products and by their effect on visceral sensation, we need to better 

characterize the potential microbial mediators in order to develop relevant therapeutics.

Role of gut microbiota in pathophysiology of functional constipation

There is evidence supporting an association between the altered mucosal and fecal 

microbiota and chronic constipation156, 157. Most of our knowledge regarding the effects of 

the gut microbiota on peripheral mechanisms associated with constipation, such as GI 

motility, comes from animal studies. However, in recent years, several studies have been 

published exploring the gut microbiome in patients with constipation (Table 2).

Summary of findings from animal studies—Investigation of the causal relationship 

between alterations in gut microbial communities and constipation has been described in a 

recent study158 reporting upregulation of 5-HT transporter and decreased 5-HT content in 

the colonic tissue of germ-free mice that received fecal microbiota from constipated patients. 

5-HT was negatively correlated with transit time and changes were accompanied by 

decreased relative abundance of the phylum Firmicutes and increased Bacteroidetes in mice 

receiving fecal microbiota from constipated patients. Genus level analyses further showed 

decreased relative abundance of Clostridium, Lactobacillus, Desulfovibrio and 

Methylobacterium and increased relative abundance of Bacteroides and Akkermansia. The 

findings suggest a potential role for gut microbiota in the pathogenesis of chronic 

constipation via increased expression of 5-HT transporter158. Interestingly, gut microbiota 

changes resulting from constipation can further impact GI motility, suggesting a more 

complex interaction with feedforward regulation rather than a simple cause-effect 

relationship53.

The potential role of microbially-derived metabolites is further supported by findings of 

delayed GI transit and altered SCFA and bile acid profiles following transfer of fecal 

microbiota from patients with slow transit constipation to antibiotic-treated mice159.

Summary of findings from adult patients with functional constipation—Several 

studies have reported a positive relationship between prolonged colon transit times, with 

increased richness and diversity of the fecal microbiome in adults without prior history of GI 

disorders160,161. However, the association between constipation and the gut microbiome 

may involve mechanisms beyond that of slow transit. In a study of adults with chronic 

constipation, overall composition of the colonic mucosa-associated microbiota could 

discriminate patients with constipation from control subjects independent of transit time157. 

Taxonomic profiling of the fecal microbiome from patients with functional constipation 

(FC) and healthy volunteers has shown decreased abundance of Bacteroides, Roseburia, and 

Coprococcus in FC patients. Furthermore, healthy volunteers were found to have a gut 

microbiome enriched in genes involved in carbohydrate, fatty acid, and lipid metabolism 

while FC patients harbored a high abundance of genes involved in methanogenic pathways, 

hydrogen production, and glycerol162. Analysis of functional gene targets in constipated and 

healthy females also has demonstrated increased abundance of hydrogenogenic (hydrogen 
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producing) and hydrogenotrophic (hydrogen utilizing) genes by qPCR in colonic mucosa of 

constipated individuals163.

Summary of findings from pediatric studies—In a cross-sectional study of 8 

constipated obese children and 14 non-constipated obese children, FC was associated with 

decreased abundance of the phylum Bacteroidetes, including a significant reduction of the 

genus Prevotella, and increased abundance of multiple genera within the phylum Firmicutes, 

including Blautia, Coprococcus, and Ruminococcus164. A recent systematic review included 

seven RCTs enrolling a total of 515 children that investigated the effects of probiotics in 

pediatric FC. Although two of the included studies, those evaluating L. reuteri DSM 

17938165 and B. longum166, reported significantly increased defecation frequency in the 

treatment arm, the meta-analysis concluded that there is currently insufficient evidence to 

support the use of probiotics for pediatric FC167. Finally, although a low-fiber diet is a 

known risk factor for FC in children168, there is currently little evidence to support the use 

of fiber for pediatric FC. Multiple systematic reviews note the sparse data and high risk of 

bias among the current evidence base169–172.

In summary, the reciprocal interactions between GI transit and gut microbiota suggest that 

even if changes in gut microbiota are initiated by a change in transit, the altered microbial 

community can perpetuate the alteration in GI transit, highlighting the adaptability of the gut 

microbial community. Consequently, we need to think beyond the simple cause-effect 

paradigm as irrespective of the inciting event that alters the microbial community, these 

changes can still perpetuate a disease phenotype. The effect of gut microbiota on the host 

serotonergic system provides a plausible target for altering GI transit.

Role of gut microbiota in pathophysiology of infant colic

Infant colic, a characteristic group of behaviors featuring prolonged crying, is present in up 

to 25% of infants at 6 weeks of life173 and is associated with increased risk of recurrent 

abdominal pain and allergic disorders later in childhood174. Underlying mechanisms are 

unclear, due in part to a lack of small animal models. Multiple pathophysiologies, including 

gut microbiome alterations, have been proposed to promote abdominal pain. Early culture-

dependent studies by Savino et al. revealed that colicky infants were more frequently 

colonized by anaerobic gram-negative proinflammatory bacteria and less frequently 

colonized by lactobacilli when compared to non-colicky infants175, 176. Subsequent 

molecular studies confirmed enrichment of proinflammatory and gas producing taxa within 

Proteobacteria in stool from colicky infants177–179.

Given these observations, the probiotic L. reuteri, one of the few endogenous lactobacilli in 

the human GI tract, was proposed as a means of normalizing these gut microbial community 

alterations and potentially reducing crying times in infant colic and has become the most 

extensively studied microbiome-targeting therapy for colic. L. reuteri has been tested in six 

prospective, RCTs: two meta-analyses that included more than 400 infants found that L. 
reuteri significantly reduced crying time in formula fed infants by a mean of nearly one hour 

per day180, 181. Of note, the only other therapy to demonstrate efficacy in infant colic was 

fennel oil while often-recommended interventions including simethicone and maternal diet 
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manipulation produced mixed results181. Interestingly, L. reuteri also has shown benefit in 

prevention trials, reducing the risk of developing colic at three months of life182, 183. Finally, 

a number of small studies have tested other microbiome-targeting therapies, including L. 
rhamnosus GG184, 185 and a synbiotic combination of fructooligosaccharide and seven 

probiotics186; these small studies generated mixed results.

Modulating the gut microbiota for treatment of functional gastrointestinal disorders

Targeting the gut microbiota for therapeutic intervention in FGIDs remains an area of 

significant interest for patients and clinicians. Probiotics have been studied extensively in 

adult and pediatric FGID populations as previously discussed and summarized in Table 2. A 

prior systematic review of probiotics in IBS suggested evidence for efficacy on global IBS 

symptoms, abdominal pain, bloating, and flatulence187; however, there remain many 

unanswered questions regarding strain-specific effects, mechanisms of action, mode of 

administration and dosing, and patient selection. Despite their relative accessibility and 

general safety, clinical recommendations regarding specific probiotic use in FGIDs are 

limited by a lack of rigorous clinical trial data. Rifaximin has been studied in functional 

dyspepsia146, abdominal bloating, and flatulence150, and is approved for treatment of adults 

with IBS-D151. The exact mechanisms by which rifaximin exerts its effects in IBS, however, 

remain uncertain, with a recent study of patients with nonconstipated IBS showing 

borderline effects on microbial richness and increased rates of proximal colonic emptying 

but no clear effects on bowel function, permeability, or production of intraluminal 

metabolites119. More recently, results of several trials investigating the efficacy of fecal 

microbiota transplantation (FMT) for IBS have been reported. In one RCT among patients 

with moderate-to-severe IBS, higher response (p=0.049) rates at three months, defined as a 

75point improvement in the IBS severity scoring system, were observed in patients receiving 

FMT (65%) compared to those receiving placebo (43%). However, differences were no 

longer significant at 12 months followup188. On the other hand, a separate multicenter 

RCT189 comparing FMT capsules to placebo in patients with diarrhea-predominant IBS was 

unable to demonstrate significant symptom relief at three months with FMT, although 

subgroup analysis suggested patients with post-infectious IBS experienced greater 

improvement with FMT compared to placebo (p=0.09). The role of FMT in IBS needs to be 

better defined as there may be specific features in the donor microbiome as well as 

additional recipient characteristics that predict clinical outcomes. FMT, however, represents 

a stop-gap measure and it is imperative that we determine which specific microbes, 

microbial consortia, or microbial products yield benefit in FGIDs to provide precision care 

without unwanted effects.

TRANSLATING MICROBIOME RESEARCH: Where are we, and what do we need?

The role of the gut microbiome in FGIDs must be considered in the context of the 

environment, the host, and host-specific factors. In order for us to advance the field and 

develop novel microbiota-based diagnostic and therapeutic targets in FGIDs, we will need to 

move from simple taxonomic associations to functional phenotypes and mechanism-based 

studies. In animal studies, we need to determine the specific microbes or microbial products 

as well as the mechanisms that alter host physiology. The use of gnotobiotic models allows 

inclusion of heterogeneity among gut microbiome and diet similar to human subjects, 
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phenotype transfer to better understand cause-effect relationships, and complex reciprocal 

interactions among the host and microbiome. In terms of human studies, we need well 

controlled longitudinal studies incorporating functional genomic, transcriptomic, 

metagenomic, and metabolomic analyses as well as robust clinical metadata for the 

evaluation of “mechanism-based phenotypes.”. There are several factors that can affect the 

gut microbiome including diet, demographics, body mass index, medication etc. as 

described above and hence these should be controlled before linking the microbiome with 

host outcomes. In addition to understanding the role of microbiome in the pathophysiology 

of symptoms in FGIDs, assessing the impact of the microbiome on efficacy of dietary and 

pharmacologic therapy in conjunction with host features will allow for better treatment 

stratification compared to the current one size fits all approach. Finally, we need to move the 

needle from empirically selected prebiotic and probiotic therapies to the next generation of 

precise mechanism-based diagnostic and therapeutic interventions. The use of genetically 

engineered bacterial strains to assess the gut environment, release metabolites of interest at 

specific locations within the GI tract, and optimize drug metabolism appears to be on the 

horizon190, 191. Rapid advances in these areas provide an optimistic outlook for 

microbiotabased interventions in FGIDs.

PERSPECTIVE

It is now apparent that the gut microbiome is an integral player in the pathophysiology of 

FGIDs through its effects on host physiological processes even though the precise 

mechanisms underlying microbial regulation remain an area of active investigation. The 

improved understanding of factors that shape the gut microbiome allow us to better identify 

confounding effects in human studies, including physiological development through 

childhood and adolescence to adulthood30, 128, 11, and at the same time, appreciate the 

adaptation of this resilient microbial ecosystem to short- and long-term perturbations in host 

environment. A comprehensive view of the gut microbiome in both pediatric and adult 

FGIDs is important in order to account for the dynamics of the gut microbiome as it exhibits 

a continuum across the lifespan, with hallmark characteristics in different phases of life192.

The expanding ecosystem of microbiome-based startups and industry funding, the shift away 

from compositional changes towards functional products of the microbiome, better 

integration of clinical metadata, and genetic engineering and synthetic biology tools to make 

designer probiotics targeting specific host functions, together instill confidence in our ability 

to move microbiome science from bench to the bedside.
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Abbreviations:

CNS central nervous system

FC functional constipation

FD functional dyspepsia

FGIDs functional gastrointestinal disorders

FODMAP fermentable oligosaccharides, disaccharides, monosaccharides, and 

polyols

GABA γ-aminobutyric acid

GF germfree

GI gastrointestinal

IBS irritable bowel syndrome

IBS-C constipation predominant IBS

IBS-D diarrhea predominant IBS

SCFA short chain fatty acid(s)

SIBO small intestinal bacterial overgrowth

TLR toll-like receptor

5-HT 5 hydroxytryptamine
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Figure 1: 
Factors that shape the gut microbiota
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Figure 2: 
Distribution of the gut microbiota within the gastrointestinal tract along its longitudinal and 

radial axes
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Figure 3: 
Gut microbiota effects on host physiology including gastrointestinal motility, sensation, 

secretion, epithelial barrier integrity, immune activation, and brain-gut communication
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