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Abstract

Background: Major Depressive Disorder (MDD) is a highly heterogeneous condition in terms of 

symptom presentation and, likely, underlying pathophysiology. Accordingly, it is possible that 

only certain individuals with MDD are well-suited to antidepressants. A potentially fruitful 

approach to parsing this heterogeneity is to focus on promising endophenotypes of depression, 

such as neuroticism, anhedonia and cognitive control deficits.

Methods: Within an eight-week multisite trial of sertraline vs. placebo for depressed adults (n 

=216), we examined whether the combination of machine learning with a Personalized Advantage 

Index (PAI) can generate individualized treatment recommendations on the basis of 

endophenotype profiles coupled with clinical and demographic characteristics.

Results: Five pre-treatment variables moderated treatment response. Higher depression severity 

and neuroticism, older age, less impairment in cognitive control and being employed were each 

associated with better outcomes to sertraline than placebo. Across 1000 iterations of a 10-fold 

cross-validation, the PAI model predicted that 31% of the sample would exhibit a clinically 

meaningful advantage (post-treatment Hamilton Rating Scale for Depression [HRSD] difference ≥ 

3) with sertraline relative to placebo. Although there were no overall outcome differences between 

treatment groups (d =.15), those identified as optimally suited to sertraline at pre-treatment had 

better week 8 HRSD scores if randomized to sertraline (10.7) than placebo (14.7)(d =.58).

Conclusions: A subset of MDD patients optimally suited to sertraline can be identified on the 

basis of pre-treatment characteristics. This model must be tested prospectively before it can be 

used to inform treatment selection. However, findings demonstrate the potential to improve 

individual outcomes through algorithm-guided treatment recommendations.

Keywords

antidepressant; placebo; prediction; depression; endophenotype; machine learning; precision 
medicine

Introduction

Meta-analyses reveal that average differences in depressive symptom improvement between 

antidepressant medications (ADMs; most commonly, selective serotonin reuptake inhibitors 

[SSRIs]) and placebo are often small (i.e., between-group differences in symptom change of 

less than 3 points on the Hamilton Depression Rating Scale (Hamilton 1960)) (Moncrieff et 
al. 2004; Kirsch et al. 2008; Fournier et al. 2010; Kirsch 2015; Jakobsen et al. 2017; Cipriani 

et al. 2018). A potential reason for this modest differentiation is that MDD is a highly 

heterogeneous condition in terms of symptom presentation and, likely, underlying 

pathophysiology (Wakefield & Schmitz 2013; Fried & Nesse 2015b, 2015a; Baldessarini et 
al. 2017). Accordingly, it is possible that subsets of depressed individuals are better suited to 

SSRIs, whereas others may derive limited benefit. For example, for certain depressed 
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individuals the mere passage of time – possibly coupled with the expectation of 

improvement – may result in symptom remission (e.g., “spontaneous remitters”). Such 

individuals may not require SSRIs. Instead a less costly, low-intensity alternative 

intervention with minimal or no side effects may be sufficient for symptom remission (e.g., 

internet-based cognitive behavioral therapy (iCBT), which is included in the National 

Institute for Health and Care Excellence Guidelines (NICE 2018) as an efficacious 

intervention). Currently, treatment selection is largely based on trial-and-error. 

Approximately 55% to 75% of depressed individuals in primary care fail to achieve 

remission to first-line antidepressants, and 8% to 40% will switch to at least one other 

medication (Rush et al. 2006; Marcus et al. 2009; Schultz & Joish 2009; Vuorilehto et al. 
2009; Milea et al. 2010; Saragoussi et al. 2012; Thomas et al. 2013; Ball et al. 2014; Mars et 
al. 2017). Identifying predictors of antidepressant response may ultimately inform the 

development of algorithms generating personalized predictions of optimal treatment 

assignment for clinicians and patients to consider in their decision-making regarding which 

intervention to select.

A range of pre-treatment variables (e.g., baseline clinical, demographic and neurobiological 

characteristics) have been examined as predictors of SSRI response.1 Perhaps the most well-

supported clinical moderator of SSRI vs. placebo response is baseline depressive symptom 

severity (Khan et al. 2002; Kirsch et al. 2008; Fournier et al. 2010). Meta-analyses indicate 

that in patients with MDD, lower levels of depressive symptom severity predicts minimal to 

no advantage of ADM over placebo, but that as depression severity increases, so does the 

magnitude of the advantage of ADM over placebo (Khan et al. 2002; Kirsch et al. 2008; 

Fournier et al. 2010). Other relevant predictors of greater ADM response include younger 

age (Fournier et al. 2009), being female (Trivedi et al. 2006; Jakubovski & Bloch 2014), 

higher education (Trivedi et al. 2006), being employed (Fournier et al. 2009; Jakubovski & 

Bloch 2014), lower anhedonia (McMakin et al. 2012; Uher et al. 2012a), non-chronic 

depression (Souery et al. 2007) and lower anxiety (Fava et al. 2008). Although each of these 

variables has limited predictive power when considered individually, recent advances in 

multivariable machine learning approaches allow for the combination of large sets of 

variables to predict treatment response (Gillan & Whelan 2017). Critically, to be clinically 

useful for treatment selection, predictors of treatment response must be applicable to 

individual patients. Consistent with the goals of precision medicine, such work aims to 

translate treatment outcome moderation findings to actionable, algorithm-guided treatment 

recommendations (Cohen & DeRubeis 2018).

We sought to use machine learning coupled with a recently published Personalized 

Advantage Index (PAI)(DeRubeis et al. 2014; Huibers et al. 2015) to predict treatment 

outcome at the individual level on the basis of pre-treatment patient data. Our aim was to use 

the above approach to identify the subset of patients who may be optimally suited to SSRI. 

With regards to machine learning approaches, we used four complementary variable 

1The term predictor is used differently in different contexts (e.g., a “prescriptive predictor” or “moderator” (i.e., defined as a treatment 
group × predictor variable interaction) of outcome vs. a “prognostic” (i.e., treatment nonspecific) predictor of outcome) (Kraemer 
2013; Fournier et al. 2009). Here, we include variables that have either demonstrated moderation (e.g., baseline depression and 
neuroticism moderating SSRI vs. placebo differences in outcome), but also include findings from single-arm designs demonstrating 
that a particular variable (e.g., educational level) predicts outcome within ADM.

Webb et al. Page 3

Psychol Med. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



selection procedures in an effort to identify a reliable and stable set of predictors from the 

initial, larger set of baseline variables. These procedures rely on different algorithms, such as 

decision tree-based ensemble learning methods (e.g., Random Forests) and regression-based 

methods (e.g., Elastic Net Regularization). This approach encouraged the selection of a set 

of predictors that emerged consistently across differing variable selection algorithms (See 

Variable Selection below). Data were derived from the multi-site EMBARC (Establishing 
Moderators and Biosignatures of Antidepressant Response for Clinical Care) clinical trial 

comparing SSRI (sertraline) vs. placebo (Trivedi et al. 2016). Of relevance, in a recent study 

based on EEG and cluster analyses, we reported that the substantial heterogeneity of MDD 

could be parsed by considering three putative endophenotypes of depression: neuroticism, 

blunted reward learning, and cognitive control deficits (Webb et al. 2016). Endophenotypes 

are hypothesized to lie on the pathway between genes and downstream symptoms, and are 

traditionally defined as meeting the following criteria (Gottesman & Gould 2003): (1) 

associated with the disease, (2) heritable, (3) primarily state-independent, (4) cosegregate 

within families, (5) familial association and (6) measured reliably (Goldstein & Klein 2014). 

We posited that depressed patients with certain endophenotype profiles may be differentially 

responsive to certain interventions (e.g., the cluster of depressed patients defined by 

relatively high levels of neuroticism may be more responsive to SSRIs). Indeed, there is 

evidence that depressed individuals characterized by elevated neuroticism may derive 

relatively greater therapeutic benefit from SSRIs relative to CBT (Bagby et al. 2008) or 

placebo (Tang et al. 2009). Thus, we examined whether the combination of putative 

endophenotypes (neuroticism, reward learning, cognitive control deficits, anhedonia) with 

both baseline clinical (depressive symptom severity, depression chronicity, anxiety severity) 

and demographic (gender, age, marital status, employment status, years of education) 

variables previously linked with antidepressant response could be used to identify individual 

depressed patients optimally suited to SSRIs. Plausible neuroimaging predictor variables 

(McGrath et al. 2013; Pizzagalli et al. 2018) were excluded from this particular study given 

that they are substantially more costly and time-consuming than the above set of clinical, 

demographic and behavioral variables, the latter of which could be reasonably integrated 

into a current psychiatric clinic for the purpose of treatment selection.

Methods and Materials

After providing informed consent, participants completed several behavioral and self-report 

assessments prior to enrolling in an 8-week, double-blind, placebo-controlled clinical trial of 

sertraline vs. placebo. The clinical trial design has been described in detail in a previous 

publication (Trivedi et al. 2016).

Participants

Eligible participants (ages 18–65) met DSM-IV criteria for a current MDD episode (SCID-

I/P), scored ≥ 14 on the 16-item Quick Inventory of Depression Symptomatology (QIDS-

SR16)(Rush et al. 2003), and were medication-free for ≥ 3 weeks prior to completing any 

study measures. Exclusion criteria included: history of bipolar disorder or psychosis; 

substance dependence (excluding nicotine) in the past six months or substance abuse in the 

past two months; active suicidality; or unstable medical conditions (see Supplemental 
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Methods). Data from 216 MDD subjects who passed quality control criteria for both Flanker 

and Probabilistic Reward Task and completed at least 4 weeks of treatment (American 

Psychiatric Association 2010; Fournier et al. 2013) were included (Supplemental Methods).

Endophenotype Measures

NEO Five-Factor Inventory-3 (NEO-FFI-3)(McCrae & Costa 2010).—The 12-item 

neuroticism subscale from the NEO-FFI was used.

Probabilistic Reward Task (PRT).—The PRT uses a differential reinforcement schedule 

to assess reward learning (i.e., the ability to adapt behavior as a function of rewards), and has 

been described in detail in previous publications (Pizzagalli et al. 2005, 2008a)(see 

Supplemental Methods).

Snaith-Hamilton Pleasure Scale (SHAPS)(Snaith et al. 1995).—The SHAPS is a 

14-item self-report scale, with items asking about hedonic experience in the “last few days” 

for a variety of pleasurable activities. Items consist of four response categories, with 

“Strongly Agree” (=1), “Agree” (=2), “Disagree” (=3), “Strongly Disagree” (=4). Higher 

scores indicate higher anhedonia.

Flanker Task (Eriksen & Eriksen 1974).—An adapted version of the Eriksen Flanker 

Task that included an individually-titrated response window was used to assess cognitive 

control (see Supplemental Methods)(Holmes et al. 2010).

Clinical Measures

Hamilton Rating Scale for Depression (HRSD)(Hamilton 1960).—The 17-item 

HRSD, a clinician-administered measure of depressive symptom severity, was administered 

by trained clinical evaluators.

Mood and Anxiety Symptoms Questionnaire (MASQ)(Watson et al. 1995).—The 

anxious arousal subscale from a 30-item adaptation of the MASQ (MASQ-AA) assessed 

anxiety.

Data Acquisition and Reduction

PRT.—The primary variable of interest was reward learning, which has been found to 

predict response to antidepressant treatment among inpatients with MDD (Vrieze et al. 
2013). As in prior studies (Pizzagalli et al. 2008b; Vrieze et al. 2013), reward learning was 

defined as change in response bias (RB) scores throughout the task (here, from the first to 

the second block (RBBlock2 – RBBlock1)).

Flanker Task.—The primary variable of interest was the interference effect on accuracy, 

defined as lower accuracy on incongruent relative to congruent trials, computed as 

[AccuracyCompatible trials – AccuracyIncompatible trials]. Higher scores reflect greater 

interference (i.e., reduced cognitive control).
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Data Pre-Processing.—Missing data were imputed using a Random Forest-based 

imputation strategy (missForest (Stekhoven & Bühlmann 2012) package in R (R Core Team 

2013)) (see Supplemental Methods)(Waljee et al. 2013). This approach can handle both 

categorical and continuous variables, and generates a single imputed dataset via averaging 

across multiple regression trees. Consistent with the recommendation of Kraemer and 

colleagues (Kraemer & Blasey 2004), continuous variables were mean-centered and 

categorical variables were transformed into binary variables with values of −0.5 and 0.5. Of 

the 216 individuals in this sample, 10.19% were missing data for the outcome variable 

(week 8 HRSD) and thus had their data imputed. There were no significant differences in 

week 8 completion rates between the SSRI (88.0%) or placebo (91.5%) conditions (χ2 (1)= 

0.41, p = 0.52). For additional analyses on dropout rates and medication/placebo adherence 

see Supplemental Methods.

Statistical Analyses

Variable Selection.—Prior to implementing the PAI algorithm, pre-treatment variables 

that interact with treatment group (SSRI or placebo) in predicting HRSD outcome (week 8 

scores) must be selected. We implemented (1) Random Forests modeling (using the 

mobForest (Garge et al. 2013) package in R (R Core Team 2013)), (2) Elastic Net 

Regularization (glmnet package (Friedman et al. 2010)) and (3) Bayesian Additive 

Regression Trees (bartMachine package (Kapelner & Bleich 2016)). For each of these three 

models we entered all of our selected pre-treatment variables simultaneously: four 

endophenotype variables (Neuroticism [NEO-FFI-3], cognitive control [Flanker interference 

effect on accuracy], reward learning [PRT], and anhedonia [SHAPS]), three clinical 

variables (baseline severity of depressive symptoms [HRSD], baseline severity of anxiety 

[MASQ-AA] and chronic MDD [yes/no]) and five demographic variables (age, gender, 

marital status, employment status and years of education). Variables showing Treatment 
Group × Predictor variable interactions in two of the three models were entered into a final 

stepwise AIC-penalized bootstrapped variable selection (using the bootStepAIC package 

(Austin & Tu 2004)). For details on each of these approaches and how variables are selected 

from each model, see Supplemental Methods.

Generating PAIs

Briefly, to generate treatment recommendations with the PAI approach, a regression model 

is built and used to predict treatment outcome (week 8 HRSD) for each patient in SSRI and 

placebo separately. A patient’s PAI is the signed difference between the two predictions (i.e., 

week 8 HRSD predicted in SSRI minus week 8 HRSD predicted in placebo), where a 

negative value reflects a predicted better outcome in SSRI, and a positive value reflects the 

reverse. Moreover, the magnitude of the absolute value of the PAI reflects the strength of the 

differential prediction, such that patients with larger PAIs, in either direction, are those who 

are most likely to evidence a substantially better outcome in their PAI indicated, relative to 

their PAI non-indicated treatment. To limit bias that could occur when evaluating model 

performance on individuals whose data were used to set model weights, PAIs were 

generated using 10-fold cross validation. This procedure ensures that each model is 

estimated absent any data from the patient whose outcome will be predicted (see PAI 
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Generation and PAI Evaluation in the Supplemental Methods for details; See also 

Alternative PAI Models below).

Evaluating PAIs

To assess whether PAI scores moderate treatment group differences in depression outcomes, 

we tested a Treatment Group × PAI score interaction with week 8 HRSD scores as the 

dependent variables. Next, and similar to previous PAI publications (DeRubeis et al. 2014; 

Huibers et al. 2015), to evaluate the utility of the PAIs we compared mean week 8 HRSD 

scores for SSRI-indicated individuals who were randomized to SSRI in comparison to SSRI-

indicated participants who received placebo. We performed the analogous comparison for 

those identified as “Placebo-indicated.” We then evaluated the above comparisons with only 

those patients for whom the absolute value of the PAI was 3 or greater (i.e., predicted to 

have a “clinically significant” advantage in one treatment condition)(DeRubeis et al. 2014). 

Finally, the entire ten-fold cross-validation procedure and evaluation was repeated 1000 

times to generate stable estimates.

Results

Variable Selection

See Table 1 for variable selection results, including which variables were selected during 

each stage. The following variables survived the 4-step procedure and were included in the 

final model (see Figure 2 and Table 2):

Y = treatment * (depression severity [HRSD] + neuroticism [NEO − FFI − 3] 
+ cognitive control [Flanker Inter f erence (Accuracy)] + age + employment status)

Predicted Outcomes and PAIs

The average absolute value of PAI scores was 3.4 (SD = 2.6), indicating that our model 

predicted an average 3.4-point difference in week 8 HRSD scores between indicated and 

non-indicated treatment assignment. The absolute value of the PAI was 3 or greater in 

approximately half (48.6%) of the sample (see Figure 1 for distribution of PAI scores). 

Specifically, 31.5% of the sample was predicted to have a “clinically significant” advantage 

(DeRubeis et al. 2014) in the SSRI condition (PAI ≤ −3); whereas this value was 17.1% for 

placebo (PAI ≥ 3). In contrast, the model indicates that 51.4% of the sample was predicted to 

exhibit relatively minimal differences in outcome between treatment conditions.

Observed Outcomes in Indicated vs. Non-Indicated Treatment Condition

Full Sample.—First, it is important to highlight that, in the full sample, patients 

randomized to SSRI (M = 10.86; SD = 6.27) and placebo (M = 11.88; SD = 7.37) did not 

significantly differ in mean week 8 HRSD outcomes (adjusting for baseline HRSD scores) 

(F(1,213)= 0.92; p = .339; Cohen’s d = .15; Figure 3, left panel). Critically, a significant 

Treatment Group × PAI interaction emerged in predicting week 8 HRSD scores, indicating 

that PAI scores moderated treatment group differences in outcome (F(1,212)= 6.68; p = .

010). For the full sample, patients randomized to their PAI-indicated treatment condition (M 

= 10.39; SD = 6.97) were observed to have lower week 8 HRSD scores relative to those 
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randomized to their contraindicated condition (M = 12.38; SD = 6.70)(d = .29, t(214)= 2.16; 

p = .032). For patients predicted to have better outcomes to SSRI than placebo (PAI < 0), 

those randomized to SSRI (M = 10.57; SD = 6.48) were observed to have lower week 8 

HRSD scores than those randomized to placebo (M = 13.12; SD = 7.03)(d = .38, t(121)= 

2.08; p = .040; see Figure 3, right panel). However, for patients predicted to have better 

outcomes to placebo (PAI > 0), those who received placebo (M = 10.18; SD = 7.54) did not 

differ significantly in outcome relative to those who received SSRI (M = 11.23; SD = 6.04)

(d = .16; t(91)= 0.74; p= .460; see Figure 3, right panel).

Largest PAIs (PAI ≥ |3|).—Among this subset, patients randomized to their indicated 

treatment condition (M = 9.53; SD = 6.68) were observed to have lower week 8 HRSD 

scores relative to those randomized to their contraindicated condition (M = 14.09; SD = 

6.42) (d = .70, t(103) = 3.59; p < .001). SSRI-indicated patients randomized to SSRI (M = 

10.68; SD = 7.04) were observed to have lower HRSD scores than those randomized to 

placebo (M = 14.66; SD = 6.83)(d = .58; t(66)= 2.34; p = .023; see Figure 3, right panel). 

Conversely, placebo-indicated patients randomized to placebo (M = 7.65; SD = 5.64) had 

better outcomes than those randomized to SSRI (M = 13.06; SD = 5.57)(d =1.01; t(35)= 

3.07; p = .004; see Figure 3, right panel).

Alternative PAI Models

See Supplement for results from two alternative PAI models. First, a PAI model was run 

including all 12 a priori baseline variables, rather than the reduced set of 5 moderators 

emerging from our variable selection procedure. In other words, in the former model 

including all a priori variables, our variable selection procedure was not performed. The fact 

that a similar pattern of findings emerged in this control PAI analysis suggests that our 

findings are likely not attributable to overfitting due to running our PAI analysis on a 

reduced set of variables emerging from our variable selection steps. Second, to evaluate the 

utility of treatment recommendations based solely on depression severity (rather than our 5 

moderator variables), we re-ran the above analysis using only baseline depressive symptom 

(HRSD) severity to inform the PAI, which did not yield significant findings.

Discussion

This study used the variable selection approach proposed by Cohen et al. (Cohen et al. 2017) 

combining machine learning with a previously published PAI algorithm (DeRubeis et al. 
2014; Huibers et al. 2015) to generate individualized treatment recommendations on the 

basis of (i) putative behavioral endophenotypes of depression (Goldstein & Klein 2014; 

Webb et al. 2016) and (ii) clinical and demographic characteristics previously linked with 

antidepressant response. Ultimately, the goal is to translate research on predictors of 

antidepressant response to actionable treatment recommendations for individuals. First, it is 

important to highlight that the baseline moderators emerging from our machine learning 

variable selection steps are largely consistent with prior research. In particular, depressed 

individuals with higher baseline severity of depressive symptoms (Khan et al. 2002; Kirsch 

et al. 2008; Fournier et al. 2010), higher neuroticism (Tang et al. 2009) and who were 

employed (Fournier et al. 2009; Jakubovski & Bloch 2014) had better outcomes to SSRI 
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than placebo. In addition, relatively older patients and those with lower deficits in cognitive 

control (i.e., smaller Flanker accuracy interference effect) also exhibited better outcomes to 

SSRI. Of note, owing to their minimal cost and relatively low time burden, these baseline 

measurements could be more easily integrated into a treatment clinic than baseline 

assessments involving neuroimaging.

Perhaps the most well-supported clinical moderator of SSRI vs. placebo response is baseline 

depressive symptom severity (Khan et al. 2002; Kirsch et al. 2008; Fournier et al. 2010). It 

should be noted that total depression score at baseline is not the only meaningful marker of 

depression severity. Other relevant variables such as episode chronicity and anhedonia were 

included in our initial models but did not survive the variable selection steps. Chronicity is 

known to be linked with poor response to placebo (Khan et al. 1991; Dunner 2001), yet did 

not emerge as a moderator of SSRI vs. placebo response. Consistent with prior work, higher 

neuroticism was associated with greater response to SSRI relative to placebo, which may in 

part be due to the role of SSRIs in blunting negative affect (Quilty et al. 2008; Tang et al. 
2009; Soskin et al. 2012). It is important to highlight that elevated neuroticism moderated 

SSRI vs. placebo response above and beyond the contribution of baseline depression (i.e., 

while the baseline HRSD × treatment group interaction was included in the model).

The interpretation of the cognitive control finding is less clear. Namely, those with more 

intact cognitive control exhibited better outcomes in SSRI vs. placebo; whereas those with 

greater impairments showed little between-group differences in outcome. Continued 

cognitive impairments – even following symptom remission – are among the most common 

residual symptoms of depression (Herrera-Guzmán et al. 2009; Lam et al. 2014). 

Moderation may be more likely to be observed when comparing a treatment that more 

successfully targets cognitive control deficits (e.g., vortioxetine, (Mahableshwarkar et al. 
2015)) vs. one with limited pro-cognitive effects (also see Etkin et al. 2015).

Of the 12 a priori variables we initially included, 7 did not survive our four-step variable 

selection procedure. It may be that some of these variables are prognostic predictors of 

outcome, but were not selected as they do not moderate SSRI vs. placebo response. For 

example, higher anhedonia (McMakin et al. 2012; Uher et al. 2012a) and blunted reward 

learning (Vrieze et al. 2013) have each been shown to predict worse antidepressant outcome. 

Although anhedonia did not moderate of SSRI vs. placebo response it did emerge as a 

prognostic predictor of worse outcome across groups (t =3.51, p < .001; reward learning ns; 

see Supplemental Results). With regards to the specific variable selection approaches used, 

both Random Forests (RF) and Bayesian Additive Regression Trees (BART) identified the 

same 5 variables; whereas Elastic Net Regularization (ENR) selected a larger set of 8 

variables. Differences in results between these approaches are not unexpected, and may be 

due to the fact that both RF and BART rely on a similar decision-tree based ensemble 

learning algorithm, whereas ENR is a variant of classic regression. As well, unlike ENR, 

both RF and BART consider both unspecified non-linear relationships and higher-order 

interactions between variables.

Importantly, there were no overall differences in depression outcomes between outpatients 

randomized to SSRI and placebo in the overall sample (d = 0.15). These findings are in line 
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with meta-analyses of SSRI vs. placebo indicating small overall differences in outcome 

(Moncrieff et al. 2004; Kirsch et al. 2008; Fournier et al. 2010; Kirsch 2015; Jakobsen et al. 
2017; Cipriani et al. 2018). However, overall between group comparisons obscure any 

meaningful between-patient characteristics that may moderate SSRI vs. placebo differences 

in outcome. Indeed, we identified five patient characteristics that moderated group 

differences in depression outcome. These variables were subsequently entered into a PAI 

algorithm (DeRubeis et al. 2014; Huibers et al. 2015) to generate patient-specific predictions 

of SSRI vs. placebo outcome. Results using our PAI model indicated that approximately 

one-third of the sample would have a clinically significant advantage (DeRubeis et al. 2014) 

with SSRI relative to placebo (PAI ≤ −3). Intriguingly, and unexpectedly, the model also 

predicted that a subset (17%) of depressed individuals would exhibit a clinically significant 

advantage in placebo.

As the treatment recommendations for some individuals indicated almost no advantage of 

one treatment over the other (e.g., see distribution of PAI scores near 0 in Figure 1), one 

might reasonably expect that differences in outcome between patients who received their 

PAI-indicated vs. contraindicated treatment would be larger for those individuals predicted 

to have more clinically meaningful differences in outcomes (i.e., larger absolute PAI values), 

which our sub-analyses confirmed. Notably, when considering the subset with larger PAIs 

(absolute PAI values ≥ 3), the effect size for the difference in outcome for SSRI-indicated 

patients who were randomized to SSRI vs. placebo (d = .58) was substantially larger than 

the overall treatment group difference between SSRI and placebo (d = .15), as well as larger 

than the effect sizes reported in systematic reviews of ADM vs. placebo comparisons (d ~ .

30)(Cipriani et al. 2018; Fournier et al. 2010; Kirsch et al. 2008; Kirsch 2015; Turner et al. 
2008; Khin et al. 2011; Moncrieff & Kirsch 2015), and those observed between active 

treatments and controls from general medical contexts (d ~ .45)(Leucht et al. 2012). In sum, 

findings suggest that our statistical approach may identify patients who are optimally suited 

to SSRI treatment. Of course, this study compared SSRI vs. a placebo condition, rather than 

an alternative evidence-based treatment (e.g., CBT). Thus, our model identified individuals 

who would likely evidence greater depressive symptom improvement on an SSRI relative to 

an intervention providing the “non-specific” therapeutic elements associated with a pill 

placebo condition (i.e., the expectation of symptom improvement, the passage of time, 

symptom monitoring and minimal contact/support from a clinician).

Although no statistically significant advantage was observed for placebo-indicated patients 

who received their indicated treatment, a significant advantage of placebo over SSRI was 

observed for the 17% of the sample for whom placebo was more strongly indicated (PAIs ≥ 

3; d = 1.01). The possibility that SSRIs are relatively ineffective or countertherapeutic for 

certain patients (e.g., due to side effects) requires additional research (Bet et al. 2013; Julien 

2013; Hollon 2016). It is important to emphasize that this finding did not emerge in the full 

sample. Given the reduced sample size in the latter analysis, conclusions must be tempered 

and replications are required.

An alternative PAI model based exclusively on pre-treatment HRSD scores did not yield 

significant findings, suggesting that baseline depressive symptom severity alone is not as 

informative as our model incorporating baseline data on five variables. Second, a similar 
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pattern of findings emerged in a control PAI analysis (in which all 12 a priori variables were 

included) relative to our primary analysis, suggesting that our findings are likely not 

attributable to overfitting due to running our PAI analysis on a reduced set of variables 

emerging from our variable selection steps.

Limitations

Several limitations should be noted. First, and importantly, prospective tests are needed in 

which a PAI model is built in one sample, and then tested in a separate sample. The k-fold 

cross-validation approach we used approximates such a test by leaving each patient’s data 

out of the model used to generate their predicted outcomes. However, although we 

implemented cross-validation during the weight-setting stage, we used the full sample for 

variable selection which can lead to overfitting and inflated associations (Hastie et al. 2009; 

Fiedler 2011). Until such models are tested and replicated in separate samples it will be 

difficult to determine the extent to which overfitting contributes to findings and whether 

models generalize to new sets of treatment-seeking depressed individuals. Second, we 

focused on clinical, demographic and putative behavioral endophenotypes that could be 

collected at low cost and with relatively minimal clinic staff and patient burden. The extent 

to which neural assessments provide incremental predictive validity above and beyond such 

variables is an important direction for research, particularly with regards to relatively less 

costly and non-invasive imaging approaches (e.g., EEG). Third, it is unclear whether 

findings would generalize to depressed individuals who do not meet the inclusion/exclusion 

criteria of this trial. In addition, as others have highlighted (Uher et al. 2012b), measures of 

outcome (HRSD) and predictors include a certain amount of error, which may significantly 

attenuate the magnitude of observed predictor-outcome associations. Fourth, sample size 

was relatively small. Finally, the current PAI model relies on randomized designs (i.e., to 

examine outcomes for those randomly assigned to their indicated vs. non-indicated 

treatment). An important future direction for research is to adapt these statistical models for 

the investigation of optimal treatment assignment in current clinical practice settings in 

which patients are not randomly assigned to interventions. These limitations 

notwithstanding, our findings demonstrate the potential for precision medicine to improve 

individual outcomes through model-guided treatment recommendations rather than the 

current practice of trial-and-error. Findings from replicated prescriptive algorithms could 

ultimately be used to inform the development of web-based “treatment selection calculators” 

available to clinicians and patients to facilitate decision-making.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Frequency histogram displaying distribution of Personalized Advantage Index (PAI) scores, 

computed as the predicted difference in week 8 HRSD scores for SSRI minus placebo. 

Accordingly, a PAI score less than 0 signifies that SSRI was indicated, whereas a PAI score 

greater than 0 indicates that placebo was expected to yield a better outcome. The kernel 

density estimate illustrates the expected distribution of PAI scores in the population.
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Figure 2. 
Plots of baseline predictor by treatment group interactions from the final model.
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Figure 3. 
Comparison of mean week 8 HRSD for patients randomized to SSRI or placebo (left panel) 

(n=216). Comparison of mean week 8 HRSD scores for patients randomly assigned to their 

PAI-indicated treatment vs. those assigned to their PAI-contraindicated treatment for the full 

sample (n = 216) vs. including only patients for whom the algorithm predicted a clinically 

significant advantage in one treatment condition (PAI ≥ |3|); n = 105) (right panel). Error 

bars represent standard error.
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Table 1.

Variable Selection Results

Pre-Treatment Variable Random Forest Elastic Net BART Included in Bootstep AIC?

Depression Severity (HDRS)
a Yes Yes Yes Yes

Anxiety Severity (MASQ-AA) No Yes No No

Chronic MDD (yes/no) No Yes No No

Neuroticism (NEO-FFI-3)
a Yes Yes Yes Yes

Anhedonia (SHAPS) No No No No

Reward Learning (PRT) No No No No

Cognitive Control (Flanker ACC)
a Yes Yes Yes Yes

Gender No No No No

Age
a Yes Yes Yes Yes

Marital Status No No No No

Employment Status
a Yes Yes Yes Yes

Years of Education No Yes No No

Note. HDRS: Hamilton Depression Rating Scale (17-item)(Hamilton 1960); MASQ-AA: Mood and Anxiety Symptoms Questionnaire, Anxious 
Arousal subscore (Watson et al. 1995), MDD: Major Depressive Disorder; NEO-FFI-3: NEO Five-Factor Inventory – 3 (McCrae & Costa 2010); 
SHAPS: Snaith-Hamilton Pleasure Scale (Snaith et al. 1995); PRT: Probabilistic Reward Task (Pizzagalli et al. 2005); Flanker ACC: Flanker 
Interference Accuracy score (= AccuracyCompatible trials – AccuracyIncompatible trials); Higher scores indicate more interference (i.e., 

reduced cognitive control).

aVariables selected by BootStepAIC to be included in the final model.
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Table 2.

Final Model

Variable B SE p value

(Intercept) 11.51 0.43 0.00**

Treatment −0.65 0.85 0.44

Depression Severity (HDRS) 2.17 0.44 0.00**

Neuroticism (NEO-FFI-3) 0.42 0.45 0.35

Cognitive Control (Flanker ACC) −0.31 0.45 0.49

Age 0.85 0.45 0.06

Employment Status −2.61 0.87 0.00**

Treatment × Depression Severity (HDRS) −1.29 0.88 0.14

Treatment × Neuroticism (NEO-FFI-3) −2.56 0.90 0.01**

Treatment × Cognitive Control (Flanker ACC) 1.86 0.89 0.04*

Treatment × Age −2.25 0.91 0.01*

Treatment × Employment Status −3.21 1.74 0.07

Note. HDRS: Hamilton Depression Rating Scale (17-item)(Hamilton 1960); NEO-FFI-3: NEO Five-Factor Inventory – 3 (McCrae & Costa 2010); 
Flanker ACC: Flanker Interference Accuracy score (= AccuracyCompatible trials – AccuracyIncompatible trials).

+p < 0.10.

*p < 0.05.

**p < 0.01.
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