Framework of the methodology proposed for the rational screening of mineral catalysts using DFT calculations. (a) Select a series of minerals and extract the structure and chemical composition information from the RRUFF mineralogy database (the mineral shown here is molybdenite, MoS2, and was obtained from the mindat website: https://www.mindat.org/search.php?name=Molybdenite; the crystal structure was created using BIOVIA Draw software); (b) Calculate the electronic structure of the bulk catalyst and surface, and obtain information of the band gap, Fermi level, conductivity, and other electronic properties. The band structure shown here was obtained from the Materials Project database for molybdenite: https://materialsproject.org/; (c) Calculate the free energy landscape for the specific reaction (here, the reaction pathway scheme assumes that only one intermediate is involved); (d) Determine the activity descriptor (binding energy of the key intermediate). Using this approach, the relative activity profile for a series of minerals can be obtained. The predicted activity profile can be verified using experimental methods to validate the optimized computational model and obtain more precise structure-activity relationships.