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Simple Summary: In biological processes, it is common that a single gene controls two or more
traits, leading to a high genetically correlation between many traits in human beings and livestock.
Genome-wide association study (GWAS) is a popular method for mapping causal genes or regions
related to studied traits. Taking the advantage of genetically correlation among traits, a combined
analysis of two or more traits can improve the power of detection in GWAS analysis. In this study, we
prove the improvement of multiple-traits GWAS through theoretical derivation, simulated dataset
and real dataset, respectively. In addition, using this approach, we successfully identified a candidate
gene for presoma muscle development in cattle that were not be found in the average association
analysis. In summary, we conclude that multiple-trait GWAS is an effective method to explore genetic
factors of traits, which have high correlations.

Abstract: Principal component analysis (PCA) is a potential approach that can be applied in
multiple-trait genome-wide association studies (GWAS) to explore pleiotropy, as well as increase
the power of quantitative trait loci (QTL) detection. In this study, the relationship of test single
nucleotide polymorphisms (SNPs) was determined between single-trait GWAS and PCA-based
GWAS. We found that the estimated pleiotropic quantitative trait nucleotides (QTNs) β̂∗ were in
most cases larger than the single-trait model estimations (β̂1 and β̂2). Analysis using the simulated
data showed that PCA-based multiple-trait GWAS has improved statistical power for detecting QTL
compared to single-trait GWAS. For the minor allele frequency (MAF), when the MAF of QTNs was
greater than 0.2, the PCA-based model had a significant advantage in detecting the pleiotropic QTNs,
but when its MAF was reduced from 0.2 to 0, the advantage began to disappear. In addition, as
the linkage disequilibrium (LD) of the pleiotropic QTNs decreased, its detection ability declined
in the co-localization effect model. Furthermore, on the real data of 1141 Simmental cattle, we
applied the PCA model to the multiple-trait GWAS analysis and identified a QTL that was consistent
with a candidate gene, MCHR2, which was associated with presoma muscle development in cattle.
In summary, PCA-based multiple-trait GWAS is an efficient model for exploring pleiotropic QTNs in
quantitative traits.

Keywords: genome-wide association study; principal component analysis; multiple-trait; pleiotropy;
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1. Introduction

Disease and quantitative traits usually follow a polygenic model [1], in which quantitative trait
loci (QTL) and candidate genes can be explored using genome-wide association studies (GWAS) [2].
In general, candidate genes or causal variants can affect multiple traits simultaneously, a phenomenon
known as “pleiotropy”, that usually occurs when traits share common quantitative trait nucleotides
(QTNs), or QTNs in traits have a high linkage disequilibrium (LD) [3]. Typical pleiotropic traits are
phenotypically or genetically correlated and are unconstrained, such as disease traits, quantitative
traits, and Mendelian traits. According to the National Human Genome Research Institute (NHGRI) [4],
pleiotropy exists in 17% of trait-associated genes and 5% of trait-associated single nucleotide
polymorphisms (SNPs). Studies on Crohn’s disease and psoriasis [5], and body mass index (BMI) and
melanoma [6], have highlighted numerous pleiotropic QTNs.

A plausible approach for exploring pleiotropy is the multiple-trait GWAS model in comparison
with single trait GWAS, which has been shown to be an effective method to detect shared QTL [7].
Although a multivariate model with multiple traits is a powerful approach, it requires a large amount
of computation time and computational memory capacity [8], because it must solve a covariance
matrix of np × np in size (n, number of individuals; p, number of traits), with a time complexity of
O(n3p3·t). Some researchers [9–11] have reduced the computation time, however the multivariate
model is still costly when many traits are considered together. Based on principal component analysis
(PCA) and linear discriminant analysis, another powerful model utilizes dimension reduction of traits
to track pleiotropy [12,13]. PCA-based multiple-trait GWAS has been shown to explain the largest
amount of heritability [14], as well as to be robust and powerful in practice [15]. Compared with the
multivariate model, this method takes much less time, therefore it has been widely used in pleiotropic
QTL mapping [16]. However, it should be noted that one limitation of PCA-based GWAS is that it can
only be applied when all traits are measured on all samples.

In livestock breeding, fine mapping of pleiotropic QTL for objective traits, such as milk yield, milk
fat yield, and milk protein yield in dairy cattle [17,18], as well as the average daily gain and carcass
weight in beef cattle [19], is important. Christine conducted a PCA-based multiple-trait GWAS and
identified two regions (SSC5: 21.3 Mb–25.1 Mb, SSC14: 151.5 Mb–154.0 Mb) that have pleiotropic
effects on boar taint components and testicular traits [20]. It helps to better understand the genetic
mechanisms of complex traits, especially those related to commercial traits, and provide guidance for
marker-assisted selection (MAS) in domestic animal breeding.

In this study, we considered two types of pleiotropy, namely a single causal variant model and
a colocalizing effect model. Specifically, the colocalizing effect model is defined as different causal
variants that affect distinguishing phenotypes with high linkage disequilibrium (LD), resulting in
variants displaying signals in association with different traits. We first theoretically describe the
relationship between a PCA-based multiple-trait GWAS model and single-trait model for pleiotropic
QTL mapping. Next, we demonstrate a powerful PCA-based model based on three sets of simulation
data under three situations (medium heritability traits, low heritability traits, and environmental
correlation traits). Finally, we use real GWAS data of three meat cut traits to explore candidate genes
associated with presoma development in cattle. The analytical strategies are visually outlined in
Figure 1.
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Figure 1. Layout of principal component analysis (PCA)-based multiple-trait genome-wide 
association studies (GWAS) versus single-trait GWAS. (a) Single causal variant model. Provided that 
a casual single nucleotide polymorphism (SNP) (red spot) has an effect on trait 1 (cattle size) and trait 
2 (cattle color) with β1 and β2, the process of estimation of β1 and β2 using trait 1 and trait 2 is called 
single-trait GWAS. According to components decomposition, pseudo traits are formed and the 
process of estimation of βM is called PCA-based multiple-trait GWAS. The yellow marker represents 
genotyped SNP in beadchip. (b) Colocalizing effect model. Two different genetic variants in high 
linkage disequilibrium that affect different traits. In both situations, we compared the relationships 
among β1, β2, and βM. 

2. Method 

We firstly decomposed the phenotypes into several principal components scores (PCS) 
according to eigenvectors, and then treated PCS as pseudo traits to carry out multiple-trait GWAS. 
To show the improved power of PCA-based GWAS, we theoretically explored the relationship of the 
estimated effects between PCA-based multiple-trait GWAS and single-trait GWAS. In this study, two 
situations were considered as follows. 

2.1. Single Causal Variant Model 

In GWAS analysis, the standard approach usually uses a mixed linear model (MLM), in which 
polygenic effects are treated as random effects [21]. For a clearer comparison with the two association 
strategies (multi-traits GWAS and single-trait GWAS), we simplified the GWAS model into a general 
linear model (GLM) instead of a MLM (Figure 1). Here, we referred to a GLM in a QTL mapping 
study [22] (also called least-squares regression if only a SNP effect is considered in the model). X is 
the genotype matrix for a single marker, defined as 0 for the heterozygote and −1 and 1 for the two 
homozygotes. Two traits were observed (represented by y1 and y2) and included in single-marker 
GLM tests as follows: ݕଵ = ଵߚܺ + ݁ଵ (1) ݕଶ = ଶߚܺ + ݁ଶ (2) 
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Figure 1. Layout of principal component analysis (PCA)-based multiple-trait genome-wide association
studies (GWAS) versus single-trait GWAS. (a) Single causal variant model. Provided that a casual single
nucleotide polymorphism (SNP) (red spot) has an effect on trait 1 (cattle size) and trait 2 (cattle color)
with β1 and β2, the process of estimation of β1 and β2 using trait 1 and trait 2 is called single-trait GWAS.
According to components decomposition, pseudo traits are formed and the process of estimation of βM

is called PCA-based multiple-trait GWAS. The yellow marker represents genotyped SNP in beadchip.
(b) Colocalizing effect model. Two different genetic variants in high linkage disequilibrium that affect
different traits. In both situations, we compared the relationships among β1, β2, and βM.

2. Method

We firstly decomposed the phenotypes into several principal components scores (PCS) according
to eigenvectors, and then treated PCS as pseudo traits to carry out multiple-trait GWAS. To show the
improved power of PCA-based GWAS, we theoretically explored the relationship of the estimated
effects between PCA-based multiple-trait GWAS and single-trait GWAS. In this study, two situations
were considered as follows.

2.1. Single Causal Variant Model

In GWAS analysis, the standard approach usually uses a mixed linear model (MLM), in which
polygenic effects are treated as random effects [21]. For a clearer comparison with the two association
strategies (multi-traits GWAS and single-trait GWAS), we simplified the GWAS model into a general
linear model (GLM) instead of a MLM (Figure 1). Here, we referred to a GLM in a QTL mapping
study [22] (also called least-squares regression if only a SNP effect is considered in the model). X is
the genotype matrix for a single marker, defined as 0 for the heterozygote and −1 and 1 for the two
homozygotes. Two traits were observed (represented by y1 and y2) and included in single-marker
GLM tests as follows:

y1 = Xβ1 + e1 (1)

y2 = Xβ2 + e2 (2)

where β1 and β2 represent the marker’s effect on trait one and trait two, respectively. Therefore, β1

and β2 are estimated by

β̂1 =
(

XTX
)−1

XTy1 (3)

β̂2 =
(

XTX
)−1

XTy2 (4)



Animals 2018, 8, 239 4 of 15

The phenotypes followed E(y1) = 0 and E(y2) = 0 after phenotype normalization. We conducted
principal component analysis (PCA) between phenotypic traits in two steps. First, we constructed the
covariance matrix S:

S =

 (y1−y1)
T(y1−y1)

n−1
(y1−y1)

T(y2−y2)
n−1

(y2−y2)
T(y1−y1)

n−1
(y2−y2)

T(y2−y2)
n−1

 =
1

n− 1

[
yT

1 y1 yT
1 y2

yT
2 y1 yT

2 y2

]
(5)

where n is the number of phenotyped individuals. Second, we created a pseudo trait weighting of the
first eigenvector (µ):

y∗ = [y1, y2]µ (6)

Therefore, the linear regression analysis and marker’s effect estimation of β* can be written as

y∗ = Xβ∗ + e∗ (7)

β̂∗ =
(

XTX
)−1

XTy∗ (8)

Here, we compared the pseudo trait effect (β*) with two traits effects (β1 and β2) to explain the
increasing power using the pseudo trait. Since

(β̂2)
T

β̂1 = yT
2 X
(

XTX
)−1(

XTX
)−1

XTy1 =
(

XTX
)−2

yT
2 XXTy1 (9)

(β̂1)
T

β̂2 = yT
1 X
(

XTX
)−1(

XTX
)−1

XTy2 =
(

XTX
)−2

yT
1 XXTy2 (10)

(β̂1)
T
= β̂1; (β̂1)

T
= β̂1 (11)

we had
β̂1 β̂2

(
XTX

)2
= yT

2 XXTy1 < nyT
2 y1 (12)

Putting Equation (12) into Equation (5) we got

S >

(
XTX

)2

n(n− 1)

[
β1β1 β1β2

β2β1 β2β2

]
(13)

Because Sµ = λµ, where λ was the eigenvalue corresponding to µ, we had

λβ̂∗ =
(

XTX
)−1

XT [y1, y2]λµ =
(

XTX
)−1

XT [y1, y2]Sµ (14)

Putting Equation (13) into Equation (5) we got

λβ̂∗ >
(XT X)

2

n(n−1)

(
XTX

)−1XT [y1, y2]

[
β1β1 β1β2

β2β1 β2β2

]
µ

=
(XT X)

2

n(n−1)

(
XTX

)−1XT[Xβ̂1 + e1, Xβ̂2 + e2
][ β1β1 β1β2

β2β1 β2β2

]
µ

(15)

By letting B = [β̂1, β̂2] and inserting λ into right-hand side, we got

β̂∗ > µ

XT [X,1]

 β1 β2

e1 e2

 β1

β2

[β1,β2](XT X)

n(n−1)λ =
XT XBBT Bµ(XT X)

n(n−1)λ +
XTe1β1Bµ(XT X)

n(n−1)λ +
XTe2β2Bµ(XT X)

n(n−1)λ (16)
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The residual error can be considered to be independent of the marker indicator matrix X. E(e1) = 0

results in E(
XTe1β1Bµ(XT X)

n(n−1)λ ) = 0 and E
(

XTe2β2Bµ(XT X)
n(n−1)λ

)
= 0. Provided that the phenotypic correlation

coefficient approaches 1, the first eigenvalue can be considered to be

λ
cor(y1,y2)→1→ trS =

(
β2

1 + β2
2
)(

XTX
)

n(n− 1)
. (17)

Therefore, putting Equation (17) into Equation (16), we obtained the β* estimation:

β̂∗ >
XTXBBT Bµ

(
XTX

)
n(n− 1)λ

=
BBT Bµ

β2
1 + β2

2
= Bµ = β̂1w1 + β̂2w2 (18)

where w1 and w2 represent elements of the eigenvector µ.
For pleiotropic SNPs, this result indicated that the PCA-based multiple-trait model had a high

chi-square statistic for the tested SNP compared to the single-trait model.

2.2. Colocalizing Effect Model

As shown in Figure 1, we assumed that marker 1 had a genuine effect on trait 1, marker 2 had a
genuine effect on trait 2, and both were located in the same gene, or within a short distance with a
strong linkage disequilibrium (LD). The LD level of the two markers was rLD = 1

n X1
TX2, where X1

and X2 are the normalized genotypes, with E(X1) = E(X2) = 0 and Var (X1) = Var (X2) = 1. Similarly, the
effects of marker 1 on trait one, marker 2 on trait two, and marker 1 on a pseudo trait are β1, β2, and
β*, respectively, as in Equations (3)–(5).

Since
(β̂2)

T
β̂1 = yT

2 X2

(
X2

TX2

)−1(
X1

TX1

)−1
X1

Ty1 = n−2r−1yT
2 y1 (19)

we had
β̂1 β̂2nr < y1

Ty2 (20)

S >
nr

n− 1

[
yT

1 y1 yT
1 y2

yT
2 y1 yT

2 y2

]
(21)

Next, we performed a derivation to estimate β* as in the single causal variant model—Equations
(13)–(16). Therefore, we had

β̂∗ >
n2rBBT Bµ

(n− 1)λ
= r(β̂1w1 + β̂2w2) (22)

2.3. Simulated Data

We simulated phenotypes based on real data that included 1000 samples and 120,710 SNPs on
five chromosomes. The principle of phenotypic simulation is as follows:

y = ∑
i

Xiαi + g + ε

where g ∼ N
(

0, Gσ2
g

)
for which σ2

g is the additive genetic variance and G is the genomic relationship
matrix. αi is the ith quantitative trait nucleotide (QTN) effect followed by a gamma distribution with
a shape parameter of 0.4 and scale parameter 1.66. The polygenic effects vector g was formed by

g = (G
1
2 σg)

T
τ, with τ following a normal distribution. The total additive genetic variance can be

written as σ2
T = ∑ σ2

i + σ2
g , and the residual error as ε ∼ N(0, (1−h2)σ2

T
h2 ). For the pleiotropic traits

simulations, we assumed that each two traits shared 10 common QTNs that contributed 50% of the
total genetic variance (σ2

T).
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When simulating low heritability traits, we set the parameters as h2 = 0.05 and r(e1,e2) = 0. When
simulating environmental correlation traits, we set the parameters as h2 = 0.5 and r(e1,e2) = 0.25.

2.4. Real Data

In the GWAS analysis, a total of 1141 Simmental beef cattle born between 2008 and 2014 composed
the experimental population. All cattle were from more than 30 families and were fattened for
8–12 months in a similar environment with the same feed, and slaughtered following the Standard
Wholesale Cuts of American Beef guidelines. The phenotypes of three meat cut traits, including the
clod weight (CW), fore shank weight (FSW), and heel muscle shank weight (HMSW), were collected
during slaughtering. DNA was extracted from the blood samples and genotyped using an Illumina
BovineHD BeadChip (Illumina, CA, USA).

Quality control was conducted as follows: (1) Individuals with a call rate < 0.95 and SNPs with a
call rate < 0.9 were removed, (2) minor allele frequency < 0.05, and (3) p-Value of Hardy–Weinberg
equilibrium < 10−6. Finally, a total of 1111 individuals and 608,761 SNPs were left for subsequent
analysis. In this study, all phenotypes followed normal distribution and GWAS analyses were
implemented using a mixed linear model (MLM). PCA was performed by SAS (Statistical Analysis
System) software version 9.4 (SAS Institute Inc., Cary, NC, USA) and genetic parameter estimations
were conducted using GCTA (Genome-wide Complex Trait Analysis) [23].

2.5. Power Examination and False Discovery Rate (FDR) Examination

Based on the simulated phenotypes, the power and FDR were calculated under different
significant thresholds using a single-trait model and PCA-based multiple-trait model. Power was
evaluated as the proportion of QTNs that passed the significance threshold. FDR was defined as the
proportion of the non-QTN markers among the identified markers that exceeded the threshold, where
the non-QTN markers were markers that were not located 10 Kb upstream or downstream of the
QTNs. A total of 100 replicates were conducted for each group, and the average of the 100 replicates
was reported.

3. Results

3.1. Simulated Data

We first simulated one set of pleiotropic traits with 10 shared QTNs and h2 = 0.5. Their positions
and effect sizes are listed in Table 1. Then, pleiotropic variants were explored using both a single-trait
model and a PCA-based multiple-trait model. The −log(p) and effect standard error (Se Eff) for each
QTN are shown in Table 1. Compared with single-trait GWAS, PCA-based multiple-trait GWAS
identified additional QTNs. For example, the −log(p) of the chr1:132347489 locus in PCA-based
GWAS was 6.16, and the corresponding values in the two single-trait GWASs was 4.57 and 5.85. If the
significant threshold was p < 10−6, this locus could be found using PCA-based GWAS, rather than
single-trait GWAS.
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Table 1. Positions, effects, and p-Values of ten quantitative trait nucleotides (QTNs) based on simulated data without environmental correlation.

Chr a Pos (bp) Trait 1 eff Trait 2 eff
Single-Trait GWAS Multiple-Trait GWAS

−log(p) t1 se eff −log(p) t2 se eff −log(p) mt se eff

1 5167453 1.18 1.66 3.63 0.06 1.87 0.09 3.19 0.01
1 126001364 1.34 1.93 4.38 0.03 3.45 0.04 4.65 0.01
1 128776905 1.83 2.51 1.13 0.13 1.17 0.18 1.33 0.03
1 132347489 1.21 1.91 4.57 0.13 5.85 0.18 6.16 0.03
1 135921964 0.89 1.43 1.73 0.06 4.70 0.08 3.53 0.01
4 28841329 0.93 1.47 1.10 0.04 3.68 0.05 2.54 0.01
4 65810279 1.82 2.38 5.24 0.11 5.22 0.16 6.24 0.02
4 80902019 3.41 5.71 17.55 0.06 30.18 0.08 28.08 0.01
4 115266053 2.20 3.94 10.05 0.06 16.65 0.08 15.70 0.01
5 6270944 0.84 0.94 2.48 0.04 0.87 0.05 1.87 0.01

Note: a One of the simulated data results. Pleiotropic traits were simulated based on 10 QTNs. If the significant threshold was a p-Value < 10−6, only two QTNs (chr4: 80902019 and chr4:
115266053) could be identified based on single-trait GWAS results. Meanwhile, four QTNs (chr1: 132347489, chr4: 65810279, chr4: 80902019, and chr4: 115266053) could be identified based
on PCA-based GWAS results. Shaded QTNs are causal variants only found in PCA-based GWAS. GWAS, Genome-Wide Association Study. Chr, Chromosome. Pos, Position. Eff, effective.
Se eff, Standard error of estimated effects.
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To facilitate the comparison of the two association strategies, we compared the power and FDR
between them in three situations: Medium heritability (h2 = 0.5), low heritability (h2 = 0.05), and
environmental correlation (h2 = 0.5, re = 0.25). Table 2 shows phenotypic variance and heritability
explained by each principal component (PC) in each scenario. The first dimension (PC1) explained
more heritability (h2 = 0.534, 0.052, and 0.580) compared with the second dimension (h2 = 0.271,
0.035, and 0.130). As shown in Figure 2a, for medium heritability traits, the power of detection
of pleiotropic QTNs in PCA-based GWAS was higher than in single-trait GWAS under different
significance thresholds. Additionally, the FDR in multiple-trait GWAS was lower than that in
single-trait GWAS (Figure 2d). As expected, the power and FDR decreased with the threshold level
becoming stringent. For low heritability traits and environmental correlation traits, we obtained similar
results (Figure 2b–f). Overall, PCA-based multiple-trait GWAS outperformed single-trait GWAS in the
detection of pleiotropic QTNs.

Table 2. Phenotypic variance and heritability explained by each principle component.

Scenario Heritability Environmental
Correlation

PC1 PC2

Phenotypic
Variance (SD a)

Heritability
Explained (SD)

Phenotypic
Variance (SD)

Heritability
Explained (SD)

1 0.5 0 75.98 (25.12) 0.534 (0.04) 14.96 (4.34) 0.271 (0.03)
2 0.05 0 56.78 (17.22) 0.052 (0.01) 39.81 (10.23) 0.035 (0.01)
3 0.5 0.25 89.12 (30.09) 0.580 (0.04) 9.80 (2.11) 0.130 (0.07)

Note: a SD: Standard Deviation.
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Figure 2. Comparison of power and false discovery rate (FDR) between multiple-trait GWAS and
single-trait GWAS. We simulated three situations including medium heritability (a,d), low heritability
(b,e), and environmental correlation (c,f). (a–c) Power under different significant levels. (d–f) FDR
under different significant levels.

For further investigation, we compared the performance of the two models for different minor
allele frequencies (MAFs). In each set of simulations, we first randomly simulated pairwise traits by
the pleiotropic QTNs regardless of MAF, and then set a significance threshold of the GWAS results
(top 0.04% of the total tested SNPs) to define significant SNPs. The power for each SNP was defined as
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whether there were significant SNPs harbored by this SNP (1 for harbored, 0 for not harbored). Lastly,
based on the power and MAF for each QTN, we fitted trendlines for the two strategies (Figure 3).
Overall, PCA-based GWAS outperformed single-trait GWAS. When the MAF of pleiotropic QTNs was
less than 0.2, the power difference between them decreased with the reduction of MAF, and when the
MAF was greater than 0.2, the differences were maximized and sustained. Since it is hard to define the
FDR for each SNP, the relationship between FDR and MAF was not calculated.
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In the colocalizing effect model, to prove Equation (21), we explored the relationship between the
capacity of QTL mapping and linkage disequilibrium (LD) of pleiotropic QTNs. Because the value of
power/FDR reflects the statistical power of the GWAS model, we found that the capacity of detection
was reduced with decreasing LD of pleiotropic QTNs (Figure 4). For pleiotropic QTNs with r = 0.7,
PCA-based GWAS had a similar power/FDR to single-trait GWAS.
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in the colocalizing effect model.

3.2. Real Data

Three meat cut traits, clod weight (CW), fore shank weight (FSW), and heel muscle shank weight
(HMSW), are found in presoma muscles and reflect presoma development in cattle. The heritabilities
of the three traits ranged from 0.56 to 0.62, and all three traits had a high phenotypic correlation from
0.76 to 0.82, and genetic correlation from 0.90 to 0.94. The details of the descriptive statistics of the
three traits are shown in Table 3.

Table 3. Statistical summary and genetic parameters of three phenotypes.

Trait Number of Samples Mean (Kg) (SD) Heritability CW FSW HMSW

Clod weight (CW) 1111 5.06 (0.88) 0.57 1 0.82 a 0.79
Fore shank weight (FSW) 1111 17.03 (3.15) 0.56 0.90 b 1 0.76

Heel muscle shank
weight (HMSW) 1111 1.07 (0.19) 0.62 0.93 0.94 1

Note: a phenotype correlation. b genetic correlation.

GWAS analyses for the three traits were conducted using the single-trait GWAS and PCA-based
multiple-trait GWAS strategies (Figure 5). The genome-wide significance threshold and suggestive
significance threshold were set at 10−7 and 10−5, respectively. For CW, only one significant SNP
(rs134464739, p = 3.64 × 10−10) was detected on chromosome 4, and no SNPs exceeded the suggestive
significance threshold. For FSW, two significant SNPs (rs134464739 and rs134385681, p >10−5), one of
which was also identified in CW, were detected on chromosomes 1 and 4, respectively. For HMSW,
a total of 24 significant SNPs were found (10−7 > p >10−5) on chromosomes 5, 6, and 15. In an
approximately 3.5 Mb region (chr6:38550000-42180000), 22 SNPs were associated with the HMSW
phenotype, and the most significant SNP was rs137121021, with a p-Value of 1.6 × 10−7.
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the pink line.

In the PCA-based GWAS analysis, the three pseudo traits were combined as new phenotypes (p1,
p2, and p3), which explained 86.0%, 8.2%, and 5.8% of the total variance, respectively (Table S1). For the
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p1 GWAS analysis, no significant SNPs were identified. For the p2 GWAS analysis, the most significant
SNP (rs134464739, p = 1.39 × 10−11) was also found in CW- and FSW-GWASs. Another four associated
SNPs, which exceeded the suggestive significance threshold, were located on chromosomes 9 and 14.
For the p3 GWAS, in the region (chr6:38550000-42180000) where the HMSW trait was associated with
22 SNPs, a total of 31 significant SNPs were found. Another significant SNP, rs134637644 (3.42 × 10−6),
on chromosome 5 was also detected by HMSW. Table S2 lists all significant SNPs identified using
both methods.

4. Discussion

The conception of PCA-based QTL mapping was first introduced by Weller in 1996 [13], in
which they found canonical variables can represent original traits effectively. Later on, Mangin
et al. (1998) [24] proved that multi-trait analysis was more powerful than single-trait analysis for
detecting pleiotropic QTL in QTL mapping analysis. In 2008, Lambertus et al. incorporated heritability
parameters into a PCA model, which is a powerful association test model. In 2014, Hugues et al. [15]
proposed a combined PCA association model that provides greater flexibility and robustness than other
PCA methods. In terms of the power of detecting causal SNPs, most multivariate methods, including
the PCA-based method, had similar statistical power [25]. In this study, we evaluated potential
improvements to this approach using a broad set of data, both synthetic and real. Theoretically, we
derived the relationship between multiple-trait GWAS and single-trait GWAS in two pleiotropy models,
as shown in Equations (17) and (21). In Equation (17), we assumed β1 ≈ β2 and ry1,y2 > 0.7, resulting
in β̂∗ being larger than β̂1 and β̂2 (Figure S1). We admitted that a simplified general linear model
(GLM) might have bias in comparison with a mixed linear model (MLM), and in Equation (16) there
should be cov(y1, y2)→ h2 instead of cov(y1, y2)→ 1 when the environmental correlation equals 0.
However, GLM is approximately equivalent to MLM when analyzing unrelated individuals, and
traits with genetic correlation show high phenotypic correlation, indicating that the environmental
correlation contributes more. In a pleiotropic trait simulation involving medium heritability, low
heritability, and environmental correlation, each pairwise trait shared 10 common QTNs that followed
a gamma distribution. We found that multiple-trait GWAS outperformed single-trait GWAS in all three
situations, which provides some clues that this approach can be applied to a range of pleiotropic traits.
In livestock, detection of pleiotropic QTNs has facilitated the biological understanding of commercial
traits, particularly in highly related traits, such as birth weight and weaning weight, as well as milk fat
yield and milk protein yield. Additionally, due to taxonomic and binary traits in practical breeding
programs, we should further optimize the PCA-based multiple-trait model to combine quantitative
traits, taxonomic traits, and binary traits.

For the minor allele frequency (MAF), our results indicated that PCA-based GWAS has significant
advantages in pleiotropic QTNs detection when the MAF of QTN is greater than 0.2, while the power
improvement gradually reduced when the MAF was less than 0.2. Specifically, for uncommon and rare
alleles, the PCA-based strategy had little advantage over the single-trait strategy. In the colocalizing
effect model, the estimated effect of a pseudo trait is proportional to the level of linkage disequilibrium
(LD) (Equation (21)), and the simulation data supported this view (Figure 4). Under the condition that
two traits shared pleiotropic QTNs with r > 0.7, PCA-based multiple-trait GWAS was more powerful
than single-trait GWAS in detecting QTL regions (Figure 4). Assuming that trait 1 had pleiotropic
QTNs with trait 2, it was hard to map to this region using single-trait GWAS because of the low LD
between the causal variants and genotyped SNP in the beadchip array. However, when there was a
high LD between trait 2’s causal variant and the nearby SNP genotyped, this region could potentially
be detected in the PCA-based multiple-trait GWAS method after the addition of trait 2.

On the real data, we detected 46 SNPs that were significantly associated with the three traits
(Tables S2 and S3). A total of 15 significant SNPs was identified both in single-trait GWAS and
multiple-trait GWAS. There were 22 SNPs found only in multiple-trait GWAS, and 9 SNPs found
only in single-trait GWAS. Among them, 12 and 18 genes were annotated in multiple-trait GWAS and
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single-trait GWAS, respectively, which are growth-related genes or muscle development-related genes,
such as NCAPG [19,26], LAP3 [27,28], KCNIP4 [29], and LCORL [26,30]. In contrast, six additional
genes were found in single-trait GWAS, including FBXO45, SLIT2, SMCO1, TCTEX1D2, UBXN7, and
WDR53, which had not been previously reported in growth-associated studies. Only one additional
gene, MCHR2, was identified in multiple-trait GWAS. Although single-trait GWAS has annotated
more genes, it’s result may not be reliable. For example, rs134385681 is a prominent SNP found only in
FSW-GWAS which is located in a gene-enriched region, so is likely to be a false positive based on gene
annotation. However, MCHR2 has been reported to be associated with human obesity [31] and a cattle
growth trait [32], making it a plausible candidate pleiotropic gene that controls presoma traits.

5. Conclusions

In this study, a PCA-based multiple-trait GWAS model proved to be effective in exploring
pleiotropic QTNs in theory and practice. Using this method, we found a plausible candidate gene,
MCHR2, which is associated with presoma muscle development in cattle.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-2615/8/12/239/s1,
Figure S1: Summation of eigenvectors at different correlation levels based on summated data. Table S1: Component
matrix and total variance explained by each principal component. Table S2: Significant SNPs and candidate genes
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three traits in PCA-based multiple-trait GWAS.

Author Contributions: J.L. and Y.C. conceived and designed the experiments. W.Z. derived the formulas and
wrote the manuscript. Y.C. and X.G. revised the manuscript. X.S. and H.G. performed the analysis. B.Z. and Z.W.
collected the experimental database. L.X., L.Z., and X.G. participated in the data collection and dataset analysis.
All authors read and approved the final manuscript.

Funding: This work was funded in part by the National Natural Science Foundation of China (31402039, 31372294),
National Beef Cattle Industrial Technology System (CARS-37), Chinese Academy of Agricultural Sciences of
Technology Innovation Project (CAAS-XTCX2016010, CAAS-ZDXT2018006 and ASTIP-IAS03), the National High
Technology Research and Development Program of China (863 Program 2013AA102505-4), and China Scholarship
Council (CSC).

Acknowledgments: We are grateful to all scientists and staff of the National Beef Cattle Industrial Technology
System in China for supporting the work.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References

1. Yang, J.; Benyamin, B.; McEvoy, B.P.; Gordon, S.; Henders, A.K.; Nyholt, D.R.; Madden, P.A.; Heath, A.C.;
Martin, N.G.; Montgomery, G.W.; et al. Common SNPs explain a large proportion of the heritability for
human height. Nat. Genet. 2010, 42, 565–569. [CrossRef] [PubMed]

2. Visscher, P.M.; Wray, N.R.; Zhang, Q.; Sklar, P.; McCarthy, M.I.; Brown, M.A.; Yang, J. 10 Years of GWAS
Discovery: Biology, Function, and Translation. Am. J. Hum. Genet. 2017, 101, 5–22. [CrossRef] [PubMed]

3. Solovieff, N.; Cotsapas, C.; Lee, P.H.; Purcell, S.M.; Smoller, J.W. Pleiotropy in complex traits: challenges and
strategies. Nat. Rev. Genet. 2013, 14, 483–495. [CrossRef] [PubMed]

4. Sivakumaran, S.; Agakov, F.; Theodoratou, E.; Prendergast, J.G.; Zgaga, L.; Manolio, T.; Rudan, I.;
McKeigue, P.; Wilson, J.F.; Campbell, H. Abundant pleiotropy in human complex diseases and traits.
Am. J. Hum. Genet. 2011, 89, 607–618. [CrossRef] [PubMed]

5. Franke, A.; McGovern, D.P.; Barrett, J.C. Genome-wide meta-analysis increases to 71 the number of confirmed
Crohn’s disease susceptibility loci. Nat. Genet. 2010, 42, 1118–1125. [CrossRef] [PubMed]

6. Iles, M.M.; Law, M.H.; Stacey, S.N. A variant in FTO shows association with melanoma risk not due to BMI.
Nat. Genet. 2013, 45, 428–432. [CrossRef] [PubMed]

7. Teixeira-Pinto, A.; Normand, S.L. Correlated bivariate continuous and binary outcomes: Issues and
applications. Stat. Med. 2009, 28, 1753–1773. [CrossRef]

8. Korte, A.; Vilhjalmsson, B.J.; Segura, A.; Long, Q.; Nordborg, M. A mixed-model approach for genome-wide
association studies of correlated traits in structured populations. Nat. Genet. 2012, 44, 1066–1071. [CrossRef]

http://www.mdpi.com/2076-2615/8/12/239/s1
http://dx.doi.org/10.1038/ng.608
http://www.ncbi.nlm.nih.gov/pubmed/20562875
http://dx.doi.org/10.1016/j.ajhg.2017.06.005
http://www.ncbi.nlm.nih.gov/pubmed/28686856
http://dx.doi.org/10.1038/nrg3461
http://www.ncbi.nlm.nih.gov/pubmed/23752797
http://dx.doi.org/10.1016/j.ajhg.2011.10.004
http://www.ncbi.nlm.nih.gov/pubmed/22077970
http://dx.doi.org/10.1038/ng.717
http://www.ncbi.nlm.nih.gov/pubmed/21102463
http://dx.doi.org/10.1038/ng.2571
http://www.ncbi.nlm.nih.gov/pubmed/23455637
http://dx.doi.org/10.1002/sim.3588
http://dx.doi.org/10.1038/ng.2376


Animals 2018, 8, 239 14 of 15

9. Zhou, X.; Stephens, M. Efficient multivariate linear mixed model algorithms for genome-wide association
studies. Nat. Methods 2014, 11, 407–409. [CrossRef]

10. Furlotte, N.A.; Eskin, E. Efficient Multiple-Trait Association and Estimation of Genetic Correlation Using the
Matrix-Variate Linear Mixed Model. Genetics 2015, 200, 59–68. [CrossRef] [PubMed]

11. Li, C.; Yang, C.; Gelernter, J.; Zhao, H. Improving genetic risk prediction by leveraging pleiotropy. Hum. Genet.
2014, 133, 639–650. [CrossRef] [PubMed]

12. Shriner, D. Moving toward System Genetics through Multiple Trait Analysis in Genome-Wide Association
Studies. Front. Genet. 2012, 3, 1. [CrossRef] [PubMed]

13. Weller, J.I.; Wiggans, G.R.; Vanraden, P.M.; Ron, M. Application of a canonical transformation to detection of
quantitative trait loci with the aid of genetic markers in a multi-trait experiment. Theor. Appl. Genet. 1996, 92,
998–1002. [CrossRef] [PubMed]

14. Klei, L.; Luca, D.; Devlin, B.; Roeder, K. Pleiotropy and principal components of heritability combine to
increase power for association analysis. Genet. Epidemiol. 2008, 32, 9–19. [CrossRef] [PubMed]

15. Aschard, H.; Vilhjalmsson, B.J.; Greliche, N.; Morange, P.E.; Tregouet, D.A.; Kraft, P. Maximizing the Power
of Principal-Component Analysis of Correlated Phenotypes in Genome-wide Association Studies. Am. J.
Hum. Genet. 2014, 94, 662–676. [CrossRef] [PubMed]

16. Bensen, J.T.; Lange, L.A.; Langefeld, C.D.; Chang, B.L.; Bleecker, E.R.; Meyers, D.A.; Xu, J. Exploring
pleiotropy using principal components. BMC Genet. 2003, 4, S53. [CrossRef] [PubMed]

17. Jiang, L.; Liu, J.; Sun, D.; Ma, P.; Ding, X.; Yu, Y.; Zhang, Q. Genome wide association studies for milk
production traits in Chinese Holstein population. PLoS One 2010, 5, e13661. [CrossRef] [PubMed]

18. Rosati, A.; Van Vleck, L.D. Estimation of genetic parameters for milk, fat, protein and mozzarella cheese
production for the Italian river buffalo Bubalus bubalis population. Livest. Prod. Sci. 2002, 74, 185–190.
[CrossRef]

19. Wengang, Z.; Lingyang, X.; Huijiang, G.; Yang, W.; Xue, G.; Lupei, Z.; Bo, Z.; Yuxin, S.; Jinshan, B.;
Junya, L.; et al. Detection of candidate genes for growth and carcass traits using genome-wide association
strategy in Chinese Simmental beef cattle. Anim. Prod. Sci. 2018, 58, 224–233.

20. Große-Brinkhaus, C.; Storck, L.C.; Frieden, L.; Neuhoff, C.; Schellander, K.; Looft, C.; Tholen, E. Genome-wide
association analyses for boar taint components and testicular traits revealed regions having pleiotropic
effects. BMC Genet. 2015, 16, 36. [CrossRef]

21. Yu, J.; Pressoir, G.; Briggs, W.H.; Vroh, B.I.; Yamasaki, M.; Doebley, J.F.; McMullen, M.D.; Gaut, B.S.;
Nielsen, D.M.; Holland, J.B.; et al. A unified mixed-model method for association mapping that accounts for
multiple levels of relatedness. Nat. Genet. 2016, 38, 203. [CrossRef] [PubMed]

22. Manly, K.F.; Olson, J.M. Overview of QTL mapping software and introduction to map manager QT.
Mamm. Genome. 1999, 10, 327–334. [CrossRef] [PubMed]

23. Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A tool for genome-wide complex trait analysis. Am.
J. Hum. Genet. 2011, 88, 76–82. [CrossRef] [PubMed]

24. Mangin, B.; Thoquet, P.; Grimsley, N. Pleiotropic QTL analysis. Biometrics 1998, 54, 88–99. [CrossRef]
25. Porter, H.F.; O’Reilly, P.F. Multivariate simulation framework reveals performance of multi-trait GWAS

methods. Sci. Rep. 2017, 7, 38837. [CrossRef]
26. Lindholm-Perry, A.K.; Kuehn, L.A.; Oliver, W.T.; Sexten, A.K.; Miles, J.R.; Rempel, L.A.; Cushman, R.A.;

Freetly, H.C. Adipose and Muscle Tissue Gene Expression of Two Genes NCAPG and LCORL Located in a
Chromosomal Region Associated with Cattle Feed Intake and Gain. PLoS One 2013, 8, e80882. [CrossRef]

27. Liu, R.; Sun, Y.; Zhao, G.; Wang, F.; Wu, D.; Zheng, M.; Chen, J.; Zhang, L.; Hu, Y.; Wen, J. Genome-Wide
Association Study Identifies Loci and Candidate Genes for Body Composition and Meat Quality Traits in
Beijing-You Chickens. PLoS One 2013, 8, e61172. [CrossRef]

28. Xu, L.; Bickhart, D.M.; Cole, J.B.; Schroeder, S.G.; Song, J.; Tassell, C.P.; Sonstegard, T.S.; Liu, G.E. Genomic
Signatures Reveal New Evidences for Selection of Important Traits in Domestic Cattle. Mol. Biol. Evol. 2015,
32, 711–725. [CrossRef]

29. Jin, C.F.; Chen, Y.J.; Yang, Z.Q.; Shi, K.; Chen, C.K. A genome-wide association study of growth trait-related
single nucleotide polymorphisms in Chinese Yancheng chickens. Genet. Mol. Res. 2015, 14, 15783–15792.
[CrossRef]

http://dx.doi.org/10.1038/nmeth.2848
http://dx.doi.org/10.1534/genetics.114.171447
http://www.ncbi.nlm.nih.gov/pubmed/25724382
http://dx.doi.org/10.1007/s00439-013-1401-5
http://www.ncbi.nlm.nih.gov/pubmed/24337655
http://dx.doi.org/10.3389/fgene.2012.00001
http://www.ncbi.nlm.nih.gov/pubmed/22303408
http://dx.doi.org/10.1007/BF00224040
http://www.ncbi.nlm.nih.gov/pubmed/24166627
http://dx.doi.org/10.1002/gepi.20257
http://www.ncbi.nlm.nih.gov/pubmed/17922480
http://dx.doi.org/10.1016/j.ajhg.2014.03.016
http://www.ncbi.nlm.nih.gov/pubmed/24746957
http://dx.doi.org/10.1186/1471-2156-4-S1-S53
http://www.ncbi.nlm.nih.gov/pubmed/14975121
http://dx.doi.org/10.1371/journal.pone.0013661
http://www.ncbi.nlm.nih.gov/pubmed/21048968
http://dx.doi.org/10.1016/S0301-6226(01)00293-7
http://dx.doi.org/10.1186/s12863-015-0194-z
http://dx.doi.org/10.1038/ng1702
http://www.ncbi.nlm.nih.gov/pubmed/16380716
http://dx.doi.org/10.1007/s003359900997
http://www.ncbi.nlm.nih.gov/pubmed/10087288
http://dx.doi.org/10.1016/j.ajhg.2010.11.011
http://www.ncbi.nlm.nih.gov/pubmed/21167468
http://dx.doi.org/10.2307/2533998
http://dx.doi.org/10.1038/srep38837
http://dx.doi.org/10.1371/journal.pone.0080882
http://dx.doi.org/10.1371/journal.pone.0061172
http://dx.doi.org/10.1093/molbev/msu333
http://dx.doi.org/10.4238/2015.December.1.30


Animals 2018, 8, 239 15 of 15

30. Al-Mamun, H.A.; Kwan, P.; Clark, S.A.; Ferdosi, M.H.; Tellam, R.; Gondro, C. Genome-wide association
study of body weight in Australian Merino sheep reveals an orthologous region on OAR6 to human and
bovine genomic regions affecting height and weight. Genet. Sel. Evol. 2015, 47, 66. [CrossRef] [PubMed]

31. Meyre, D.; Lecoeur, C.; Delplanque, J.; Francke, S.; Vatin, V.; Durand, E.; Weill, J.; Dina, C.; Froguel, P.
A genome-wide scan for childhood obesity-associated traits in French families shows significant linkage on
chromosome 6q22.31-q23.2. Diabetes 2004, 53, 803–811. [CrossRef] [PubMed]
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