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Abstract: The aim of this in vitro study was to evaluate the alterations of a titanium surface after
treatment with two different types of ultrasonic tips: conventional steel versus an innovative copper
alloy silver-plated one. Twenty smooth-surface, grade IV unalloyed titanium discs were divided
into two groups. The discs were ultrasonically instrumented and the scaler was connected with a
loading machine. The surface morphology was examined using scanning electron microscopy (SEM)
and fractal analysis of lacunarity was calculated to highlight the alteration of the surface using the
two different tips. The SEM analysis showed different degrees of surface roughness between the
two types of scaler tips. Moreover, these observations demonstrated that the new tip showed fewer
irregularities on the disc’s surface than the conventional steel tip. The statistical and fractal analysis
showed a statistically significant difference between the two groups. Surface alterations of titanium
induced by the conventional ultrasonic tips were much greater than those made by copper alloy
silver plated tips. The presented results suggest that the use of this new ultrasonic tip may reduce the
alterations on the implant surface during its use in dental practice.
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1. Introduction

The presence of bacteria on the implant surface may cause peri-implant mucositis (a reversible
inflammation of the peri-implant tissues) or periimplantitis (a non-reversible process which causes
bone loss) [1,2]. The bacteria can adhere to the titanium irregularities by establishing an inflammatory
state, leading to loss of bone and thus of osseointegration. Over the years, different surface treatments
have been studied to reduce or eliminate this phenomenon [3]. Several authors have shown that a
rough surface is more attractive for cell growth and, in particular, for osteoblast growth [3,4]. On the
other hand, the surface roughness seems to also be attractive for bacteria and increases bacterial
plaque accumulation on the implant surface. For this purpose, some surface treatments with an
extremely tightly controlled roughness have been developed and were demonstrated to have a good
attractiveness for the cells but less for bacterial colonization, reducing the risk of peri-implantitis and
contamination of the implant surface [5,6].The treatment for peri-implantitis includes decontamination
of the surface exposed to biofilm in order to eliminate inflammation and to make the exposed
surface biocompatible with re-osseointegration as the ultimate objective [7–10]. In patients with
implant-supported prostheses, good oral hygiene with a correct mechanical instrumentation is

Materials 2018, 11, 2345; doi:10.3390/ma11122345 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-4444-3343
https://orcid.org/0000-0003-4110-0772
https://orcid.org/0000-0002-0265-8709
http://www.mdpi.com/1996-1944/11/12/2345?type=check_update&version=1
http://dx.doi.org/10.3390/ma11122345
http://www.mdpi.com/journal/materials


Materials 2018, 11, 2345 2 of 10

mandatory to maintain a smooth surface favouring the re-establishment adhesion of soft tissues [11–15].
Several authors have investigated the tools to clean and smooth the implant surface without modifying
its topography. Metallic and non-metallic instruments are used for the hygiene procedures of dental
implants. In fact, conventional instruments such as sonic scalers, ultrasonic scalers, and piezoelectric
and magnetostrictive tips are widely used for the treatment of periodontitis and peri-implantitis.
It has been demonstrated that the conventional mechanical instruments smooth the irregular surface
of a diseased root, but they roughen the surface of a titanium implant [16–19]. To overcome the
limitations of the metal devices, several alternative methods have been developed for the maintenance
of dental implants, including plastic curettes, air-flow, rubber cups, and an ultrasonic system [20–22].
It has been demonstrated that the latter instruments cause little or no damage to smooth implant
surfaces [23]. Moreover, abrasive air tools, such as airflow, are the devices of choice when it is required
to maintain the integrity of the implant surface features [23]. Metal tools and cutters are recommended
for smoothing the rough surface. However, some studies have highlighted their weaknesses, including
the effects of inadequate fragility or toxicity of their residues [24,25]. Metal scalers produce defects in
titanium implant surfaces; load and power are important factors in the damage caused. In a study
conducted by Meschenmoser et al. in 1996, it was shown that the steel curette and the ultrasonic
system were unsuitable for cleaning titanium implants [26]. On the other hand, plastic-coated scaler
probes cause minimal damage to implant surfaces with a good polishing action but can leave plastic
deposits behind on the implant surface [27]. Different methods of analysis were used to evaluate
superficial topographic changes. In this sense, lacunarity analysis has been shown to be able to quantify
distributions applied to data of any dimensionality and to provide information on structural changes
within complex spatial structures [28].

The purpose of this study was to evaluate, by lacunarity analysis, the titanium surface alterations
after treatment with two different types of ultrasonic tips: conventional steel and an innovative copper
alloy silver-coated one.

2. Materials and Methods

The present study evaluated the following ultrasonic scaler tips: a conventional metal tip (EMS
Electro Medical Sistem SA, Nyon, Switzerland) made of stainless steel and an Tip (B & L Biotech USA,
Inc., Bala Cynwyd, PA, USA) consisting of a copper alloy core and an outer coating of silver.

Twenty smooth-surface, grade IV unalloyed titanium discs, ISO 583/2 (GEASS s.r.l., Udine,
Italy) with a diameter of 10 mm and height of 2.5 mm were divided into two groups (ten discs per
group): Group A (conventional steel tips) and Group B (ultrasonic copper alloy silver plated tips)
(Figure 1). After the surface preparation, these discs were washed in surfactant solution, treated with
distilled water, and sterilized by gamma irradiation. The procedures for the evaluation of surface
alteration were performed following a previous study [26]. Both types of tips were included in Mectron
ultrasonic scalars (Mectron s.p.a., Carasco, Genova, Italy), fitted with a fixed angle of 45 degrees, using
a custom-made swinging arm integrated with the recording equipment. The discs were in turn blocked
in a container equipped with a safety valve for the custom-made piezoelectric water irrigation hand
piece anchored stationary below the swinging arm. To obtain a constant calibration of the force, time,
cycles, and the application tip’s angle on the titanium discs, a LR30K loading cell machine (Lloyd
Instruments, part of AMTEK Test & Calibration Instruments, West Sussex, UK) with a primary code
generated ad hoc for this study, was used. The primary code established that there were continuous
cycles of the oscillating arm with an excursion fixed at 3 mm and with a speed of 1 mm/s, equivalent
to that normally used in manual operation of the ultrasonic scalers. The cycle was completed in 20 s
for each disc sample used.

The power of the scaler tips was set to intermediate according to the manufacturer’s advice.
The surface morphology of each Ti disc was examined using a Scanning electron microscopy (SEM)
(Carl Zeiss Evo 50, Oberkochen, Germany).
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The discs were metallized by a gold-sputter Emitech K550 (Emitech Ltd., Ashford, UK) and
subsequently inserted into the sample-holder for SEM analysis. The obtained images were then
analysed using ImageJ software 1.48f 3D (Wayne Rasband, National Institutes of Health NIH, Bethesda,
MD, USA), in order to highlight the incongruity of the surface in the individual discs and reconstruct a
3D faithful image of the same for further data collection for statistical analysis.

Statistical analysis was performed through one-way analysis of variance (ANOVA) and post hoc
Scheffé test. All values were considered significant when p < 0.05. The fractal analysis of lacunarity
(“VISUAL TEXTURE”) was performed by calculating the variation of the pixels’ number in each
ε-sized box (CV) of a standard grid placed on SEM images and analysed through box counting overlap
using the FracLac 2.5 Release 1d plugins of ImageJ 1.48f. The lacunarity was calculated from the
standard deviation, σ, and mean, µ, for pixels per box (CV2). The value was collected for each ε in
each series of grid sizes in a set of grid orientations. Briefly, the lacunarity count is based on variation
in pixel density at different box sizes in fixed scans and sliding scans.

In order to perform these analyses the following algorithms were used:

Λε = (σ|µ)2

Λε is the visual texture scale (heterogeneity); (σ|µ) is the coefficient of variation (CV).

Σ
[(

A−1

Σ A−1
N

)
− 1

]
N

2

where A = is the pore factor; N = the number of grid locations.
Lacunarity analysis was used as a multiscale method for describing patterns of spatial dispersion.

It can be used with both binary and quantitative data in one, two, and three dimensions. Although
originally developed for fractal objects, the method is more general and can be readily used to describe
nonfractal and multifractal patterns, such as the roughness evaluation of SEM images. The lacunarity
analysis was based on studies of Plotnick [27], Mandelbrot [29], and Voss [30], which proved
applicability of lacunarity analysis on various machining surfaces [31–33]. Group Tests have been
performed to analyse the differences between groups. Student’s t-test for unpaired data was performed
according to the method of the SPSS software (version 25, IBM, New Orchard Road Armonk, NY, USA).
Levene’s Test was applied to verify that the difference is significant at the sample level, so as to extend
the considerations to the entire population of the test samples. An independent statistician reviewed
the methodology and statistical analysis.
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Figure 1. Photograph of conventional steel tip and copper alloy silver-plated tip on grade IV unalloyed
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3. Results

The SEM images were randomly taken in 5 different areas and analysed. The results demonstrated
different degrees of surface roughness. In fact, the analysed surfaces showed clear differences between
the two tips in terms of surface morphology alteration. (Figure 2A,B and Figure 3A,B) In particular,
it emerged that the discs instrumented with the conventional steel tip showed important surface
alterations. In contrast, samples treated with the copper alloy silver-plated ultrasonic tip had minimal
structural changes on the surface. The SEM image of group A showed the presence of a deeper groove
generated by the tip, compared with the one generated by the new tip from group B. In the same way,
the superficial topography generated by the action of the tips evaluated by fractal analysis showed
different results. Specifically, in Figure 4A–D, it is possible to see the 3D Fractal Dimension analysis of
the titanium discs’ surface roughness after the use of the conventional steel tip (Figure 4A,B) and the
ultrasonic copper alloy silver plated tip (Figure 4C,D). The measurements showed that the average
roughness values obtained through fractal analysis of lacunarity (“VISUAL TEXTURE”) were 1.873 µm
and 1.263 µm for group A and Group B, respectively. The statistical and fractal analysis showed a
statistically significant difference between the two groups considered in this study, as shown in Table 1,
confirming the SEM results. (Table 1, Figure 5).
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Table 1. Group Tests and tests for Independent Samples showed a statistically significant difference
between the two groups in terms of lacunarity (p < 0.05). Student’s t test for unpaired data and Levene’s
Test were performed to verify the significance of the difference between groups.

Group
Members Group N Mean

(St. Dev) St. Error

A Steel 10 1.8736
(0.08767) 0.02772

B Silver Coated 10 1.2630
(0.05034) 0.01592

Statistical
Analysis

Levene’s Test
Used to Assess the

Equality of
Variances

t-test Used for Comparison of Means

F Sig. t df
Sig.

(2-code)
Difference
between
means

Difference
Standard

error

a 95% confidence
interval

Inferior Superior

Equal
variances 2.149 0.160 19.099 18 0.000 0.61060 0.03197 0.54343 0.67777

Non-equal
variances 19.099 14.353 0.000 0.61060 0.03197 0.54219 0.67901
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Figure 5. Graphical representation of fractal analysis of lacunarity where a statistical difference
between groups is shown. Blue represents the new copper alloy silver-plated tip and red represents the
conventional steel tip.

4. Discussion

The use of dental implants represents an efficient option for the replacement of missing teeth.
However, early and late complications, such as peri-implant infection or implant failure, can occur [34].
It has been demonstrated that peri-implantitis is associated with the presence of plaque and soft
tissue inflammation [26]. Berglundh et al. suggested that the progression of peri-implantitis is more
pronounced at implants with a moderately rough surface than at those with a polished surface [35].
Thus, strict periodontal control and decontamination of the implant surface is mandatory. Several
studies have investigated and focused on surface alterations of titanium after instrumentation [21,36].
Simion et al. [37], in a 12-year retrospective study, investigated the long-term effectiveness of dental
implants with a machined surface. A total of 59 implants were evaluated after 12 years of follow-up
analyzing marginal bone loss around implants and clinical indices such as probing depth, bleeding on
probing, and plaque score. At 12 years, no signs of peri-implantitis, such as bone loss, were present.
Meanwhile, at this time point, clinical indices results showed moderate signs of soft tissue inflammation.
Thus, the study demonstrated that a smooth surface could guarantee high success rates from a clinical
point of view in a long-term follow-up [37]. Accordingly, the purpose of the present study was to
investigate the surface alterations of machined titanium (Grade 4) discs with two different ultrasonic
scaler tips. The study was conducted on non-surgical instrumentation normally used for implants
maintenance in daily practice. The analysis of the two different ultrasonic inserts provided important
results under scanning electron microscopy. In this regard, from the SEM analysis of the collected data,
it was possible to analyse the surface conditions of the discs after tips use and therefore the impact
caused by the two different types of ultrasonic tips.

In a recent study, mechanical instrumentation of novel metallic ultrasonic scaler tips, conventional
stainless-steel tips, and plastic tips on titanium surfaces was evaluated on 10 polished commercially
pure titanium discs (Grade II). Scanning electron microscopy (SEM) and commercial atomic force
microscopy (AFM) were used to analyse the surface morphology of samples and the contact mode
of the different tips [38]. It was concluded that the novel metallic copper alloy ultrasonic scaler tips
minimally influence the titanium surface, similar to plastic tips. Therefore, they could be suitable
instruments for implant maintenance [38–40]. These data were in accordance with the present study
where the conventional tip demonstrated statistically significant surface morphology alterations
compared to the new one, as shown in Figures 2 and 3. On the other hand, to obtain a good level of
debridement and to mechanically remove the biofilm on the implant surface, it is necessary to obtain
good efficacy of the tips and, in the same way, minimal superficial alteration that could cause faster
accumulation of plaque [41].
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Another study evaluated two ultrasonic insert designs (metallic TFI-10 and a plastic-tipped
implant insert) on titanium implants and evaluated their modified surfaces. The resulting of laser
profilometry and scanning electron microscopy (SEM) showed that the metal scalers produced defects
in the implant surfaces, with load and power being important factors in the damage caused. On the
contrary, plastic-coated scaler probes cause minimal damage to implant surfaces and have a polishing
action, but can leave plastic deposits on the implant surface [26].

Park et al. concluded that metal or plastic ultrasonic scaler tips may be applied to treat the
sandblasted acid-etched (SLA) surface of dental abutment or fixture surfaces without increasing the
irregularities on the titanium surfaces. However, in the case of machined surfaces, ultrasonic metal
tips cannot be recommended because the surface becomes rougher after treatment [42].

The present results demonstrated that the new copper alloy silver-plated ultrasonic tip caused
less damage to the polished surface that the conventional one. Irregularities on the titanium surface
caused by the conventional tip consisted of shallower and deeper scratches than the new one. It has
been demonstrated that surface irregularities can facilitate bacterial accumulation [5,43]. In this case
the irregularities present on group A might provide a better niche for bacterial accumulation than
those of group B. Therefore, careful instrumentation during implant maintenance is recommended.

It is important to underline how the surfaces can be treated differently with different results in
terms of cell adhesion and plaque accumulation [44,45]. Different authors studied predetermined
roughness patterns by laser processing, obtaining good results in terms of cell adhesion. Sinjari et al.
in 2012 showed how a controlled roughness surface treatment can increase osteoblastic cell growth
with respect to sandblasted and machined surfaces [45]. Furthermore, controlled surface roughness
was less attractive for bacterial colonization. Di Giulio et al. in 2016 [44] demonstrated by in vitro
microbiological investigation how the biofilm formation of Porphyromonas gingivalis was reduced on
laser-treated surfaces compared with sandblasted surfaces. In this case, even on a predetermined rough
surface, bacterial accumulation was less than on the machined one, because of the laser treatment on
the titanium surface. In fact, the authors think that the results are due to the bottom of the pores caused
by the laser treatment, which resulted in a very polished surface that was not attractive for the bacteria.
Meanwhile, in the complex, the laser treated surface is considered a rough one. Due to the above
results, the surface is a key factor of bacterial attractiveness and rough surfaces with antibacterial
proprieties could improve cell adhesion, while reducing bacterial plaque accumulation. The present
results demonstrated the importance of implant maintenance instruments that do not affect the surface
morphology of implants by making it irregular and more contaminable by bacteria. On the other
hand, it is important to see the decontamination effects of the two present scaler tips on in vivo
plaque accumulation.

Therefore, other investigations are necessary to identify the best surface treatment in terms of cell
adhesion and reduced bacterial colonization. It has been proven that the surface alterations caused by
decontamination operations can alter the surface, thus reducing its biocompatibility and altering its
surface characteristics. In fact, other studies showed how traditional tips could alter surface roughness,
leave traces during instrumentation, and remove material from the surface, regardless of surface
treatment. So, the tested tip seems to have a less-damaging effect on the implant surface, thus reducing
the destructive effects of decontamination procedures [19,46].

Moreover, it has been demonstrated that restorative dental materials, such as porcelain or
composite resins, if instrumented with power-driven scalers, may experience chips, scratches, or loss
of material. Indeed, current evidence suggests that operation of ultrasonic scalers at medium rather
than high power may cause less damage to implant surfaces [36,47–50].

In this study, standardized conditions including angulation of the scaler tip at 45 degrees, medium
power, and irrigation were used to reproduce clinical conditions.

However, future research is necessary to investigate the clinical significance of the new copper
alloy silver-plated ultrasonic scaler tip regarding surface alterations during peri-implant treatment in
human subjects under standard clinical conditions.
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5. Conclusions

Within the limitations of the present study, the following conclusions were drawn. Surface
alterations of titanium induced by the conventional ultrasonic tips were much greater than those made
by copper alloy silver plated tips These results are an interesting topic for further in vivo and/or
microbiological analysis to evaluate the removal efficiency of the copper alloy silver-plated tips and to
encourage their use for implant maintenance.
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