Skip to main content
. 2018 Dec 5;11(12):2467. doi: 10.3390/ma11122467

Table 1.

Structure and characteristics of the investigated neural networks. CV—convolutional layers (the brackets indicate the number of feature maps and the size of the kernels), MP—max-pooling layers (the brackets show the size of the pooling window), FC—fully connected layers (the brackets indicate the number of neurons).

No CNN Model Description wk, px Average Test Accuracy, % Diagnostic Time, s
1. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–CV(32 × 3 × 3)–FC(1024) 15 92.81 45
2. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–FC(250)–FC(250)–FC(250) 10 92.41 19
3. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–FC(100)–FC(100)–FC(100)–FC(100)–FC(100)–FC(100) 10 92.39 17
4. CV(32 × 5 × 5)–MP(2 × 2)–CV(64 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–FC(1024) 15 92.23 61
5. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–FC(400)–FC(400) 10 92.11 12
6. CV(32 × 3 × 3)–MP(2 × 2)–FC(60)–FC(60)–FC(60)–FC(60)–FC(60)–FC(60)–FC(60) 10 92.08 8
7. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–FC(1024) 10 92.00 17
8. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–CV(32 × 3 × 3)–CV(32 × 3 × 3)–FC(1024) 10 91.91 24
9. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–FC(1024) 10 91.91 19
10. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 ×3 × 3)–FC(200)–FC(200) 10 91.70 19
11. CV(32 × 3 × 3)–MP(2 × 2)–FC(100)–FC(100)–FC(100) 10 91.50 9
12. CV(48 × 3 × 3)–MP(2 × 2)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50) 10 91,44 11
13. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–FC(1024) 10 91.22 19
14. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–CV(20 × 3 × 3)–FC(400)–FC(400) 7 90.70 11
15. CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–CV(32 × 3 × 3)–CV(32 × 3 × 3)–FC(1024) 7 90.60 13
16. CV(20 × 3 × 3)–MP(2 × 2)–CV(30 × 3 × 3)–MP(2 × 2)–FC(200)–FC(200) 7 89.95 7
17. CV(20 × 5 × 5)–MP(4 × 4)–CV(32 × 3 × 3)–MP(4 × 4)–FC(1024) 15 85.21 18