Table 1.
Structure and characteristics of the investigated neural networks. CV—convolutional layers (the brackets indicate the number of feature maps and the size of the kernels), MP—max-pooling layers (the brackets show the size of the pooling window), FC—fully connected layers (the brackets indicate the number of neurons).
No | CNN Model Description | wk, px | Average Test Accuracy, % | Diagnostic Time, s |
---|---|---|---|---|
1. | CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–CV(32 × 3 × 3)–FC(1024) | 15 | 92.81 | 45 |
2. | CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–FC(250)–FC(250)–FC(250) | 10 | 92.41 | 19 |
3. | CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–FC(100)–FC(100)–FC(100)–FC(100)–FC(100)–FC(100) | 10 | 92.39 | 17 |
4. | CV(32 × 5 × 5)–MP(2 × 2)–CV(64 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–FC(1024) | 15 | 92.23 | 61 |
5. | CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–FC(400)–FC(400) | 10 | 92.11 | 12 |
6. | CV(32 × 3 × 3)–MP(2 × 2)–FC(60)–FC(60)–FC(60)–FC(60)–FC(60)–FC(60)–FC(60) | 10 | 92.08 | 8 |
7. | CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–FC(1024) | 10 | 92.00 | 17 |
8. | CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–CV(32 × 3 × 3)–CV(32 × 3 × 3)–FC(1024) | 10 | 91.91 | 24 |
9. | CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–FC(1024) | 10 | 91.91 | 19 |
10. | CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 ×3 × 3)–FC(200)–FC(200) | 10 | 91.70 | 19 |
11. | CV(32 × 3 × 3)–MP(2 × 2)–FC(100)–FC(100)–FC(100) | 10 | 91.50 | 9 |
12. | CV(48 × 3 × 3)–MP(2 × 2)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50)–FC(50) | 10 | 91,44 | 11 |
13. | CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–FC(1024) | 10 | 91.22 | 19 |
14. | CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–CV(20 × 3 × 3)–FC(400)–FC(400) | 7 | 90.70 | 11 |
15. | CV(32 × 3 × 3)–MP(2 × 2)–CV(32 × 3 × 3)–CV(32 × 3 × 3)–CV(32 × 3 × 3)–FC(1024) | 7 | 90.60 | 13 |
16. | CV(20 × 3 × 3)–MP(2 × 2)–CV(30 × 3 × 3)–MP(2 × 2)–FC(200)–FC(200) | 7 | 89.95 | 7 |
17. | CV(20 × 5 × 5)–MP(4 × 4)–CV(32 × 3 × 3)–MP(4 × 4)–FC(1024) | 15 | 85.21 | 18 |