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Abstract: Spatiotemporal analysis of gait pattern is meaningful in diagnosing and prognosing
foot and lower extremity musculoskeletal pathologies. Wearable smart sensors enable continuous
real-time monitoring of gait, during daily life, without visiting clinics and the use of costly equipment.
The purpose of this study was to develop a light-weight, durable, wireless, soft-material-based smart
insole (SMSI) and examine its range of feasibility for real-time gait pattern analysis. A total of fifteen
healthy adults (male: 10, female: 5, age 25.1 ± 2.64) were recruited for this study. Performance
evaluation of the developed insole sensor was first executed by comparing the signal accuracy level
between the SMSI and an F-scan. Gait data were simultaneously collected by two sensors for 3 min,
on a treadmill, at a fixed speed. Each participant walked for four times, randomly, at the speed
of 1.5 km/h (C1), 2.5 km/h (C2), 3.5 km/h (C3), and 4.5 km/h (C4). Step count from the two
sensors resulted in 100% correlation in all four gait speed conditions (C1: 89 ± 7.4, C2: 113 ± 6.24, C3:
141± 9.74, and C4: 163± 7.38 steps). Stride-time was concurrently determined and R2 values showed
a high correlation between the two sensors, in both feet (R2 ≥ 0.90, p < 0.05). Bilateral gait coordination
analysis using phase coordination index (PCI) was performed to test clinical feasibility. PCI values of
the SMSI resulted in 1.75 ± 0.80% (C1), 1.72 ± 0.81% (C2), 1.72 ± 0.79% (C3), and 1.73 ± 0.80% (C4),
and those of the F-scan resulted in 1.66 ± 0.66%, 1.70 ± 0.66%, 1.67 ± 0.62%, and 1.70 ± 0.62%,
respectively, showing the presence of a high correlation (R2 ≥ 0.94, p < 0.05). The insole developed in
this study was found to have an equivalent performance to commercial sensors, and thus, can be
used not only for future sensor-based monitoring device development studies but also in clinical
setting for patient gait evaluations.
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1. Introduction

Human gait is an essential means of locomotion for daily life and the most important function
necessary for quality of life [1]. Walking dysfunctions can lead to falling, fracture, progression of
disease, decreased mobility, and depression; all limiting the performances in daily activities. Early
diagnosis of gait-related impairments is important in preventing symptom aggravation and irreversible
deformities. Reliable yet practical diagnostic medical devices with high resolution sensors need to be
continuously advanced.

Substantial evidence on cognitive neuroscience and motor control suggests that gait parameters
can reveal important factors that determine the overall health and well-being [2,3]. However, present
gait analysis systems and the results reported are based on costly equipment, bulky and complicated
set-up, require multiple types of sensors, and are limited to indoors [4–6]. Therefore, development of
high-performance, wearable smart analytic systems with affordable prices, is in demand for real-time
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daily activity monitoring and analysis. With practical methodologies, neurological, musculoskeletal,
kinematic, and sports-related problems associated with gait and foot pathologies, can be more
efficiently addressed.

Meaningful gait parameters include gait speed, step-count, stride-time, center of pressure
(CoP), and phase coordination index (PCI) [7–12]. Walking speed is the product of step-length and
step-frequency (step-count/time) and is considered the sixth vital sign, because it has been validated
as a marker of frailty and mortality [13,14]. Wearable smart insole that can monitor the changes in
walking speed, during various types of activities, is expected to enhance the quality of gait-related
research and therapy.

For walking improvements in the elderly or rehabilitation patients, mobility skill practice
is essential; use of a smart insole feedback system could accelerate the procedure. Step-count
in a controlled environment is known to be a reliable and valid indicator in quantifying the
temporal frequency of gait [14]. It is used to evaluate current motor control functions and
set future goals in rehabilitation therapy. Stride-time and stride-length present one’s gait cycle,
and the coordination patterns of limb segments can be used to identify the joint mechanics [15].
Understanding the coordination patterns, in movement analysis, can be used to diagnose and prognose
neuro-cognitive functions. Plantar pressure analyses are considered meaningful in examining the
biomechanical characteristics of the foot, because related sports injuries to functional deformities can
be diagnosed [16].

Among these parameters, PCI is reported to be a relatively more sensitive measure in analyzing
the bilateral coordination or asymmetry of locomotion and balance, which are significant variables,
especially in rehabilitative medicine [17–19]. PCI is an indicator evaluating the coordination of
left–right stepping phase, and the PCI value closer to 0% means that the two feet are moving in a
higher coordination. Balance and coordination are fundamental motor control functions for normal
gait. PCI analysis can also be extensively applied to diagnose the severity of scoliosis, hemiparesis,
and aging. Despite the significance, most of the current insole sensors, used for gait analysis, are not
designed to detect and analyze PCI. The need for development of a cost-effective wearable sensor that
can measure PCI in real-life conditions, is prominent.

A number of scientists have developed wearable sensors for gait analysis, but most of them
are equipped with multiple bulky measurement devices, including dual 3-axis accelerometer,
gyroscope, torque, ground reaction force sensor, and pressure sensor, making the measuring procedure
complicated and inconvenient [20–22]. In recent studies by Wu et al. (2015) and Park et al. (2018),
insole-type pressure sensor and a smart shoes system were developed for gait analysis and smart phone
applications-enabled real-time monitoring of the activities have been carried out [23,24]. However,
many of these research-based, newly developed wearable devices are rather expensive and the
bio-signals collected and analyzed are not as accurate, compared to that of commercial sensors [25].

With the aim to overcome and complement the aforementioned limitations and fulfill the needs
of a clinical field, this study used conductive textile, a type of soft material reported to be user-friendly,
inexpensive, and easily transformable, to develop a practical sensor. A light-weight, durable, wireless,
soft-material-based smart insole (SMSI) sensor was developed for accurate and affordable real-time
gait analysis system and its range of feasibility was examined.

2. Materials and Methods

2.1. Textile Capacitive Pressure Insole

To obtain gait data, a parallel capacitance-based pressure sensor, using conductive textile, was
developed. For the sensor, a W-290-PCN model (A-jin Electron, Busan, Korea) was used as shown in
Table 1. This model is made of polyester, sequentially-plated with nickel, copper, and nickel.
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Table 1. Specifications of the W-290-PCN.

Parameter W-290-PCN Textile Structure

Based material Polyester
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Figure 2. The structure of the proposed sensor—the soft-material-based smart insole (SMSI). 

Type Woven
Width (mm) 1100 ± 5

Weight (g/m2) 81 ± 5
Thickness (mm) 0.1 ± 0.01
Density (g/m3) 188 ± 5

Capacitance is a physical quantity that indicates the ability of an object to accumulate electrical
charges. The unit is F, and 1 F is equal to the capacitance of the capacitor charged at 1 C, when a voltage
of 1 V is applied. The parallel capacitance of a capacitor can be calculated by Equation (1).

C =
Q
V

= ε
A
d

(1)

where, d is distance between the plates, A is the area of plates, ε is the permittivity material between
the plates. Figure 1 shows the structure of parallel capacitances, where C is inversely proportional to
the distance of the two plates and is proportional to the area of the material and the dielectric constant
between the plates.
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Figure 1. The structure of a parallel capacitor.

Figure 2 shows the structure of the soft-material-based smart insole (SMSI). The insole sensor
was developed with two plates of conductive textile (W-290-PCN) and a non-conductive rubber, with
a thickness of 3 mm, placed between the two sensor layers. The size of each sensor was 2 × 2 cm2,
embedded with ten channels for each foot. Figure 3 shows the location of each channel in the insole
for sizes of 270 mm and 240 mm.
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size was 2.3 × 3.3 cm2 and the operation power was 3.7 V. To convert an analog signal to a digital 
signal of capacitance, the sensor MPR121QR2 (Freescale Inc., Austin, TX, USA) was used. It has a 
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2.2. Gait Data Measurement and Monitoring System

Figure 4 shows the block diagram of our proposed gait measurement and monitoring system.
The proposed system is divided into hardware and software division. The hardware collects the gait
data from the feet and transmits the data to the software, using Bluetooth communication. The software
saves the data and displays raw data from each foot.
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2.2.1. Hardware Design

Figure 5 shows the schematic of hardware design of gait measurement system and Figure 6 shows
the structure of the capacitance-measuring printed circuit board (PCB). Our proposed board size was
2.3 × 3.3 cm2 and the operation power was 3.7 V. To convert an analog signal to a digital signal of
capacitance, the sensor MPR121QR2 (Freescale Inc., Austin, TX, USA) was used. It has a measurement
range of 10 pF to 2000 pF, and has a resolution of 0.01 pF. A micro controller unit (MCU), developed
by STMicroelectronics (Geneva, Switzerland), was used to measure the capacitance and the PCB was
developed. Data from the ten channels were sampled at 100 Hz.
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2.2.2. Software Design

The gait monitoring system was developed in C# language, as illustrated in Figure 7. It was
developed to transmit data between the PCB board and a monitoring system via Bluetooth
communication. Baud rate was set at 115,200, non-parity bit was 0, and stop bit was 1. Since the
monitoring system used separate PCBs for each side of the foot, a total of two Bluetooth devices were
paired up at the same time. Our monitoring system was developed to present real-time graphs to
confirm the raw gait data being collected from twenty channels. It also contains functions to save the
data as a text file, as well as an Excel file, from a desired point in time.

Materials 2018, 11, x FOR PEER REVIEW  5 of 14 

 

 
Figure 6. The structure of the capacitance-measuring printed circuit board (PCB). 

2.2.2. Software Design 

The gait monitoring system was developed in C# language, as illustrated in Figure 7. It was 
developed to transmit data between the PCB board and a monitoring system via Bluetooth 
communication. Baud rate was set at 115,200, non-parity bit was 0, and stop bit was 1. Since the 
monitoring system used separate PCBs for each side of the foot, a total of two Bluetooth devices were 
paired up at the same time. Our monitoring system was developed to present real-time graphs to 
confirm the raw gait data being collected from twenty channels. It also contains functions to save the 
data as a text file, as well as an Excel file, from a desired point in time. 

 
Figure 7. Gait monitoring system. 

2.3. Data Acquisition 

Spatiotemporal data were detected by the SMSI, during gait. The temporal moments of heel 
strike, midstance, and toe-off, during walking, were collected by ten insole sensor channels, in each 
foot. Summation of all collected data from the ten channels were analyzed. Channels 9 and 10, 
specifically, detected the pressure distribution area at the time of heel strike, and Channels 1 and 2 
detected the toe-off moment as shown in Figure 8. 

Figure 7. Gait monitoring system.

2.3. Data Acquisition

Spatiotemporal data were detected by the SMSI, during gait. The temporal moments of heel strike,
midstance, and toe-off, during walking, were collected by ten insole sensor channels, in each foot.
Summation of all collected data from the ten channels were analyzed. Channels 9 and 10, specifically,
detected the pressure distribution area at the time of heel strike, and Channels 1 and 2 detected the
toe-off moment as shown in Figure 8.
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Figure 8. The ten channel data from the SMSI.

2.4. Signal Processing

To analyze gait features, we implemented a peak detection algorithm by reflecting the method of
Pan-Tomkins algorithm [26], as shown in Figure 9. A low-pass filter was first applied with a cut-off
frequency of 3 Hz. Then, a moving average filter of five points was applied. The low-pass filter and
the moving-average filter were used for smoothing the data. The first-order differential filter was
applied to make the slope of the original signal larger, as the change value of the Y-axis increased.
We developed an algorithm to detect the highest peak at 300 ms intervals, and the heel strike and toe
off points were calculated, based on the local maxima algorithm.

Each heel strike was calculated for the step-count, and the stride-time was defined by the time
between two consecutive heel strikes, in the same foot [27].
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gait signal; (c) squared gait signal; (d) the result of peak detection (heel strike and toe off).

PCI was calculated by ϕi, ϕ_ABS and ϕ_CV, as shown below in Equations (2)–(6) [28]. ϕi was
an index that evaluated the symmetry of bilateral stepping phases and it was the distance between
one heel strike and the next of the opposite leg, calculated as an angle, ideally ϕi = 180◦ (Figure 10).
As shown in the equation below, ϕ_ABS indicated the balance between the two feet. ϕ_CV referred
to the coefficient of variation of ϕi, which represented the consistency of the right and left foot,
during walking.
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ϕi = 360◦ ×
tSi − tLi

tLi+1 − tLi

(2)

ϕABS =| ϕi − 180◦| (3)

PϕABS = 100 × (ϕABS/180◦) (4)

ϕ′ =
1
N ∑n

i=1 ϕi, δ =

√
1
N

n

∑
i=1

(
ϕ′ − ϕi

)2, ϕ_CV =
δ

ϕ′
(5)

PCI = ϕ_CV + Pϕ_ABS (6)
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2.5. Experimental Methods

2.5.1. Characteristics of the Subjects

A total of fifteen healthy subjects (male: 10, female: 5) participated in this experiment,
as summarized in Table 2. Healthy men and women in their twenties (average age: 25.1 ± 2.64),
who had no history of gait disorders, during the past six months, were recruited. The experimental
protocol is shown in Table 3. All subjects were adequately informed about the experiment procedure
and the experiment was conducted after obtaining written consent from all participants.

Table 2. The characteristics of the subjects.

Variables Male Female

Age (years) 26.10 ± 2.18 23.20 ± 2.58
Gender (M/F) 10 5

Diagnosis N/A N/A

Table 3. The experimental protocol on the treadmill.

Speed (km/h) Time (min)

1.5 (C1) 3
Rest 1

2.5 (C2) 3
Rest 1

3.5 (C3) 3
Rest 1

4.5 (C4) 3
Rest 1

2.5.2. The Feasibility Test Protocol

For the feasibility test, the performance of the SMSI was evaluated by comparing its accuracy level
with a commercial sensor (F-scan, Tekscan, South Boston, MA, USA). Gait data from the two sensors
were simultaneously acquired, while walking on the treadmill, for 3 min, at four different pre-set speed
conditions. Condition 1 (C1) was set at 1.5 km/h, Condition 2 (C2) at 2.5 km/h, Condition 3 (C3) at 3.5
km/h, and Condition 4 (C4) at 4.5 km/h (Table 3). A one-minute resting time was given between the
conditions, and the order of the four speed conditions were randomly selected.

Subjects were instructed to walk on the treadmill with both the SMSI and the F-scan sensors
placed inside the given sneakers. For the analysis, the step-count, the stride-time, and the PCI were
calculated and compared between the two sensors. The raw data, simultaneously collected from the
SMSI and the F-scan sensors, were monitored in real-time, as shown below in Figure 11.
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3. Results

The Results of the Sensor Performance

Table 4 shows a 100% consistency in the step-count detected by the two sensors in four different
gait speed conditions (C1: 89, C2: 113, C3: 141, C4: 163).

Table 4. The results of the step-count detection between the two sensors.

Variables C1 C2 C3 C4

SMSI 89 113 141 163
F-scan 89 113 141 163

Consistency (%) 100% 100% 100% 100%

The results of stride-time are presented below in Table 5 and refer to Figure 12. The average
stride-time and standard deviation, of each subject, under the four different gait speed conditions were
calculated for the left and right leg. The stride-time of only the left foot is reported here because there
was a high correlation in stride-time detected from both side of the legs.

Table 5. Average stride-time of each subject for SMSI and F-scan of the left foot.

Subject No. Sensors C1 C2 C3 C4

1
SMSI 1.75 ± 0.12 1.54 ± 0.12 1.24 ± 0.07 1.10 ± 0.02

F-scan 1.75 ± 0.09 1.54 ± 0.08 1.24 ± 0.05 1.09 ± 0.03

2
SMSI 1.65 ± 0.09 1.46 ± 0.08 1.21 ± 0.04 1.07 ± 0.02

F-scan 1.65 ± 0.10 1.46 ± 0.06 1.20 ± 0.05 1.07 ± 0.02

3
SMSI 1.81 ± 0.09 1.56 ± 0.06 1.22 ± 0.07 1.08 ± 0.02

F-scan 1.80 ± 0.09 1.55 ± 0.06 1.20 ± 0.05 1.06 ± 0.01

4
SMSI 1.88 ± 0.09 1.51 ± 0.05 1.23 ± 0.02 1.08 ± 0.01

F-scan 1.88 ± 0.10 1.51 ± 0.04 1.23 ± 0.01 1.07± 0.01

5
SMSI 1.87 ± 0.13 1.53 ± 0.05 1.26 ± 0.03 1.07 ± 0.01

F-scan 1.86 ± 0.11 1.53 ± 0.03 1.26 ± 0.01 1.05 ± 0.01
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Table 5. Cont.

Subject No. Sensors C1 C2 C3 C4

6
SMSI 1.81 ± 0.11 1.49 ± 0.06 1.19 ± 0.02 1.09 ± 0.01

F-scan 1.80 ± 0.09 1.50 ± 0.05 1.19 ± 0.01 1.07 ± 0.01

7
SMSI 1.85 ± 0.10 1.45 ± 0.05 1.22 ± 0.04 1.12 ± 0.02

F-scan 1.85 ± 0.07 1.45 ± 0.03 1.21 ± 0.01 1.10 ± 0.01

8
SMSI 1.89 ± 0.17 1.44 ± 0.03 1.16 ± 0.02 1.06 ± 0.01

F-scan 1.88 ± 0.15 1.44 ± 0.04 1.15 ± 0.01 1.05 ± 0.01

9
SMSI 1.82 ± 0.08 1.63 ± 0.04 1.22 ± 0.05 1.08 ± 0.02

F-scan 1.82 ± 0.10 1.64 ± 0.06 1.21 ± 0.04 1.08 ± 0.01

10
SMSI 1.83 ± 0.06 1.51 ± 0.05 1.26 ± 0.02 1.09 ± 0.01

F-scan 1.81 ± 0.09 1.51 ± 0.04 1.25 ± 0.03 1.10 ± 0.01

11
SMSI 1.77 ± 0.18 1.53 ± 0.06 1.21 ± 0.01 1.18 ± 0.01

F-scan 1.78 ± 0.14 1.54 ± 0.05 1.20 ± 0.04 1.19 ± 0.03

12
SMSI 1.86 ± 0.10 1.38 ± 0.05 1.24 ± 0.04 1.12 ± 0.01

F-scan 1.85 ± 0.11 1.37 ± 0.06 1.24 ± 0.03 1.11 ± 0.01

13
SMSI 1.81 ± 0.09 1.29 ± 0.03 1.14 ± 0.04 1.06 ± 0.01

F-scan 1.81 ± 0.13 1.28 ± 0.03 1.13 ± 0.02 1.06 ± 0.01

14
SMSI 1.70 ± 0.09 1.46 ± 0.10 1.21 ± 0.02 1.03 ± 0.01

F-scan 1.71 ± 0.07 1.46 ± 0.05 1.22 ± 0.03 1.05 ± 0.01

15
SMSI 1.74 ± 0.08 1.50 ± 0.07 1.22 ± 0.02 1.03 ± 0.01

F-scan 1.74 ± 0.06 1.50 ± 0.04 1.22 ± 0.04 1.01 ± 0.02

C1: 1.5 km/h, C2: 2.5 km/h, C3: 3.5 km/h, C4: 4.5 km/h.
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Figure 12. The Bland-Altman plot showing the difference between the SMSI and F-scan for the left
foot stride-time, in each gait speed condition. The dashed line in the middle is the mean value of the
differences, the lines above and below denote the standard deviation (95% CI).
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Table 6 shows the results of the correlation analysis on the stride-time detected by the SMSI and
the F-scan. Data from the left foot of all subjects were compared between the two sensors, and the R2

value resulted in 0.91± 0.04 (C1), 0.93± 0.02 (C2), 0.94± 0.02 (C3), and 0.95± 0.03 (C4). The R2 values
of the right foot were 0.90 ± 0.03, 0.93 ± 0.02, 0.94 ± 0.02, and 0.93 ± 0.03, respectively. A p-value of
<0.05 was set, for statistical significance.

Table 6. The results of the correlation analysis on the stride-time, between the two sensors.

Subject No. Foot side C1 p C2 p C3 p C4 p

1
LF 0.92 * 0.00 0.94 * 0.00 0.98 * 0.001 0.93 * 0.00
RF 0.94 * 0.00 0.92 * 0.00 0.91 * 0.00 0.91 * 0.00

2
LF 0.88 * 0.00 0.92 * 0.01 0.97 * 0.00 0.94 * 0.00
RF 0.88 * 0.00 0.95 * 0.00 0.93 * 0.00 0.91 * 0.00

3
LF 0.88 * 0.001 0.96 * 0.00 0.91 * 0.02 0.97 * 0.00
RF 0.93 * 0.00 0.92 * 0.00 0.95 * 0.00 0.91 * 0.00

4
LF 0.87 * 0.00 0.95 * 0.00 0.93 * 0.00 0.97 * 0.00
RF 0.89 * 0.00 0.94 * 0.00 0.96 * 0.00 0.98 * 0.00

5
LF 0.84 * 0.00 0.90 * 0.03 0.97 * 0.00 0.97 * 0.00
RF 0.87 * 0.001 0.97 * 0.00 0.98 * 0.00 0.96 * 0.00

6
LF 0.97 * 0.00 0.91 * 0.00 0.98 * 0.00 0.96 * 0.00
RF 0.82 * 0.00 0.92 * 0.00 0.94 * 0.00 0.92 * 0.00

7
LF 0.98 * 0.00 0.91 * 0.00 0.91 * 0.02 0.98 * 0.00
RF 0.84 * 0.00 0.91 * 0.00 0.98 * 0.00 0.93 * 0.00

8
LF 0.97 * 0.00 0.90 * 0.00 0.97 * 0.00 0.97 * 0.00
RF 0.88 * 0.00 0.90 * 0.00 0.95 * 0.00 0.95 * 0.00

9
LF 0.91 * 0.00 0.94 * 0.00 0.94 * 0.00 0.95 * 0.00
RF 0.83 * 0.00 0.92 * 0.00 0.91 * 0.00 0.90 * 0.00

10
LF 0.88 * 0.001 0.94 * 0.00 0.96 * 0.00 0.97 * 0.01
RF 0.89 * 0.024 0.91 * 0.00 0.91 * 0.00 0.98 * 0.00

11
LF 0.98 * 0.00 0.96 * 0.00 0.96 * 0.00 0.95 * 0.00
RF 0.87 * 0.00 0.92 * 0.01 0.99 * 0.00 0.98 * 0.00

12
LF 0.91 * 0.00 0.90 * 0.00 0.93 * 0.00 0.91 * 0.00
RF 0.90 * 0.00 0.97 * 0.00 0.96 * 0.001 0.92 * 0.00

13
LF 0.92 * 0.01 0.93 * 0.00 0.96 * 0.00 0.95 * 0.00
RF 0.93 * 0.00 0.98 * 0.00 0.93 * 0.00 0.90 * 0.00

14
LF 0.88 * 0.00 0.95 * 0.00 0.93 * 0.00 0.96 * 0.00
RF 0.86 * 0.00 0.95 * 0.00 0.93 * 0.00 0.91 * 0.00

15
LF 0.97 * 0.02 0.91 * 0.00 0.92 * 0.00 0.94 * 0.00
RF 0.89 * 0.00 0.93 * 0.00 0.91 * 0.00 0.93 * 0.00

Avg (STD) LF 0.91 * ± 0.04 0.93 * ± 0.02 0.94 * ± 0.02 0.95 * ± 0.03
RF 0.90 * ± 0.03 0.93 * ± 0.02 0.94 * ± 0.02 0.93 * ± 0.03

LF: Left Foot, RF: Right foot; * Significance level: p < 0.05.

The PCI was calculated to evaluate the coordination of both feet, as illustrated in Table 7.
The average value of the PCI, in the SMSI, was 1.75 ± 0.80% (C1), 1.72 ± 0.81% (C2), 1.72 ± 0.79% (C3),
and 1.73 ± 0.80% (C4), and the average value of the PCI, in the F-scan, was 1.66 ± 0.66%, 1.70 ± 0.66%,
1.67 ± 0.62%, and 1.70 ± 0.62%, respectively. R2 values between the two sensors were 0.94 (C1),
0.95 (C2), 0.95 (C3), and 0.95 (C4). A p-value of <0.05 was set, for statistical significance.
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Table 7. The results of the phase coordination index (PCI) detection.

Sensor Variables C1 C2 C3 C4

SMSI

PCI (%) 1.75% ± 0.80% 1.72% ± 0.81% 1.72% ± 0.79% 1.73% ± 0.80%
ϕ_CV (%) 1.19% ± 0.17% 1.12% ± 0.11% 1.11% ± 0.15% 1.11% ± 0.15%
ϕ_ABS (deg) 1.02◦ ± 0.12◦ 1.09◦ ± 0.10◦ 1.09◦ ± 0.09◦ 1.12◦ ± 0.09◦

ϕ (deg) 180.22◦ ± 1.14◦ 180.10◦ ± 1.01◦ 180.12◦ ± 1.05◦ 180.10◦ ± 1.08◦

F-scan

PCI (%) 1.66% ± 0.66% 1.70% ± 0.66% 1.67% ± 0.62% 1.70% ± 0.62%
ϕ_CV (%) 1.11% ± 0.11% 1.14% ± 0.17% 1.11% ± 0.15% 1.12% ± 0.11%
ϕ_ABS(deg) 1.00◦ ± 0.12◦ 1.02◦ ± 0.08◦ 1.01◦ ± 0.09◦ 1.08◦ ± 0.08◦

ϕ (deg) 180.20◦ ± 1.04◦ 180.11◦ ± 1.00◦ 180.12◦ ± 1.05◦ 180.10◦ ± 1.04◦

R2 (p) 0.94 * (0.00) 0.95 * (0.01) 0.95 * (0.00) 0.95 * (0.00)

* Significance level: p < 0.05.

4. Discussion

This study aimed to develop an SMSI and examine its feasibility for gait pattern analysis in
healthy young adults. Gait data simultaneously collected by an SMSI and an F-scan, were compared
in real-time, for analysis. Step-count was calculated by the peak detection method, and the results
presented a 100% consistency in all four different gait speed conditions, showing that SMSI has an
equivalent performance to the F-scan.

Considering the number of our subjects (n = 15), Spearman’s rho correlation analysis was
performed to analyze the stride-time detected by the two sensors. R2 values for the left foot were higher
or equal to 0.91 and those for the right foot were higher or equal to 0.90. The correlation coefficients
showed to be statistically significant (p < 0.05), confirming the accuracy and feasibility of our sensor.
However, the R2 values of C1, on both sides of the foot, were lower than those of the other speed
conditions. This may have been caused by dislocation of the insole sensors, during gait; C1 being the
slowest gait speed condition, the foot and the sensor may have got detached, from time-to-time.

We calculated the PCI value to test the clinical feasibility of the SMSI. The PCI is an indicator
for evaluating balance function in the lower extremity and is presented in percentage. A value closer
to 0% refers to higher balance between the two feet [12,17,19,28]. PCI was originally developed to
evaluate the degree of asymmetry, during walking, and many studies evaluated the gait asymmetry
of the patients with Parkinson’s disease and stroke [17,19,28]. In the studies that evaluated gait
asymmetry in healthy subjects, the PCI value was reported to be 2.52% and 2.47% [17,28].

In our study, the average PCI value of the SMSI was between 1.75 ± 0.80% (C1) and 1.72 ± 0.79%
(C3), and that of the F-scan was between 1.66 ± 0.66% (C1) and 1.70 ± 0.62% (C4), which were similar
to the findings from previous studies [17,28]. In addition, the R2 values for the PCI showed a high
correlation between the two sensors in both feet (R2 ≥ 0.94, p < 0.05). These values were also similar to
the past findings, in other studies. Gait pattern is highly variable from person to person, especially
when gender, age, body weight, cultural background, and medical history are taken into account.
The reason behind the similarity in results may be due to the subject inclusion criteria. The average age
of the healthy subjects in our study was 25.1 ± 2.64 and that of the other studies were 26.3 ± 0.5 and
26.3 ± 0.19, respectively.

Our study has a few limitations, even though our SMSI sensor was tested to have a high accuracy
and performance capacity even with only ten channels embedded. Generalizing the results of this
study may be difficult because the number of subjects was small. Future studies need to recruit a larger
number of participants, as well as different age groups, for a more accurate and diverse data analysis.
In this study, performance evaluation was conducted in a laboratory and did not consider temperature
and humidity factors. As the results of this study showed clinical feasibility, further study in various
environments (indoor and outdoor), considering changes in the temperature and humidity, could
make use of the developed sensor and monitoring system, for both healthy and unhealthy individuals.
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5. Conclusions

We developed a cost-effective, user-friendly, wearable soft-material-based smart insole sensor,
with a real-time monitoring system and performed a feasibility test for the gait pattern analysis,
in young healthy individuals, by compensating the limitations of the existing lab-based, expensive,
analytic devices. Based on the results of this study, the utilization of our developed system is expected
to expand to broader clinical, biomechanical, and quality of life-related studies.
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