Table 3.
Kernel size | Kernel number | Channels of normalization | Output of FC | Dropout probability | Pooling type | Batch size | Epochs | Learning rate | Validation Favg | Elapsed time |
---|---|---|---|---|---|---|---|---|---|---|
5 | 6 | 3 | 120 | 0.5 | Max | 128 | 50 | 0.01 | 0.9758 | 846.53 |
10 | 6 | 3 | 120 | 0.5 | Max | 128 | 50 | 0.01 | 0.9688 | 1077.55 |
5 | 3 | 3 | 120 | 0.5 | Max | 128 | 50 | 0.01 | 0.9609 | 806.078 |
5 | 6 | 1 | 120 | 0.5 | Max | 128 | 50 | 0.01 | 0.9657 | 997.13 |
5 | 6 | 3 | 240 | 0.5 | Max | 128 | 50 | 0.01 | 0.9765 | 1282.90 |
5 | 6 | 3 | 120 | 0.2 | Max | 128 | 50 | 0.01 | 0.9688 | 1593.91 |
5 | 6 | 3 | 120 | 0.1 | Max | 128 | 50 | 0.01 | 0.9541 | 1589.37 |
5 | 6 | 3 | 120 | 0.5 | Avg | 128 | 50 | 0.01 | 0.9682 | 1606.79 |
5 | 6 | 3 | 120 | 0.5 | Max | 256 | 50 | 0.01 | 0.9659 | 905.27 |
5 | 6 | 3 | 120 | 0.5 | Max | 128 | 80 | 0.01 | 0.9722 | 2660.79 |
5 | 6 | 3 | 120 | 0.5 | Max | 128 | 50 | 0.00001 | 0.9855 | 1566.26 |
5 | 6 | 3 | 120 | 0.5 | Max | 128 | 50 | 0.0001 | 0.9917 | 1609.34 |
The kernel size and the kernel number are only related to the convolutional layer. FC represents the first fully connected layer in our proposed CNNs. The elapsed time indicates the time for training the CNN in different epochs
The Italic in the first row indicates the default setting of parameters. The Italic in final row indicates the final optimized setting of parameters. The Italic in other rows indicates the modifed parameter compared with the default setting