
Ancient convergent losses of Paraoxonase 1 yield potential risks 
for modern marine mammals

Wynn K. Meyer1, Jerrica Jamison2, Rebecca Richter3, Stacy E. Woods4, Raghavendran 
Partha1, Amanda Kowalczyk1, Charles Kronk2, Maria Chikina1, Robert K. Bonde5, Daniel E. 
Crocker6, Joseph Gaspard7, Janet M. Lanyon8, Judit Marsillach3, Clement E. Furlong3,9, 
and Nathan L. Clark1,10,*

1Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, 
USA.

2Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, USA.

3Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, 
USA.

4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.

5Wetland and Aquatic Research Center, U.S. Geological Survey, Gainesville, FL, USA.

6Department of Biology, Sonoma State University, Rohnert Park, CA, USA.

7Pittsburgh Zoo & PPG Aquarium, Pittsburgh, PA, USA.

8School of Biological Sciences, The University of Queensland, St Lucia, 4072, QLD, AUST.

9Department of Genome Sciences, University of Washington, Seattle, WA, USA.

10Pittsburgh Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, 
PA, USA.

Abstract

Mammals diversified by colonizing drastically different environments, with each transition 

yielding numerous molecular changes including losses of protein function. While not initially 

deleterious, these losses could subsequently carry deleterious pleiotropic consequences. Here we 
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use phylogenetic methods to identify convergent functional losses across independent marine 

mammal lineages. In one extreme case, Paraoxonase 1 (PON1) accrued lesions in all marine 

lineages, while remaining intact in all terrestrial mammals. These lesions coincide with PON1 

enzymatic activity loss in marine species’ blood plasma. This convergent loss is likely explained 

by parallel shifts in marine ancestors’ lipid metabolism and/or bloodstream oxidative environment 

affecting PON1’s role in fatty acid oxidation. PON1 loss also eliminates marine mammals’ main 

defense against neurotoxicity from specific man-made organophosphorus compounds, implying 

potential risks in modern environments.

One Sentence Summary:

Organophosphate toxicity may threaten modern marine mammals due to their ancestors’ repeated 

loss of PON1 for oxidative or metabolic reasons.

As the ancestors of aquatic marine mammals adopted obligate aquatic lifestyles, they 

evolved many adaptive changes, such as those that improved locomotion in and perception 

of their new environment (1, 2). Many of these morphological and physiological changes 

occurred in parallel in distinct lineages of marine mammals, including cetaceans, pinnipeds, 

and sirenians. Although convergent trait changes are frequently adaptive, environmental 

transitions can also result in non-adaptive convergent trait loss due to release from functional 

constraint. Examples of convergently reduced or lost traits include olfaction in marine 

mammals (3–5), bitter taste receptors in carnivorous tetrapods (6), and eyes in subterranean 

species (7–9). Any convergent evolutionary change in the context of a given environment 

can carry negative consequences in a different environment as a result of pleiotropy (one 

genetic locus influencing multiple phenotypes).

To characterize how mammals responded to selective pressures imposed by the marine 

environment, we identified genes that convergently lost function in marine mammals. We 

identified candidate pseudogenes with observed early stop codons and/or frameshifts 

(genetic lesions) in 58 eutherian mammals’ genomes in a 100-way vertebrate alignment 

(http://genome.ucsc.edu/). Using our predicted pseudogene calls, we then tested, for each 

gene, whether its pattern of functional loss was better explained by a model with one loss 

rate throughout the mammalian phylogeny or by a model in which the loss rate was 

dependent upon the terrestrial/marine state of a given branch, using a likelihood ratio test 

(LRT) (10). To ensure that our results were not strongly influenced by errors in pseudogene 

calling, we performed manual checks of lesion calls against reference genomes for our top 

genes, along with comparisons of pseudogene calls at highly conserved genes for marine and 

terrestrial species (11). We used simulations to estimate empirical gene-specific P-values 

and study-wide (multiple-test-corrected) false discovery rates (FDR) for all genes (11) 

(Tables 1 and S1). The set of genes with the strongest evidence for a higher loss rate on 

marine lineages was strongly enriched for functions related to chemosensation, driven by 

many olfactory and taste receptors (Tables S2–S5). These results are consistent with 

previous behavioral, anatomical, and genetic studies indicating a reduction of smell and taste 

in marine mammals (4, 12, 13).
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We also observed a striking pattern of convergent loss in the marine environment at 

Paraoxonase 1 (PON1) (Table 1) (11). PON1 encodes a bloodstream enzyme that reduces 

oxidative damage to lipids in low- and high-density lipoprotein particles (LDL and HDL, 

respectively), potentially preventing atherosclerotic plaque formation (14, 15) (Fig. 1A). 

PON1 also hydrolyzes the oxon forms of specific organophosphate compounds, such that it 

is the main line of defense against some man-made pesticide byproducts, including 

chlorpyrifos oxon and diazoxon (Fig. 1B) (16). The PON1 coding sequence contains genetic 

lesions in the cetacean, pinniped, and sirenian lineages but is intact in all 53 terrestrial 

mammal genomes surveyed (Fig. 1C; Table S1).

To estimate when PON1 function was lost in the three marine mammal clades, we obtained 

PON1 sequences for 14 additional species including three cetaceans, the dugong, and two 

pinnipeds, and we estimated evolutionary rates across the mammalian phylogeny (11) (Figs. 

1C and S1). We observed shared genetic lesions among all sequenced cetaceans and a 

different shared lesion in sirenians (Fig. S2), and the inferred ratio of non-synonymous-to-

synonymous substitutions (dN/dS) was not significantly different from one on the ancestral 

branches of both clades (cetacean ancestor dN/dS = 1.09, P = 0.79; sirenian ancestor dN/dS = 

1.20, P = 0.57). This suggests that PON1 lost functional constraint in the ancestral cetacean 

lineage soon after its split with the ancestral hippopotamid lineage, approximately 53 MYA 

(95% confidence interval lower bound: 34.5 MYA) (11, 17). In sirenians, functional loss 

occurred soon after their split with the ancestral elephantid lineage, approximately 64 MYA 

(lower bound 41.7 MYA) (17).

In pinnipeds, we observed clear evidence of PON1 functional loss only among a subset of 

species within family Phocidae, wherein Weddell seal and Hawaiian monk seal PON1 
sequences contained non-shared genetic lesions (Fig. S2). Because these branches are short, 

it is difficult to estimate precisely when functional loss occurred in pinnipeds; however, there 

was likely at least one loss since the Phocidae:Otarioidea split approximately 21 MYA (95% 

CI: 0 – 21 MYA). This incomplete loss could reflect either a difference between the selective 

environments experienced by pinnipeds and those experienced by other marine mammals, or 

it could reflect pinnipeds’ more recent colonization of the marine environment (pinnipeds: 

24 MYA, cetaceans: 44.7 – 37.3 MYA, sirenians: 47.1 – 43.9 MYA) (18).

PON1’s functional loss in marine mammals may be related to its role in lipid metabolism via 

fatty acid beta-oxidation (19) (Tables S6 and S7). Compared to their terrestrial relatives, the 

diets of both herbivorous and carnivorous aquatic mammals contain a higher proportion of 

w-3 relative to ω−6 polyunsaturated fatty acids (PUFAs) (20), and these PUFAs differ in 

their capacity to sustain oxidative damage (21). Marine and terrestrial mammals also have 

vastly different antioxidant profiles (22, 23), presumably due to the extreme oxidative stress 

experienced during diving, with repeated cycles of hypoxia and reperfusion. Rewiring of 

either lipid metabolism or antioxidant networks in ancient marine mammals could have 

obviated the function of PON1. Supporting the antioxidant hypothesis, the Weddell seal, 

which carries PON1 lesions, is one of the longest diving pinnipeds known, in contrast to the 

shorter diving walrus and Antarctic fur seal, which lack lesions but share an aquatic diet 

(24). However, two semi-aquatic mammals, the sea otter and the beaver, which are more 
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moderate divers (24), also have either lesions or substitutions at sites predicted to be 

necessary for PON1 function (Fig. S2; Table S8).

Whatever the cause, loss of PON1 function could carry negative pleiotropic consequences 

for the health of marine mammals repeatedly exposed to man-made organophosphate 

compounds. PON1 alone is protective against the highly toxic oxon forms of the heavily 

used pesticides chlorpyrifos and diazinon; these oxons are formed from the parent 

compounds in the environment and in vivo by cytochromes P450 (25) (Fig. 1B). We tested 

blood plasma from six marine and semi-aquatic species for capacity to hydrolyze these and 

other PON1 substrates (Figs. 2 and S3). The plasma from all but one of the assayed marine 

and semi-aquatic species showed activity levels against the PON1 substrates that more 

closely resembled those of the Pon1 knockout (Pon1−/−) mouse than those of terrestrial 

outgroups. Thus, the genetic deterioration of PON1 has left these species without a 

mechanism to break down specific neurotoxic compounds.

Given the sensitivity of Pon1−/− mice to organophosphate exposure (26), the inability of 

most marine mammal plasma to detoxify organophosphates suggests the potential for 

neurotoxicity if sufficient levels of these compounds accumulate in these animals’ habitats 

or food sources. In Florida, agricultural use of organophosphate pesticides is common, and 

runoff can drain into manatee habitats. In Brevard County, where an estimated 70% of 

Atlantic Coast manatees migrate or seasonally reside (27, 28), agricultural lands frequently 

abut manatee protection zones and waterways (Fig. 3). Limited sampling upstream of 

Manatee Bay has measured levels of chlorpyrifos as high as 0.023 μg/L (29), and levels 

could be much higher directly after pesticide applications (30). Dugongs may be at risk of 

exposure to organophosphorus pesticides that are used in the sugar cane industry along the 

Queensland coast and have been detected at 5 – 270 pg/L in coastal river systems (31). 

Carnivorous marine mammals may also ingest these compounds through their diets of 

invertebrates and fish, which have shown evidence of bioaccumulation of organophosphates 

in Arctic populations (32). In order to improve our understanding of the extent of exposure 

and attendant risk marine mammals face, we recommend increased monitoring of marine 

mammal habitats, as well as the testing of tissues from deceased animals for biomarkers of 

organophosphate exposure.

The presence of these potential risks to many marine mammals due to their loss of PON1 

function provides a clear example of the tradeoffs possible in evolution: although PON1 

functional loss was not deleterious and may even have been beneficial in ancestral marine 

environments, it may carry detrimental fitness consequences in modern environments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. PON1 functions and evolutionary history.
Illustration of PON1’s proposed roles in (A) preventing oxidative damage to low- and high-

density lipoproteins (14, 15) and (B) detoxifying the oxon byproduct/metabolite of a 

common organophosphorus pesticide, chlorpyrifos (25). (C) Evolutionary rate of PON1 
coding sequence across the phylogeny of 62 eutherian mammals. Branch lengths represent 

dN, and colors represent dN/dS (see color legend). dN/dS values greater than 1.2 were set to 

1.2. Blue: marine species. ψ: genetic lesion(s) present.
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Fig. 2. Blood plasma enzymatic activity against two organophosphate-derived substrates.
Points represent rates of hydrolysis of chlorpyrifos oxon (left) or diazoxon (right) in 

μmol/min/mL for plasma from marine and semi-aquatic species (in blue) and terrestrial 

outgroups. Values for sheep, goat, and rat are from Furlong et al. (33), who performed 

assays under the same experimental conditions as in this study. Control assays of alkaline 

phosphatase activity show samples were not degraded (Fig. S3).
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Fig. 3. Manatee and adjacency of its habitat to agricultural land use.
Left: Florida manatee (photo by Robert K. Bonde, 2006). Center: Manatee protection zones 

and agricultural land in Florida. Right: Manatee protection zones, waterways, and 

agricultural land in Brevard County.

Meyer et al. Page 12

Science. Author manuscript; available in PMC 2019 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Meyer et al. Page 13

Table 1.

Top 10 manually validated genes with evidence for marine-specific loss

Gene Loss rate (independent)

Marine loss 
rate 

(dependent)

Terrestrial 
loss rate 

(dependent) LRT statistic Empirical P-value FDR Description

PON1 0.672 49.7 0 22.24 3.08 × 10−6 0.0154 paraoxonase 1

ORIOZI 1.15 100 0.467 19.99 7.25 × 10−6 0.0201 olfactory receptor

OR8D4 1.25 100 0.510 19.21 1.60 × 10−5 0.0201 olfactory receptor

TAS2R1 1.32 100 0.535 19.20 1.60 × 10−5 0.0201 taste receptor

OR1F2P 2.03 100 1.18 15.86 5.40 × 10−5 0.0831 olfactory receptor

GSTM1 1.48 100 0.762 15.82 3.90 × 10−5 0.0831 glutathione S-
transferase mu 1

OR6K2 2.02 100 1.22 15.79 4.50 × 10−5 0.0831 olfactory receptor

OR51D1 1.13 49.3 0.466 15.59 8.60 × 10−5 0.0831 olfactory receptor

TAAR5 1.17 48.2 0.484 15.16 9.90 × 10−5 0.0936 trace amine 
associated receptor 
5

OR4C13 1.77 100 0.915 14.88 7.00 × 10−5 0.0972 olfactory receptor
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