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Abstract

Cognitive effort is typically aversive, evident in people’s tendency to avoid cognitively demanding 

tasks. The ‘cost of control’ hypothesis suggests that engagement of cognitive control systems of 

the brain makes a task costly and the currency of that cost is a reduction in anticipated rewards. 

However, prior studies have relied on binary hard versus easy task subtractions to manipulate 

cognitive effort and so have not tested this hypothesis in “dose-response” fashion. In a sample of 

50 participants, we parametrically manipulated the level of effort during fMRI scanning by 

systematically increasing cognitive control demands during a demand-selection paradigm over six 

levels. As expected, frontoparietal control network (FPN) activity increased, and reward network 

activity decreased, as control demands increased across tasks. However, avoidance behavior was 

not attributable to the change in FPN activity, lending only partial support to the cost of control 

hypothesis. By contrast, we unexpectedly observed that the deactivation of a task-negative brain 

network corresponding to the Default Mode Network (DMN) across levels of the cognitive control 

manipulation predicted the change in avoidance. In summary, we find partial support for the cost 

of control hypothesis, while highlighting the role of task-negative brain networks in modulating 

effort avoidance behavior.
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Introduction

Cognitive effort influences our everyday decisions about whether to perform challenging 

mental tasks. Most people prefer less cognitively effortful tasks when given a choice, a 

phenomenon known as ‘demand avoidance’ (Kool et al., 2010). However, it is not yet settled 

what cognitive and neural mechanisms underlie this avoidance behavior, or whether the 

deployment of these mechanisms varies among individuals.
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One account of demand avoidance behavior is the ‘cost of effort’ hypothesis, according to 

which the brain codes cognitive effort as disutility (Botvinick, 2007). Consistent with this 

hypothesis, the value of reward is discounted as a function of effort requirements 

(Westbrook et al., 2013). In the brain, this hypothesis predicts that this cost should be 

computed by the same networks that typically process reward, such as the mesolimbic 

dopaminergic system, including the medial prefrontal cortex and the ventral striatum (VS). 

This prediction is supported by at least one fMRI study which observed reduced activation 

in VS following effortful task performance (Botvinick et al., 2009). However, the 

engagement of these systems may be affected by whether one is performing the effortful 

task or selecting whether to perform it. For example, Schouppe et al. (2014) found that VS 

increased, rather than decreased, its activity during the selection of the effortful task. Thus, 

evidence that the brain registers effort as disutility has received limited, albeit conflicting, 

support.

A second question concerns what makes a task cognitively effortful. An influential 

hypothesis proposes that tasks are effortful to the degree that they recruit cognitive control. 

Thus, according to the “cost of control” hypothesis, cognitive control might be recruited to 

the degree that its associated costs do not exceed its anticipated benefits (Shenhav et al, 

2013). Consistent with this hypothesis, people avoid tasks that require more task switching 

(Kool et al., 2010), greater working memory load (Westbrook et al., 2013), and greater 

response conflict (Schouppe et al., 2014), all of which putatively require greater cognitive 

control.

Given the general association of cognitive control with a dorsal fronto-parietal network 

(FPN) in the brain (Fedorenko et al., 2013; Niendam et al., 2012; Badre & D’Esposito, 

2009; Vincent et al., 2008; Cole & Schneider, 2007; Dosenbach et al., 2007), a reasonable 

prediction is that engagement of FPN by a task will be associated with a tendency to avoid 

that task. At least one study has observed that participants who tended to avoid demanding 

tasks also showed increased FPN activity during effortful task performance (McGuire & 

Botvinick, 2010). However, this study contrasted only two effort levels and so had limited 

sensitivity to test whether cognitive control demands were associated, in a dose-response 

fashion, with changes in brain-behavior relationships within-subject. Further, this study 

focused on univariate activation change in FPN, but other evidence suggests that functional 

connectivity with the FPN may be important for cognitive effort (e.g., Ray et al., 2017).

Accordingly, in the present study, we sought to provide a more sensitive test of the brain-

behavior relationships predicted by the cost-of-control hypothesis. Specifically, we 

developed a parametric version of the Demand Selection Task (DST) paradigm for fMRI to 

sensitively test how incremental changes in activity and connectivity levels in FPN, the 

reward network, and/or other systems related to demand avoidance. Further, we addressed 

how these within-subjects effects were modulated by individual differences in demand 

avoidance versus demand seeking behavior. Using this approach, we observed only qualified 

support for the cost for control hypothesis, in that though FPN activity was related to effort 

avoidance, this relationship was not clearly mediated by the cognitive control manipulation, 

as opposed to other factors. However, we discovered that effort-related modulation of 
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regions corresponding to the “default mode network” were associated with effort-related 

changes in effort avoidance.

Methods

1.1. Participants

Twenty-eight right-handed adults (aged 18–35; 14 female) with normal or corrected to-

normal vision were recruited for the behavioral demand avoidance experiment (Experiment 

1) using Brown research subject pool. Fifty-six right-handed adults (aged 18–35; 26 female) 

with normal or corrected to-normal vision were recruited for the fMRI experiment 

(Experiment 2). Two participants withdrew from the fMRI study and did not complete all 

experimental phases. Two fMRI participants’ data were excluded due to an operator error 

that resulted in a failure to record behavioral data during scanning. One participant reported 

during debriefing that they failed to follow instructions. One participant was excluded due to 

head movement greater than our voxel size across all sessions. So, in total, data from six 

participants in Experiment 2 were excluded prior to analysis of the fMRI data. Thus, 50 

participants were included in the behavioral and fMRI analyses of Experiment 2. All 

participants were free of neurological or psychiatric conditions, were not taking drugs 

affecting the central nervous system, and were screened for contraindications for MRI. 

Participants provided informed consent in accordance with the Research Protections Office 

at Brown University.

1.2. Behavioral Task

In both the Experiment 1 and 2, participants performed a parametric variant of the demand 

selection task (DST; Fig 1). In an initial Learning phase, the participant associated virtual 

card “decks”, denoted by particular symbols, with a certain effort level through experience 

with trials drawn from that deck. Then, in a second Test phase, participants chose which 

deck they wished to perform (Selection epoch) and then performed the trials drawn from that 

deck (Execution epoch). A distinguishing characteristic of this version of the DST relative to 

prior versions is that we varied the effort level parametrically over six levels based on the 

frequency of task switching required by a deck. This allowed us to characterize the 

functional form of changes in behavior or fMRI signal due to our cognitive control 

manipulation. We now provide detail on each of these phases of the behavioral task.

1.2.1. The Task “Decks”—Throughout all phases of the experiment, participants 

performed trials drawn from virtual decks (Fig 1a). Blocks consisted of sequences of 13 

consecutive trials drawn from a given deck. On each trial, the participant categorized a 

presented digit as either odd/even (parity judgment) or greater/less than 5 (magnitude 

judgment). The color of a circle (green or blue) surrounding the digit cued whether to 

perform the parity or magnitude judgment on each trial based on a pre-instructed mapping. 

The participant indicated their categorization by pressing the left or the right arrow key on 

the keyboard. The response deadline was 1.5 sec. Trials were separated by .2 sec. Response 

mappings and color-to-task mappings were counterbalanced across participants. Digits 1–4 

and 6–9 were used with equal frequency across both tasks and were randomized for order of 

presentation.
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In order to manipulate cognitive effort across decks, we varied the frequency of task 

switching required by a particular deck (Fig 1b). The probability of switching tasks from 

trial to trial within a sequence drawn from each deck increased across 6 effort levels: 8%, 

23%, 38%, 54%, 69%, 85%. Note that the lowest effort level still included one switch. In 

this way, all effort levels included the same number of parity and magnitude trials. Thus, any 

differences in effort preference among these could not be attributed to differences in 

difficulty or effort between the tasks themselves. Likewise, we did not include “pure blocks” 

of only parity judgments or only magnitude judgments, as doing so would have made these 

decks qualitatively different from all other decks, in terms of the amount of each task being 

performed. Having the lowest effort level include one switch ensures that the only parameter 

that changes between effort levels is the frequency of task-switching. A higher frequency of 

task switching is associated with a higher experience of cognitive effort (Monsell, 2003), 

and has been shown to be aversive (Arrington & Logan, 2004). At the beginning of each 

block, a shape was presented for 1 sec to indicate which deck was being performed, and this 

shape was also tiled in the background throughout performance of the block. Participants 

were told that this shape represented the symbol on the back of the virtual card deck from 

which trials for that sequence were drawn. Each effort level was associated with a particular 

deck symbol. Participants were not told about this relationship, but could learn through 

experience that certain decks were more effortful than others to perform. The mappings 

between deck symbols and effort levels were randomized across participants.

1.2.2. Practice Phase—During an initial “Practice Phase” participants gained 

familiarity with the trial structure, the categorization decisions, and the color and response 

mappings. After being given instructions regarding the categorization and response rules 

(Fig 1a), they practiced two 13-trial blocks. Each task sequence included the presentation of 

a deck symbol, and the subsequent performance of 13 consecutive task-switching trials. In 

the first block of the Practice Phase, feedback was presented after the button press as either 

‘Correct’ in pink, ‘Incorrect’ in yellow, or ‘Please respond faster’ if the participant failed to 

answer in 1.5s. In the second block of the Practice phase, feedback was omitted as would be 

the case in the actual experiment. The deck symbols that participants encountered in the 

Practice Phase were for practice only and were not presented during the learning or test 

phases to avoid any association of error feedback with a particular deck symbol.

1.2.3. Learning Phase—In the Learning Phase (Fig. 1c), participants learned the 

association between 6 deck symbols and an effort level. Each deck was performed 15 times 

in random order. In both experiments, this phase was performed in a behavioral testing room 

outside the magnet.

1.2.4. Test Phase—In the Test Phase (Fig 1d), two decks were presented and the 

participant chose which they would like to perform (Selection epoch). The participants were 

told to freely choose between decks prior to a 3 sec deadline. We note that in contrast to 

other DST variants (Gold et al., 2014), participants in this task were not told about the 

difficulty manipulation to avoid biasing choices based on participants’ explicit beliefs about 

effort. Once the participant made their selection, the selected deck turned blue and both 

options remained on the screen until the end of the 3 sec deadline. In the event of a non-

Sayalı and Badre Page 4

Neuropsychologia. Author manuscript; available in PMC 2020 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



response, the same choice pair was re-presented at the end of the entire experiment until they 

made a decision. Each pair was selected from the set of fifteen unique (un-ordered) pair 

combinations of all six decks, excluding self-pairing (e.g., deck #1 paired with deck #1). 

Each deck was presented either on the left or the right side of the screen, counterbalanced 

for location across trials. The Selection epoch was followed by the execution of the selected 

effort level task sequence (Execution epoch). The sequence of events in this epoch was the 

same as during the Learning phase. We note that based on the self-selected execution of 

effort tasks in this phase, there were differences in the number of trials each individual 

performed at each effort level. Although this variability naturally alters our detection power 

for corresponding effort trials across individuals in the Test Phase, Learning phase ensured 

that people established stable behavior and effort associations with each level based on the 

same number of trials with each effort level prior to the Test phase

In the fMRI study, only the Test phase was performed in the MRI scanner, and participants 

used a MRI-compatible button box to indicate their decisions. The Execution trials were 

optimized as blocks. The behavioral and fMRI versions of the Test Phase was identical 

except the Selection and Execution events were separated in time by a jittered time interval 

(mean 2 secs) so that signal related to each could be analyzed independently. Despite the 

pseudo-randomization procedure adopted for the fMRI study, the mean time intervals (mean 

2 secs) between stimuli was identical across behavioral and fMRI versions of the Test Phase. 

The Test phase was separated into four, approximately 15 minute-long scanning runs. In 

each run, each pair was presented 3 times in a pseudo-randomly intermixed order, making a 

total of 180 decision trials across 4 blocks.

1.2.5. Post-experimental Debriefing Inventory—Upon the completion of the 

experiment, participants were asked to respond to 6 questions regarding their understanding 

of the task. The first 5 questions required text entry. The final question required participants 

to enter a number. The questions were as follows: 1) What do you think the deck symbols 

stood for?, 2) Was there any reason for why you selected certain decks in the last phase?, 3) 

Did you have a preference for any deck?, 4) What do you think the experimental 

manipulation was?, 5) Imagine somebody else is about to perform the same experiment. 

What advice would you give them? And, did you follow this advice?, 6) Please rate each 

deck symbol in terms of its difficulty (out of 6).

1.3. Behavioral Data Analysis

Trials with response times below 200 ms were excluded from further analysis. Execution 

trials on which participants missed the response deadline were also excluded from further 

analysis (approximately %1 of execution trials in both phases). Response times were 

calculated using only correct trials.

Choice behavior was assessed by calculating the probability of selecting an effort level 

across all selection trials on which that effort level was presented as an option during the 

Test Phase. The decision difference analyses included the calculation of the choice 

probability and the decision time to select the easier task across all decisions with the same 

difference in difficulty levels between effort options in the selection epoch of the Test Phase. 
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For example, choice probability associated with a difficulty difference of 1 would be 

computed by averaging the probability of choosing the easier task across all choice pairs that 

differed by 1 effort level (i.e., 1 vs 2, 2 vs 3, 3 vs 4, 4 vs 5 and 5 vs 6).

In order to appropriately test for changes in behavioral selection rates across effort levels 

while also defining group membership (i.e., Demand Avoiders or Demand Seekers) based on 

the same choice behavior, we conducted a permutation procedure (see Supplementary 

Methods 1).

Data were analyzed using a mixed-design analysis of variance (ANOVA) (within subject 

factor: Effort, between subject factor: Avoidance group). If the sphericity assumption was 

violated, Greenhouse-Geisser correction was used. Significant interactions were followed by 

simple effects analysis, the results of which are presented with False Detection Rate (FDR) 

correction. Alpha level of .05 was used for all analyses. Error bars in all figs stand for 

within-subject error.

1.4. MRI procedure

In the fMRI experiment (Experiment 2), whole-brain imaging was performed with a 

Siemens 3T Prisma MRI system using a 64-channel head coil. A high-resolution T1-

weighted 3D multi-echo MPRAGE image was collected from each participant for 

anatomical visualization. Each of the four runs of the experimental task involved around 

between 450 and 660 functional volumes depending on the participant’s response time, with 

a fat-saturated gradient-echo echo-planar sequence (TR = 2s, TE=28ms, flip angle = 90°, 38 

interleaved axial slices, 192 mm FOV with voxel size of 3×3×3 mm). Head motion was 

restricted with padding, visual stimuli were rear projected and viewed with a mirror attached 

to the head coil.

1.5. fMRI Analysis

Functional images were preprocessed in SPM12 (http://www.fil.ion.ucl.ac.uk/spm). Before 

preprocessing, data were inspected for artifacts and variance in global signal (tsdiffana, 

art_global,art_movie). Functional data were corrected for differences in slice acquisition 

timing by resampling slices to match the first slice. Next, functional data were realigned 

(corrected for motion) using B-spline interpolation and referenced to the mean functional 

image. 1–2 sessions were excluded from 3 other participants prior to behavioral analysis due 

to movement during data collection in the scanner. Functional and structural images were 

normalized to Montreal Neurological Institute (MNI) stereotaxic space using affine 

regularization followed by a nonlinear transformation based on a cosine basis set, and then 

resampled into 2×2×2 mm voxels using trilinear interpolation. Lastly, images were spatially 

smoothed with an 8 mm full-width at half-maximum isotropic Gaussian kernel.

A temporal high-pass filter of 128 (.0078 Hz) was applied to our functional data in order to 

remove noise. Changes in MR signal were modeled under assumptions of the general linear 

model (GLM). Two GLMs were devised: a linear effort-level GLM and an independent 

effort-level GLM. Both GLMs included nuisance regressors for the six motion parameters 

(x,y,z,pitch,roll,yaw) and four run regressors for the ‘Linear Effort-Level GLM’ and one run 

regressor for the ‘Independent Effort Level GLM’. The number of run regressors was 
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different across GLMs because ‘Independent Effort GLM’ included the regressor for each 

effort level separately. In this GLM, it was not possible to have 4 runs for each effort level 

since some participants did not choose to select from an effort level an entire run. Thus, in 

order to retain the entirety of the dataset, we collapsed all trials across runs for each effort 

level.

1.5.1. Linear Effort-Level GLM—The linear effort-level GLM tested which voxels in 

the brain parametrically increased or decreased linearly with effort level. Two event 

regressors were used. Execution events were modeled as a boxcar that onset with the 

presentation of the first trial stimulus of the sequence and ended with the participant’s 

response to the final item. Thus, the duration of this boxcar varied as a function of response 

time. Second, the Selection event regressor modeled each selection choice event with a fixed 

boxcar of three secs. We used parametric modulators on these event regressors to test the 

linear effect of effort level. The Execution event regressor was modulated by an Effort Level 

parametric regressor corresponding to the effort level of that task sequence (1 through 6). 

The Selection event regressor was modulated by (a) an Effort Level parametric regressor 

based on the chosen effort level (1 through 6), and (b) a Difference regressor that scaled with 

the difference between the chosen and the unchosen effort option on that selection trial (1 

through 5). Note that as implemented by SPM, each parametric regressor includes only the 

variance unique to it and shared with those ordered after it. Thus, for example, the Effort 

Level regressor includes variance explained over and above that shared with the Execution 

event regressor. The Difference regressor did not yield statistically reliable results and is not 

discussed further. The Execution and Selection event regressors, along with their parametric 

modulators, were modeled separately for each scanning run within the GLM.

1.5.2. Independent Effort Level GLM—The independent effort level GLM sought to 

characterize the signal change related to each effort level independently of each other or of 

any particular function (e.g., linear). This GLM included twelve event regressors, one for 

each effort level (1 through 6) by epoch (Execution and Selection). Events in the Execution 

regressors were modeled as boxcars that onset with the presentation of the first trial stimulus 

of the sequence and ended with the participant’s response to the final item. Events in the 

Selection regressors were modeled with an 3 sec boxcar at the onset of each choice pair. The 

Selection onset regressor was further modulated by a parametric Difference regressor that 

scaled with the difference between the chosen and the unchosen effort option on that 

selection trial. Boxcars and durations were the same as in the linear effort level model. In 

this GLM, four run epochs and a linear drift over the whole experiment were included as 

nuisance regressors.

For both GLMs, SPM-generated regressors were created by convolving onset boxcars and 

parametric functions with the canonical hemodynamic response (HRF) function and the 

temporal derivative of the HRF. Beta weights for each regressor were estimated in a first-

level, subject-specific fixed-effects model. For group analysis, the subject-specific beta 

estimates were analyzed with subject treated as a random effect. At each voxel, a one-

sample t-test against a contrast value of zero gave us our estimate of statistical reliability. For 

whole brain analysis, we corrected for multiple comparison using cluster correction, with a 
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cluster forming threshold of α = .001 and an extent threshold, k, calculated with SPM to set 

a family-wise error cluster level corrected threshold of p<.05 for each contrast and group 

(See Table S1). Note that the higher cluster forming threshold helps avoid violation of 

parametric assumptions such that the rate of false positive is appropriate (Eklund et al., 

2016; Flandin & Friston, 2016).

1.5.3. ROI analysis—ROI definition is described below. For each ROI, a mean time 

course was extracted using the MarsBar toolbox (http://marsbar.sourceforge.net/). The GLM 

design was estimated against this mean time series, yielding parameter estimates (beta 

weights) for the entire ROI for each regressor in the design matrix.

1.5.3.1. Independent ROIs: In order to test the cost of control hypothesis, we defined a 

fronto-parietal control network ROI defined from a functionally neutral group ([Network 12] 

Yeo et al., 2011) along with a VS ROI (Badre et al., 2014), as VS activity has been 

consistently observed in cognitive effort literature (Botvinick et al., 2009; Schouppe et al., 

2014). We also included a Default Mode Network ROI from a functionally neutral group 

([Network 16] Yeo et al., 2011). A priori DMN regions included ventromedial prefrontal 

cortex (vmPFC), orbitofrontal cortex, posterior cingulate cortex and parts of precuneus. A 

priori FPN regions included bilateral lateral prefrontal cortex, bilateral parietal cortex and 

SMA.

1.5.3.2. PCA ROIs: Our study is the first to parametrically manipulate implicitly learned 

effort cost/values in DST in fMRI. Though we a priori conceived of these effort levels as 

being linear, and so showing a linear brain response, we acknowledge that this need not be 

the case. As such, we wanted to be sure that our a priori expectation of a linear response 

function with increasing effort, as tested in the parametric GLM, did not cause us to 

systematically miss networks of the brain that code effort according to a different functional 

form, but that are relevant signals for the behavioral decision. In order to have an unbiased 

analysis of the neural response function across effort levels, we adopted a data-driven 

Principal Component Analysis (PCA) approach on the whole brain (126,866 voxels) to 

explore the shape of the neural functions of different brain areas that respond to effort 

execution, and their relation to demand avoidance behavior. We ran the PCA over averaged 

β estimates of each voxel in the whole brain as they were derived from the Independent 

Effort Level GLM task Execution Level 1–6 onset regressors across all participants. 

Therefore, PCA was conducted on a total of 126,866 observations and 6 variables.

We ranked all voxels as a function of PC weight and extracted the first 3000 voxels that 

loaded the highest (Positive PC) and the least (Negative PC) on the selected components as 

separate ROIs (Decot et al., 2017). These ROIs further have been analyzed to yield beta 

estimates for each Positive and Negative PC. The number of voxels to select (3000) was an 

arbitrary cut off and was not chosen after looking at the results. However, to ensure that 

outcomes did not depend on this choice, we also tried different numbers of voxels, such as 

500 and 10,000, and did not find a qualitative change in average beta estimates ROIs yield.

1.5.3.3. Functional connectivity analysis: For each participant, functional connectivity 

analysis was implemented in MATLAB using the CONN toolbox (http://www.nitrc.org/
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projects/conn; Whitfield-Gabrieli & Nieto-Castanon, 2012). CONN uses the CompCor 

method (Behzadi et al., 2007) which segments white matter (WM) and cerebrospinal fluid 

(CSF), as well as the realignment parameters entered as confounds in the first-level GLM 

analysis (Behzadi et al., 2007), and the data were band-pass filtered to 0.01 Hz to 0.1 Hz.

We conducted an ROI-to-ROI analysis to test the functional connectivity between and within 

the first principal component clusters identified in the PC analysis for the entire sample. PC 

clusters further have been separated into smaller spatially independent clusters in order to 

conduct within-PC connectivity analysis. Positive PC1 yielded 4, and Negative PC1 yielded 

8 spatially independent clusters. Accordingly, 4 Positive PC1 clusters and 8 Negative PC1 

clusters were included as ROIs. Fisher’s Z-transformed correlations were computed for each 

ROI pair.

Next, we focused on two connectivity measures. First, we calculated the average 

connectivity Between Positive-Negative PC1, within Positive PC1 and within Negative PC1 

clusters at each effort execution level, in order to observe the connectivity change in these 

measures with increasing effort execution. Next, we collapsed connectivity coefficients for 

Between Positive-Negative PC1, within Positive PC1 and within Negative PC1 across effort 

levels and compared average connectivity rates between demand groups. The results of the 

connectivity analysis did not yield statistically reliable results and they are reported in 

Supplementary Results 6.

1.6. Brain – behavior analysis

In order to understand which brain regions that underlie effort execution predict effortful 

task selection, all PCs as well as the connectivity measures were related to the selection 

behavior during the Selection Epoch. We analyzed this relationship in two ways: 1) 

correlating the change in effort selection rates to the change of brain activity during task 

execution across effort levels (‘Effort level’), 2) correlating individual effort selection rate to 

the brain activity during task execution at that effort level (‘Individual task selection’), 

unranked with respect to task switching frequency. The former analysis focuses on activity 

change in a brain region due to the task-switching manipulation. The latter considers how 

overall activity levels, independent of a linear task-switching manipulation, correlate with 

effort avoidance.

For the ‘Effort level’ analysis, we computed the slope of the linear function for the selection 

rates, β estimates of a PC ROI across effort levels and connectivity coefficients of within and 

between PCs. We multiplied the slope we obtained from the selection rates with −1, in order 

to indicate that decreasing likelihood to select more effortful tasks are conceptualized as 

‘demand avoidance’ in our task. Then, we correlated the demand avoidance slopes and the β 
estimate slopes for all Demand Avoiders, in order to address the role of this region in 

explaining individual variability in demand avoidance behavior.

For the ‘Individual task selection’ analysis, we correlated the β estimate of an ROI at each 

effort level execution with the selection rate of the corresponding effort level to derive a β 
value for each participant. This resulting β value indicates the relationship between selecting 
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an effort level given the estimated activity in this region, without presupposing a linear effort 

manipulation.

In order to test the effects of brain and performance on selection behavior, while accounting 

for individual variability within demand groups, we adopted the following mixed effects 

hierarchical regression model:

yi = Xi β + s j i + m i + ϵ

s j ∼ N 0, Σs , ϵ ∼ N 0, σ

Here, yi is the ith observed selection rate, Xi is a matrix of predictors (brain activity) and 

covariates (performance), βi is a vector of coefficients (as in conventional linear regression), 

j[i] is the subject of the ith observation, so that sj[i] is a subject-specific perturbation of all of 

the coefficients.

This fitting procedure was implemented using the R package blme, which includes the lme4 

package (Bates et al., 2015) and performs maximum-a-posteriori estimation of linear mixed-

effects models.

2. Results

2.1. Demand avoidance behavior

Experiment 1 established the basic behavioral effects of our parametric effort manipulation 

on performance. Overall, participants were highly accurate on the categorization task across 

both phases (mean error: 12% in the Learning Phase, 15% in the Test Phase), and 

participants missed the deadline on few trials (2.3% of Learning phase trials, SE=0.003, 

1.4% of Test phase trials, SE=0.01).

Both RT and error rates showed a linear effect of effort condition, increasing with a higher 

proportion of task switches across both switch and repeat trials. There was a significant 

effect of Effort on error rates, (F(2.76,74.53)=29.88, p< .001, ηp
2 =.53) and RT 

(F(2.69,72.71)=131.17, p< .001, ηp
2 =.83). And, the increase in both was linear over effort 

levels (errors: F(1,27)=61.17, p< .001, ηp
2 =.69; RT: F(1,27)=248.19, p< .001, ηp

2 =.90). 

These increases were also significant for both switch and repeat trials tested separately 

(switch errors: F(1,27)=29.73, p< .001, ηp
2 =.52 ; repeat errors: F(1,27)=42.59, p< .001, ηp

2 

=.61; switch RT: F(1,27)=0.37, p < .001, ηp
2 =.61 ; repeat RT: F(1,27)=42.89, p< .001, ηp

2 

=.61).

During the Selection phase, 25 of the 28 participants (89%) selected the easier task more 

than 50% of the time overall (Fig 2A). Further, there was a significant effect of effort level 

on choice behavior, (F(5,135)=7,23, p< 001, ηp
2 =.21), such that higher effort levels were 

associated with higher avoidance rates than lower effort levels (Fig 3A). This pattern across 

effort levels was fit by a linear effect (F(1,27)=24.54, p<.001, ηp
2 =.48). The probability of 
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selecting the easier task also significantly changed depending on the difference between 

effort levels given as options (F(3,81.09)=6.07, p=.001, ηp
2 =.18), such that larger 

differences increased the probability of choosing the easier task. This effect was linear 

across effort levels (F(1,27)=16.83, p<.001, ηp
2 =.38). Decision time (Fig 3A) was mostly 

unaffected by effort level with only a marginal omnibus effect of effort level on decision 

time (F(2.98,80.56)=2.62, p=.06, ηp
2 =.09) and no effect of difficulty difference.

Experiment 2 applied the same behavioral task as in Experiment 1, but the Test phase was 

scanned using fMRI. As with Experiment 1, performance on the categorization task was 

strong overall (mean error: 12%) with relatively few omissions (<1.5% of trials). Also as 

with Experiment 1, both RT and error rates showed a linear effect of effort, indicating that 

our effort manipulation was successful in increasing task difficulty (errors: F(1,49)=49.11, 

p< .001, ηp
2 =.50; RT: F(1,49)=190.48, p< .001, ηp

2 =.80). And, these effects were evident 

on both Switch and Repeat trials except for Switch RT (switch errors: F(1,49)=47.67, p< .

001, ηp
2 =.49 ; repeat errors: F(1,49)=20.37, p< .001, ηp

2 =.29; switch RT: F(1,49)=0.36, p 
= .55, ηp

2 =.01 ; repeat RT: F(1,49)=635.24, p< .001, ηp
2 =.93)

Unlike in Experiment 1, Experiment 2 participants did not consistently avoid the effortful 

task as a group during the Selection phase. Rather, nearly half of participants (N=24) 

selected the harder task more than 50% of the time (Fig 2B). This suggests that, as a group, 

participants were not avoiding the effortful change more than one expects by chance.

Importantly, however, the diagnostic feature of demand avoidance in our paradigm is the 

linear change in selection rates across effort levels, as observed in Experiment 1. Therefore, 

if the subgroup with overall easier task selection rates above 50% (Demand Avoiders) are 

engaged in effort avoidance, we should also see a linear change in their selection rates across 

effort levels as was observed in Experiment 1. Likewise, those with selection rates below 

50% (Demand Seekers) might show the opposite pattern, with a linearly increasing tendency 

to choose the harder task. Using a permutation procedure and independent samples of the 

data (see Supplementary Methods 1 for details), we showed that these selection rate patterns 

were consistent with participants’ demand group and were not explainable in terms of 

chance or a selection bias (see Supplementary Results 1). Rather Demand Avoidance versus 

Demand Seeking appeared to reflect an individual difference.

Our analysis showed that overall demographics between demand groups was similar. There 

were no age (Demand Avoiders: M= 22.12, SD= 3.20; Demand Seekers: M= 21.45, SD= 

2.99) or gender differences (Demand Avoiders: Nfemale=11, Nmale=15; Demand Seekers: 

Nfemale=14, Nmale=10) between demand groups (age: F(1,49)=0,56, p= .46; gender: X2 (1, N 

= 50) = 1.28, p=.40).

Post-experimental debriefing inventory results showed that participants were mostly 

unaware of the difficulty manipulation across effort tasks. Only 11 out of 50 participants 

reported that they noticed a difficulty difference between decks. Further, free text responses 

showed that even the “aware” participants were not completely sure about the exact 

difficulty ranking across decks. The final inventory asked participants to rate the difficulty of 
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each deck out of 6. Across participants and decks, average rating accuracy was 15%, 

consistent with chance level or 1 out of 6 rated correctly.

RTs but not error rates (Table S2) across effort levels and experimental phases differed 

across demand groups (errors: F(1,48)=1.81, p= .19, ηp
2 =.04; RT: F(1,48)=6.21, p= .02, ηp

2 

=.12). Demand Avoiders had faster RTs compared to Demand Seekers in both phases. Both 

RT and error rates showed a linear effect of effort, indicating that our effort manipulation 

was successful in increasing task difficulty (errors: F(1,48)=72.43, p< .001, ηp
2 =.60; RT: 

F(1,48)=363.90, p< .001, ηp
2 =.88). RTs but not error rates showed improvements across 

experimental phases (errors: F(1,48)=1.01, p= .32, ηp
2 =.02; RT: F(1,48)=113.49, p< .001, 

ηp
2 =.70).

For Demand Avoiders, there was a significant effect of effort level on choice behavior, 

F(5,125)=8.24, p < .001. Similar to the pilot behavioral study, they were significantly less 

likely to choose an effort level with increasing effort requirement; there was a significant 

linear effect, F(1,25)=31.46, p < .001. There was a significant effect of effort level on 

decision time F(5,125)=3.05, p = .01. The decision time to select an effort level linearly 

increased with increasing effort levels, F(1,25)=6.34, p= .02. For Demand Seekers, there was 

a significant effect of effort level on choice behavior, F(3.22,73.98)=4.67, p < .01. They 

were significantly more likely to choose an effort level with increasing effort requirement, 

there was a significant linear effect, F(1,23)=34.20, p < .001. The decision time to choose an 

effort level was similar (M= 1.00 s., SD= 0.25) across all effort levels, F(2.88,66.25)=2.55, 

p= .07.

In order to test selection rates relative to a common baseline, we recalculated overall 

probability of selecting the easier task separately for only choices when a higher effort level 

(effort level 2,3,4,5,6) was paired with the lowest effort level (effort level 1). Consistent with 

our original grouping procedure, the probability of selecting the easier task across these 

pairs significantly differed between demand groups, with Demand Avoiders selecting the 

easiest effort level more than Demand Seekers each time the easiest task was paired with a 

higher effort level (Demand Avoiders: M= .72, SD= 0.04; Demand Seekers: M= .39, SD= 

0.04; F(1,48)=36.76, p<.001, ηp
2 =.43). Selection rates across demand groups were similar 

between pairs (F(3.42,164.36)=0.36, p=.81, ηp
2 =.01), indicating that participants’ 

preferences for the easiest task were stable regardless of the effort level it was paired with.

In order to examine the effects of time on effort selection behavior, overall probability of 

selecting the easier task was calculated separately for each of the four blocks of the Test 

Phase. Probability of selecting the easier task did not change across Test blocks 

(F(2.59,124.22)=0.14, p=.92, ηp
2 =.003), indicating that participants’ effort selection were 

consistent across time. Furthermore, the consistency in selection behavior did not change 

between demand groups (F(2.59,124.22)=1.60, p=. 20, ηp
2 =.03).

Additionally, we tested the effects of performance and task-switching probability on effort 

selection behavior using hierarchical regression analysis. First, Error Rates during task-

execution did not predict deck selection for either Group (Demand Avoiders: Mβ=−0.28., 

SDβ=0.19, t(156) = −1.48, p = .14; Demand Seekers: Mβ=0.08., SDβ=0.11, t(144) = 0.67, p 
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= .50). RT during task execution predicted demand avoidance only in the Demand Avoider 

group (Demand Avoiders: Mβ=−0.44., SDβ=0.09, t(156) = −2.34, p = .02; Demand Seekers: 

Mβ=0.35., SDβ=0.20, t(144) = 1.73, p = .09), indicating that Demand Avoiders selected 

those tasks that yielded the least time-on-task.

Next, we tested the effects of task-switching probability on the selection rates in the 

presence of RT in order to see if our linear effort manipulation predicted demand avoidance 

over and beyond RT during task-execution. Demand Avoiders reliably selected those tasks 

that required the least task-switching, whereas Demand Seekers sought them (Demand 

Avoiders: Mβ=−0.34., SDβ=0.03, t(156) = −5.82, p < .001; Demand Seekers: Mβ=0.24., 

SDβ=0.06, t(144) = 4.09, p < .001). The effects of RT were not longer significant when task-

switching probability was added to the model (Demand Avoiders: Mβ=−0.07., SDβ=0.18, 

t(156) = −0.37, p = .71; Demand Seekers: Mβ= 0, SDβ=1.05, t(144) = 0, p = .99), indicating 

that selection behavior was explained better with our linear task manipulation than time-on-

task during task execution.

In summary, the behavioral data provide evidence for two groups of participants that differed 

in their effort choices despite no demographic or performance differences between them 

except overall faster RTs for Demand Avoiders. Demand Avoiders (Fig 3B) showed a 

decreasing tendency to choose a task as more cognitive effort is required. Demand Seekers 

(Fig 3C) exhibited the opposite pattern (see Supplementary Results 2 for additional 

analysis). This pattern in effort selections was mostly captured by our linear effort 

manipulation on task-switching probability for both demand groups. We note that based on a 

behavioral experiment reported in the Supplementary materials (see Supplementary Results 

9), this higher tendency to seek demand in the fMRI group versus the behavioral group may 

reflect a self-selection bias. Specifically, those who volunteer for fMRI tended to score 

higher on the Need for Cognition scale, and so might be more likely to be demand seeking. 

These behaviorally defined groupings were maintained throughout the subsequent fMRI 

analyses in order to address individual differences.

2.2. The functional form of univariate brain activity over effort levels

We investigated the pattern of activation in independent ROIs based on our a priori 
hypotheses, in order to examine their underlying neural function across the execution of 

increasing effort levels (The results of the selection epoch analysis are reported in 

Supplementary Results 4). We defined ROIs in the FPN (Network12; Yeo et al, 2011), DMN 

(Network16; Yeo et al., 2011), and/or ventral striatum (VS; Badre et al., 2014), as described 

in 1.5.3. Then, using the “Independent Effort Level GLM” (see 1.5.2), we estimated the 

activation in the network for each effort level separately. These estimates are plotted in Fig 

4.

As expected, the FPN ROI showed a linear trend across effort levels (Fig 4B). There was a 

significant effect of effort on FPN β estimates, F(5,240)=5.19, p< .001, ηp
2 =.10. The β 

estimates linearly increased with increasing effort requirements of the task, F(1,48)=20.85, 

p< .001, ηp
2 =.30. There was no effect of avoidance group on β estimates, F(1,48)=0.57, 

p= .45, ηp
2 =.01.

Sayalı and Badre Page 13

Neuropsychologia. Author manuscript; available in PMC 2020 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The DMN showed a negative linear trend in activation across effort levels (Fig 4A). There 

was a significant effect of effort on DMN β estimates, F(5,240)=4.18, p= .001, ηp
2 =.08. The 

β estimates linearly decreased with increasing effort requirements of the task, F(1,48)=9.77, 

p < .01, ηp
2 =.17. There was no effect of avoidance group on β estimates, F(1,48)=1.06, p= .

31, ηp
2 =.02.

An ROI in VS also showed a negative linear trend (Fig 4C). There was a significant effect of 

effort on VS β estimates, F(3.26,156.52)=5.94, p = .001, ηp
2 =.11. The β estimates linearly 

decreased with increasing effort requirements of the task, F(1,48)=9.40, p < .01, ηp
2 =.16. 

There was no effect of avoidance group on β estimates, F(1,48)=0.32, p= .58, ηp
2 =.01. We 

note that in all cases a linear function was the curve of best fit relative to alternatives 

(summarized in Supplementary Table S3), with the exception of VS that, though showing a 

reliable linear function, was better fit by a quadratic due to an apparent asymptote at level 4.

In order to ensure that our ROI approach did not exclude regions or networks outside of our 

a priori defined ROIs, we conducted whole brain analyses based on parametric contrasts 

across effort levels. As described in the Supplementary Results 3 and plotted in Figure 5, the 

results of these whole-brain analysis results were consistent with the ROI analyses.

Finally, we conducted a whole brain PCA analysis to ensure that other networks or clusters 

of voxels do not hold non-linear functions with increasing effort execution that might 

influence avoidance behavior, but that would not be detected by the linear parametric 

regressor used in the GLM or by our ROIs. Thus, we adopted a PCA approach to the whole 

brain analysis. This analysis is used to identify a small set of variables that explain the 

maximum amount of variance in a large data set. In our case, we used the PCA to identify 

voxels in the whole brain that share a similar underlying activation functional form across 

the execution of effort levels.

From 126,866 voxels included in the analysis, the PCA located 3 PCs that explained 90% of 

the variance of the data. The first PC explained 57% of the variance. The percent variance of 

the data explained by each subsequent PCs reached asymptote by 4–5 PC, and 5 PCs 

explained 100% of the total variance (Fig S2). We extracted 3000 voxels that loaded the 

most positively (Positive PCs) and most negatively (Negative PCs) on each component and 

extracted their ββ in order to observe the functional form of each PC.

Positive PC1 (Fig S3, Table S4) overlapped with the frontoparietal network, and included the 

left SMA, left superior parietal lobule, left middle frontal gyrus, left inferior frontal gyrus. 

As we observed in Parametric+ whole-brain analysis, there was a significant effect of effort 

on FPN cluster β estimates as defined by Positive PC1, F(3.84,184.18)=19.08, p< .001, ηp
2 

=.28. The β estimates from these voxels linearly increased with increasing effort 

requirements of the task, F(1,48)=69.24, p< .001, ηp
2 =.59. This converges with the 

preceding a priori ROI analyses and indicates that the most voxel-wise variance in effort 

execution can be explained by a linear trend in the brain regions that contribute to controlled 

behavior.

Negative PC1 (Fig S3, Table S5) overlapped with the DMN, and included the medial 

prefrontal cortex, posterior cingulate cortex, left and right angular gyrus, left and right 
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temporal gyrus, and left and right inferior frontal gryus. The β estimates linearly decreased 

with increasing effort requirements of the task, F(1,48)=27.45, p< .001, ηp
2 =.36.

Overall, PCA results indicate that a linear function explained more than 50% of the voxel-

wise variance in the shape of activation function across effort levels with Positive PC1 

showing a positive trend and Negative PC1 showing a negative trend (see Supplementary 

Results 5 for Positive and Negative PC2 and PC3). We note that the Positive PC1 has a close 

correspondence to the a priori defined FPN, and the Negative PC1 has a similar relationship 

to the DMN (see Figure S4). However, these correspondences are not perfect with 

substantial components of each of the a priori networks not showing clear positive or 

negative linear patterns. The PCA is an unbiased means of defining regions that show a 

linear pattern across effort levels. Thus, we use the PCA definition for subsequent analyses. 

However, in order to make its relationship to the a priori networks clearer, we refer to these 

ROI definitions from the PCA as the “Fronto-Parietal Component” and the “Default Mode 

Component”. We also performed all analyses in the a priori defined networks and report 

these analyses in Supplementary Results 8.

2.3. Brain – Behavior Analysis

Having established the functional form of activity change across effort levels, we tested 

whether brain regions tracking effort execution predicted effort selections. Two correlation 

techniques were adopted to examine the type of brain-behavior relationship: 1) relationship 

between brain activity and effort selection rate at each effort level (‘Individual task 

selection’), 2) relationship between change in brain activity and change in effort selection 

rates across effort levels (‘Effort Level’). As ‘Individual Task Selection’ analysis did not find 

statistically reliable effects, we report the results of this analysis in Supplementary Results 7.

‘Effort Level’ analysis showed that change in Fronto-Parietal Component during task 

execution across effort levels (i.e., due to the task switching manipulation) did not reliably 

predict change in effort selection rates in demand avoiders (r(24) = .17, p=.41). For demand 

seekers, there was a marginal negative correlation between demand avoidance and Fronto-

parietal Component change across effort levels (r(22) = −.40, p=.052). Thus, to summarize, 

we did not find evidence that Fronto-Parietal Component activation and task selection was 

related to the parametric effort manipulation in demand avoiders. By contrast, demand 

seeking behavior in demand seekers marginally increased with increasing Fronto-Parietal 

Component activity change (Fig 6). We emphasize that the latter observation was not 

statistically significant, and so does not provide evidence of a relationship between 

activation in FPN and effort selection. Nevertheless, even if one were to accept the marginal 

effect, the non-significant trend is incongruent with the ‘cost of control’ hypothesis, such 

that greater FPN recruitment during harder tasks yielded greater effort selection in demand 

seekers. However, the Demand Group × Fronto-Parietal Component slope interaction was 

statistically unreliable (b= 0.60, t(46) = 1.75, p= .09), indicating that the relationship 

between Fronto-Parietal Component slope and demand avoidance did not change as a 

function of demand group.

The Default Mode Component, by contrast, did show this relationship (Fig 6). Pearson 

correlation between Default Mode Component β estimate slopes and demand avoidance 
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behavior across Demand Avoider participants was significant (r(24) = .49, p =.01). In other 

words, those individuals who had shallower Default Mode Component slopes (i.e., more 

positive, less deactivated) across effort levels during task execution showed greater demand 

avoidance. This relationship was absent for Demand Seekers (r(22) = −.28, p =.19). The 

Demand Group* Default Mode Component slope interaction was statistically reliable (b= 

0.99, t(46 = 2.44, p = .02). In follow up tests, however, we did not find that these differences 

between the Fronto-Parietal Component and Default Mode Component ROIs were 

statistically reliable. Thus, we find evidence for a relationship between effort selection and 

the change in activation across effort levels in Default Mode Component in Demand 

Avoiders. However, though we do not find evidence of this relationship for Fronto-Parietal 

Component, we also do not have evidence that this difference distinguishes these brain 

networks.

Additionally, we tested for the relationship between connectivity within and between Fronto-

Parietal Component and Default Mode Component and demand avoidance, in order to see if 

individual differences in connectivity predict effort selections. Neither connectivity within 

nor between these networks correlated with behavioral avoidance rates (see Table S6). Thus, 

together with our analysis on connectivity change across effort levels (see Supplementary 

Results 6), we found no evidence that changes in connectivity were related to either the 

experience or behavior related to cognitive effort.

Effortful task-execution naturally comes with performance costs such as increased error 

rates and response times. Thus, the higher likelihood of time on task or errors might lead to 

demand avoidance as well. In order to differentiate the role of performance measures from 

that of Default Mode Component in demand avoidance, we next regressed out the role of 

performance from brain-behavior relations. A stepwise multiple regression was conducted to 

evaluate whether Default Mode Component slope, RT slope and ER slope were necessary to 

predict selection slope in Demand Avoiders. At step 1, the Default Mode Component slope 

entered into the regression equation and was significantly related to selection slope (Default 

Mode Component slope: b = .59, t(24) = 2.78, p = .01). The multiple correlation coefficient 

was .49, indicating approximately 24% of the variance of the selection slope could be 

accounted for by Default Mode Component slope. At step 2, ER and RT slopes were 

regressed out of the selection slope, and Default Mode Component slope entered into the 

regression on the residuals of ER and RT slopes. Default Mode Component slope still 

reliably predicted the selection slope even after the effects of ER and RT were removed 

(Default Mode Component slope: b = .58, t(22) = 2.41, p = .03, R2=.16), indicating that 

change in Default Mode Component activity during effort execution predicted change in 

effort selections over and beyond what could be attributed to the change in performance. 

However, we do note that the a priori ROI definition of DMN no longer predicted demand 

avoidance when the effects of performance were controlled (p = .09). As discussed below, 

this difference likely arose due to the substantially broader ROI for the a priori definition.

Next, we tested the effects of performance and task-switching on Fronto-Parietal Component 

activity. For Demand Avoiders, task-switching probability predicted Fronto-Parietal 

Component recruitment over and beyond performance measures (Mβ=0.20., SDβ=0,06, 

t(153.86) = 3.10, p < .01). For Demand Seekers, both ER and task-switching probability 
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explained Fronto-Parietal Component recruitment (ER: Mβ=−0.90, SDβ=0.32, t(15.5) = 

−2.76, p = .01; TS: Mβ=0.24., SDβ=0.07, t(60.43) = 3.51, p < .001). Comparison of the 

models with ER and without ER showed that, the inclusion of ERs in the model predicting 

Fronto-Parietal Component significantly improved goodness of fit compared to the model 

that only included task-switching probability (X2 (2) = 12.09, p < .01), indicating that for 

Demand Seekers, Fronto-Parietal Component recruitment was best explained by a 

combination of task-switching probability and error signals. Thus, for demand seekers, effort 

tasks that yielded greater task-switching probability and smaller error rates predicted greater 

Fronto-Parietal Component recruitment during task-execution. In other words, FPN 

recruitment increased during blocks participants showed greater accuracy on difficult trials.

Overall, we have observed that change in Default Mode Component predicts change in effort 

selection as a function of effort levels in Demand Avoiders over and beyond what can be 

explained by performance measures ER and RT. Fronto-Parietal Component activation did 

not predict effort selections in Demand Avoiders, and marginally predicted demend seeking 

behavior in Demand Seekers.

Discussion

Here, we aimed to rigorously test the ‘cost of control’ hypothesis of effort by using a 

parametric version of DST and observing brain activity in two separate epochs of effort-

based-decision-making. The ‘Cost of control’ hypothesis makes two core proposals: 1) effort 

registers as disutility by the brain, 2) the cost derives from cognitive control demands. Thus, 

we predicted that increasing effort would decrease brain activity in the reward network and 

increase control-related brain activity in FPN. And, further, FPN-activity due to effort 

execution would predict effort selection. We found only partial support for these predictions, 

and rather located unexpected evidence that engagement of the DMN (or failure to 

disengage) due to effort during a task influences effort-based decisions. We consider each of 

these findings in turn.

Consistent with the idea that effort might register as disutility, we observed that reward 

network, including VS, vmPFC and PCC, linearly reduced activity as a function of 

increasing effort execution, providing support for the ‘cost of effort’ hypothesis and 

consistent with prior reports (Schouppe et al., 2014; Botvinick et al., 2009). We also 

observed a saturating decrease in VS activation as effort levels increased, consistent with 

observations by Botvinick et al. (2009). However, VS activity during task execution did not 

predict effort selections (Supplementary Results 8), indicating that effort costs, as tracked by 

VS during task-execution, do not directly influence demand avoidance behavior in DST 

paradigms in the absence of monetary reward. Nevertheless, we only scanned during the 

“Test phase” when the association of effort with the different task conditions had already 

been established. It is reasonable to hypothesize that the costs computed by VS may be 

differentially important during the “Learning phase” when effort associations are being 

acquired. This will be an important target of future research.

To test the hypothesis that effort costs arise from engagement of the cognitive control 

system, we manipulated effort by varying cognitive control demands in a task-switching 
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paradigm. Consistent with the literature that implicates FPN activity in tasks demanding 

cognitive control, we observed that most of the variance in our data could be explained by a 

linearly increasing activation function in this network with increasing task-switching 

probability.

Under the cost hypothesis, we would expect that effort seekers would be different from 

Demand Avoiders in four ways: less FPN activity, smaller error rates, and shorter response 

times or greater VS activity. These neural and behavioral markers would indicate that 

Demand Seekers either exerted less effort than Demand Avoiders or that they valued effort 

exertion more than Demand Avoiders. However, the results show that there was no 

difference in error rates or neural recruitment between demand groups. Moreover, contrary 

to the expectations of the cost hypothesis, Demand Avoiding participants had overall faster 

response times compared to Demand Seeking participants, and if anything, Demand Seekers 

who showed greater demand seeking behavior showed an increasing trend in FPN 

recruitment across the execution of effort levels. These results suggest that behavioral and 

neural proxies for cognitive control recruitment may not obligatorily register as something 

costly. Instead, difficult tasks that yield greater change in FPN recruitment might be 

preferred by demand seeking individuals.

Further, the linear increase in FPN activity due to the cognitive control manipulation was not 

predictive of an increase in demand avoidance behavior. And, we found that for Demand 

Seekers, performance-related factors like error likelihood predicted FPN activity even after 

the effects of our experimental cognitive control manipulation were controlled. Thus, we 

observe only partial support for the cost of control hypothesis, at least as it might stem from 

engagement of the FPN network. Performance indices like error-likelihood and RT likely 

correlate with cognitive control demands in a task, but they could relate to other factors, as 

well. Thus, to avoid circularity in relating cognitive control to FPN activation and demand 

avoidance, the task switching manipulation provided an independent definition of cognitive 

control. And using this definition of cognitive control demands, we did not find evidence 

that changes in activation in FPN attributable to cognitive control were related to demand 

avoidance.

We note that our observations are not necessarily inconsistent with prior reports. A previous 

study that also utilized a task-switching paradigm to manipulate cognitive effort (McGuire 

and Botvinick, 2010) showed that a change in FPN activity predicted demand avoidance. 

However, this study used a binary comparison, where a change in brain activity and task 

selections between low and high effort conditions was not corrected by the change in 

intermediate task levels. By contrast, our parametric manipulation provided greater 

sensitivity to separate changes in FPN activation due to the cognitive control manipulation 

versus other factors related to performance.

Additionally, our study is the first to test the neural mechanisms underlying effort selection 

and effort execution in the same experiment. Whole-brain analysis of the Selection Epoch 

showed that execution and the selection of effort did not yield activity in the same brain 

regions. While the execution of effort yielded parametric effects in FPN, DMN and VS, the 

selection of effort yielded parametric effects only in the primary motor cortex, suggesting 
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that the selection and the execution of cognitive effort recruit different neural systems. These 

differences might help explain the observed discrepancies in the literature regarding 

differential the engagement of brain networks depending on whether one is performing or 

anticipating an effortful task. Future studies should attend to temporal dynamics of effort 

performance.

There are no previous studies that parametrically manipulated implicit cognitive effort 

demands in the absence of monetary reward as we did here. However, some studies have 

manipulated explicit cognitive effort demands using reward discounting procedures (Chong 

et al., 2015; Apps et al., 2015; Massar et al., 2015; Libedinsky et al., 2013; Westbrook et al., 

2013). For example, Cognitive Effort Discounting (COG-ED) paradigm (Westbrook et al., 

2013) shows that participants parametrically discount task value by increasing demands on 

cognitive effort. This is consistent with our finding that probability of selecting a task 

parametrically decreases for demand avoiding participants. However, unlike the discounting 

procedures, we also show that the same task demands were found increasingly valuable by 

demand seeking participants. This individual difference suggests that effort is not 

obligatorily aversive or coded as disutility, but rather effort signals can be interpreted 

positively or negatively depending on the participants.

The discrepancies in these observations might be due to three notable differences between 

this procedure and the one employed in discounting paradigms, beyond our inclusion of 

fMRI participants. First, in COG-ED, participants were explicitly aware of the difficulty 

difference between levels, as the instructions regarding each effort level significantly 

differed due to the nature of the effort task. In our version of DST, the task instructions were 

the same across effort levels, and as post-experimental debriefing inventories showed most 

participants were not explicitly aware of a difficulty difference between effort levels. 

Second, in COG-ED, participants made their choices without immediately executing the 

chosen option, while our procedure required the participants to execute the effort level 

immediately following their selections Third, in COG-ED, participants made a choice 

between an option that yields low effort and low reward, and an option that yields large 

effort and large reward. Our task was performed in the absence of explicit feedback or 

reward. Directly testing these dimensions of decision making may be fruitful directions for 

future research.

Further, a notable advantage of the effort discounting procedures such as COD-ED is that 

they can estimate the subjective point of equality for each effort level by requiring choices 

between options that yields low effort and low reward, and an option that yield large effort 

and large reward. However, in doing so, COG-ED procedure must assume that the inclusion 

of extrinsic reward does not influence the intrinsic evaluation of cognitive effort. The 

advantage of the current task is that it aims to test the intrinsic cost/value associated with 

effort in the absence of feedback or incentives, and thus is directly testing the influence of 

intrinsic motivation that would drive voluntary effort selections in the absence of monetary 

reward. Nevertheless, without a discounting approach, we are unable to assess the unit of 

exchange between effort and monetary reward across effort levels.
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A related open question concerns whether demands on cognitive control are themselves 

effortful, or rather, cognitive control tends to consume more time and it is the time on task 

that the brain taxes as costly. Kool et al. (2010) showed that participants avoided switching 

between tasks even when staying on task meant longer task durations. Consistent with those 

findings, we observed that the effect of task-switching probability predicted effort selections, 

however in opposite directions for each demand group. While Demand Avoiders avoided 

those tasks that yielded greater task-switching, Demand Seekers chose them. Future studies 

should aim at equating error-rates and time-on-task across effort levels in order to 

empirically differentiate the effects of task performance from cognitive control recruitment 

on effort decisions.

Whereas we found partial support for the cost of control hypothesis with regard to 

engagement of the FPN, a novel discovery in the present study was that the DMN is a robust 

correlate of effort avoidance. Specifically, demand avoiding participants who showed a 

diminished negative change in DMN activity across cognitive control defined effort levels 

showed the highest demand avoidance rate. The relationship between DMN and effort 

selections persisted even after performance measures such as RT and ER were controlled. 

We note that though FPN did not show these effects, as discussed above, we also did not find 

a significant difference between these networks. So, we cannot conclude that this is a 

qualitative difference such that DMN is more determinant of effort selection than FPN. 

These potential differences may be an important avenue for future research.

It is not evident from our study what drives this relationship between DMN activity, though 

prior studies of this network may offer some clues. While FPN recruitment has been shown 

to underlie cognitive control, DMN has been associated with a wide range of internal mental 

functions, including self-referential thoughts, mind-wandering, and episodic future planning 

(Buckner et al., 2008; Weismann et al., 2006). Inhibition of DMN has been argued to 

support task-related attention (Spreng, 2012), while the inability to inhibit DMN has been 

related to dysfunctional cognitive processes such as rumination (Nejad et al., 2013) and 

pathologies such as depression (Anticevic et al., 2012; Lemogne et al., 2012). Accordingly, 

in our study, those participants who showed higher effort avoidance rates could have had 

increased difficulty deactivating DMN activity or relied more on the processes it entails, 

which in turn might have registered as a cost. Future studies should seek to replicate this 

discovery and to determine what factor drives this change in DMN activity across effort 

levels.

It is possible that this DMN activity is related to reward and/or value processing that predicts 

effort selections. A common observation in the literature is that vmPFC positively tracks 

subjective value and predicts subjects’ preferences between choices (Rushworth et al., 

2011). Given this functional association, the ‘cost of effort’ hypothesis would predict that 

individuals will avoid tasks that yield the least activity in the reward network. However, in 

our study, we observed that individuals who showed the least reduction in this network 

showed the greatest demand avoidance. In addition to linear reductions in vmPFC and PCC 

activity with increasing effort, independent ROI definitions of VS showed that VS reduces 

its activity across increasing effort, however, DMN but not VS predicted demand avoidance 

behavior (see Supplementary Results 8). These results together suggest that while reward 
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network tracks effort in congruence with the ‘cost of effort’ hypothesis, this cost does not 

predict effort selections.

We also probed the relationship of functional connectivity to effort avoidance. Stronger 

functional or structural connectivity within-FPN has been associated with working memory 

performance and general intelligence (Cole et al., 2012; Gordon et al., 2012; Nagel et al., 

2011), executive capacity (Gordon, Lee, et al., 2011), cognitive dysfunctionalities 

(Rosenberg et al., 2016) and procrastination behavior (Wu et al., 2016). However, we did not 

find evidence that connectivity within the FPN network or between FPN and DMN networks 

predicted effort selections.

Finally, individual differences are an important variable considered here that has not 

received much attention in the literature. In our fMRI task, we observed high individual 

variability in effort avoidance, such that roughly half the participants were better 

characterized as Demand Seekers than Demand Avoiders. This rate of variability has not 

been reported previously in the literature and was not the case in our own behavior-only task 

(Experiment 1).

The conflicting results might be due to at least three reasons: 1) self-selection bias in fMRI 

experiments, 2) context effects in fMRI settings, 3) time-of-year effects for subject pool 

participants who showed a tendency to participate in our experiments around their finals. 

The behavioral participants in our behavior-only study mostly consisted of undergraduate 

participants who volunteered for course credit. However, our fMRI participants consisted of 

a more variable sample who volunteered for fMRI scanning at different months of the year 

in response to ads placed around campus. A recent study showed that PET scan volunteers 

significantly scored higher in sensation-seeking trait compared to behavior-only volunteers 

(Oswald et al., 2013). Sensation-seeking is also a trait that positively correlated with Need 

for Cognition (NfC), a self-report inventory that tests effort avoidance and that negatively 

correlates with Effort Discounting scores (Schuller, 1999).

We confirmed in a follow up study that an independently recruited sample of volunteers 

responding to advertisements for fMRI scored significantly higher on NfC compared to 

subject pool participants (see Supplementary Results 9). Of course, this study does not 

provide direct evidence that the fMRI participants reported in this paper had higher NfC, as 

we did not administer this to them at the time they were scanned. Thus, we can only provide 

the general observation that NfC is higher among participants responding to ads for fMRI. 

Future studies should directly test the relationship between the demand avoidance scores in 

this parametric version of DST and NfC.

The demonstration of individual differences is central to the current study for three reasons. 

First, we think that individual differences in effort expenditure behavior and brain activity 

has not been fully explored in the effort literature, and ours is the first study to show that the 

same performance and brain activity utilized by Demand Avoiders to avoid effort, can be 

used by Demand Seekers to choose effort. Second, for the half of our sample that sought 

effort, increased frequency of task-switching and FPN recruitment registered as something 

valuable rather than costly. This observation was counter to expectations and strains against 
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strong versions of the ‘cost of effort’ hypothesis. Third, the results show that the DMN-

behavior relationship we observe in Demand Avoiders is not present in Demand Seekers, 

which indicates that DMN-based activity can register as an exclusive cost signal that is 

tracked by demand avoiding individuals.

Regardless of the source of the individual differences, we were able to test how the factors 

affecting effort-based decisions differed across these groups. Although there were no 

differences in brain activity and error rates between demand groups during task execution, 

Demand Avoiders avoided those tasks that yielded greater task-switching, while Demand 

Seekers chose them. This discrepancy in the way separate demand groups utilized the same 

information indicates that FPN, and task performance could influence effort-based value-

based decisions generally, even if not necessarily in terms of a cost signal. On the other 

hand, reduced DMN de-activation across effort levels influenced effort avoidance only in 

demand avoiding participants, indicating that change in DMN activity across effort levels 

entered into effort-based decisions exclusively as a cost signal. However, note that the 

findings of our PCA-based ROI definition of DMN and a priori definition of DMN are not 

completely congruent. While both definitions showed that those participants who showed 

less DMN inhibition across effort levels showed greater demand avoidance rates, this 

relationship persisted only for the PCA-defined DMN when the effects of performance were 

controlled. The effect was only marginal using the a priori DMN definition. This 

discrepancy is likely due to differences in the brain regions these ROIs encompass. The a 

priori DMN definition covers a broader region than that encompassed by the PCA regions 

(Figure S4).

A potential caveat given that our effort task parametrically manipulated implicit effort costs, 

is that a participant with consistent but arbitrary rankings might show a linear slope across 

effort selection while they also showed a bias towards or against selecting the easier task. 

One source of such stable preferences unrelated to effort could stem from a preference for 

the symbol shapes that cued effort levels. However, symbol orders were randomized across 

participants, making it unlikely that a group of participants would systematically prefer 

symbol shapes that also correlated with our effort manipulation. Further, these preferences 

would also evidently correlate with changes in brain during execution that we report here. 

Thus, effort avoidance provides a parsimonious account of the full set of results we present 

here. Nevertheless, we do note that it is possible that effort selections could have been driven 

by a fixed, but arbitrary, preference ranking.

In conclusion, we adopted a parametric version of DST in order to test the ‘cost of control’ 

hypothesis and explore the neural mechanisms that underlie effort execution. We have 

observed that the reward network reduces activity in response to executing more effortful 

tasks, in congruence with the ‘cost of effort’ hypothesis. DMN but not FPN predicted effort 

avoidance behavior in demand avoiding participants, indicating that control recruitment as 

indexed by FPN recruitment does not underlie demand avoidance. As behavioral task 

performance can represent the required cognitive control to perform well at a task, increased 

time-on-task and error-likelihood could constitute costs associated with the opportunity-cost 

of time and error-avoidance. However, neither error rates or response times predicted effort 

selections in either Demand Avoiders or Demand Seekers. Additionally, high individual 
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variability in effort avoidance behavior in our task showed that the direction greater task-

switching probability influenced effort-based decisions depended on the demand group, 

indicating that proxies of cognitive control do not exclusively influence effort-based 

decisions as a cost. On the other hand, it was shown that reduced DMN de-activation was an 

exclusive cost signal that differentiated Demand Avoiders from Demand Seekers, promising 

to be a new avenue for future effort-based research.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Reward network of the brain shows decreasing activity with increasing effort 

requirements.

• Frontoparietal control network of the brain shows increasing activity with 

increasing effort requirements.

• Neither reward network nor the frontoparietal control network predicts 

demand avoidance behavior

• Default Mode Network predicts demand avoidance behavior in those who 

avoid effort.
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Figure 1. 
Schematic of the parametric demand selection task, (a) Example trials of the categorization 

task with a digit printed on a colored circle. The color cued which task to perform. The 

response mappings shown below the digits are for the reader’s reference and did not actually 

appear on the screen, (b) An example of six deck cues with their associated effort level 

pairing, based on the probability of task switching in 13 trials from that deck, (c) Schematic 

of block events during the Learning Phase. First, a symbol icon is presented for 1 sec, after 

which the participant completes 13 categorization trials with the associated cue tiled on the 

background, (d) Schematic of block events during the Test Phase. In the “Selection” epoch, 

the participant chooses between two symbol icons that are associated with two different 

effort levels, with a deadline of 3 sec. In the “Execution” epoch, the participant executes the 

effort level associated with the selected option, while the selected cue is tiled on the 

background.
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Figure 2. 
Distribution of participants for the overall probability of selecting the easier task across all 

decision trials in A) Experiment 1 and B) Experiment 2. In Experiment 1, 25 of the 28 

participants (89%) selected the easier task more than 50% of the time overall. In Experiment 

2, nearly half of participants (N=24) selected the easier task more than 50% of the time. The 

mean overall probability of selecting the easier task for each experiment is indicated with a 

vertical dashed line.
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Figure 3. 
Choice behavior for the entire Experiment 1 sample (A), Demand Avoiders in Experiment 2 

(B), and Demand Seekers in Experiment 2 (C). The top panels plot the selection rates across 

effort levels in terms of the probability of choosing that task when it was given as an option. 

In Experiment 1, the entire sample showed a decreasing tendency to choose higher effort 

levels. In Experiment 2, Demand Avoiders showed a decreasing tendency to choose a task as 

more cognitive effort is required, and Demand Seekers exhibited the opposite pattern. The 

bottom panels plot the decision times across effort levels. In Experiment 1, decision time 

was mostly unaffected by effort level with only a marginal omnibus effect of effort level on 

decision time. In Experiment 2, the decision time to select an effort level linearly increased 

with increasing effort levels for Demand Avoiders and the decision time to choose an effort 

level was similar across effort levels for Demand Seekers. All positive and negative trends 

were significant linear effects at p < .05. The shaded area plots standard error of the mean.
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Figure 4. 
Estimated beta weights at each effort level for both demand groups from independent ROIs 

defined in (A) the default mode network (DMN), (B) the frontoparietal network (FPN), and 

(C) the ventral striatum (VS). Demand Avoiders are indicated in solid lines. Demand 

Seekers are indicated in dashed lines. There was no effect of avoidance group on β estimates 

for any of the ROIs. In all cases a linear function was the curve of best fit relative to 

alternatives (summarized in Supplementary Table S3), with the exception of VS. All linear 

trends are significant at p < .05 for both groups.

Sayalı and Badre Page 30

Neuropsychologia. Author manuscript; available in PMC 2020 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Four whole brain contrasts are plotted on a canonical surface with a coronal slice (Y=8) on 

the far right to show activation in the basal ganglia. Yellow: Demand Avoiders; purple: 

Demand Seekers; Red: overlap between Demand Avoiders and Demand Seekers. (A) The 

contrast of all blocks (across effort levels) from the execution phase versus baseline 

primarily shows the FPN and other typical task active areas. (B) The reverse contrast of 

baseline > execution phase blocks shows typical task negative activations including the 

DMN. (C) The positive parametric effort level effect shows regions that demonstrated a 

linear increase with effort level, including regions of the FPN. (D) The negative parametric 

effort level effect shows regions that were negatively correlated with effort level including 

regions of the DMN and ventral striatum. Images are thresholded at p < .05 FWE cluster 

corrected.
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Figure 6. 
Principal Component cluster correlations with demand avoidance behavior are plotted for 

(A) Positive (“Fronto-Parietal Component”) and (B) Negative PC1 (“Default Mode 

Component”). Results for Demand Avoiders are plotted in red. Results for Demand Seekers 

are plotted in black. The ‘Effort level’ analysis tested whether the change in effort selection 

rates was correlated to the change of brain activity in each PC A ROI during task execution 

across effort levels. Default Mode Component showed a positive relationship between the 
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slope of change in this network across effort levels and effort selections. This was only the 

case in the Demand Avoider group. Error bars plot standard error of the mean. * p < .05.
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Table 1

reports demand avoidance rates for each demand group across runs during the Test Phase.

Run

Demand Seekers Demand Avoiders

Mean Std. dev. Mean Std. dev.

1 0.44 0.12 0.59 0.11

2 0.42 0.10 0.60 0.12

3 0.41 0.09 0.63 0.13

4 0.44 0.07 0.59 0.17
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Table 2

Whole brain analysis for both demand groups. (* indicates that higher clustering threshold was used in order 

to break down big clusters for reporting purposes)

MNI coordinates

Brain Region Cluster size X Y Z Voxel t-value

Execution > Baseline

Demand Avoidants

right occipital cortex 2320 26 −94 2 15.78

left occipital cortex 1502 −26 −94 2 11.74

left supramarginal gyrus 3830 −44 −36 42 7.19

right superior parietal lobule 292 30 −58 44 5.33

Demand Seekers

left occipital cortex 2998 −16 −96 0 13.21

right occipital cortex 3502 −28 −52 46 10.57

right superior parietal lobule 406 34 −56 54 8.6

left putamen 373 −22 4 10 5.6

supplementary motor cortex 232 −8 10 52 5.14

Baseline > Execution*

Demand Avoidants

cuneus 6380 16 −66 22 14.82

middle cingulate gyrus 2827 0 −18 42 13.67

anterior cingulate gyrus 1856 −10 40 14 11.97

left angular gyrus 472 −44 −74 34 11.4

right middle occipital gyrus 150 50 −70 20 10.76

left superior frontal gyrus 316 −20 48 34 10.09

Demand Seekers

posterior cingulate cortex 9135 −2 −32 46 17.83

anterior cingulate gyrus 474 2 44 16 12.83

right posterior insula 731 44 −8 −4 12.47

left supramarginal gyrus 142 −60 −50 26 12.41

right middle temporal gyrus 179 66 −20 −14 12.03

right angular gyrus 381 50 −68 28 11.47

left middle temporal gyrus 145 −58 −52 −2 11.33

left middle occipital gyrus 148 −42 −78 6 10.42

Parametri c+

Demand Avoidants

left superior parietal lobule 3343 −24 −64 46 8.96

left Inferior frontal gyrus 2146 −46 32 18 7.73

left supplementary motor cortex 253 −8 16 44 5.91

right superior parietal lobule 697 20 −62 54 5.62

left inferior temporal gyrus 288 −48 −56 −14 5.3

Demand Seekers left supramarginal gyrus 2215 −40 −42 44 7.24
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MNI coordinates

Brain Region Cluster size X Y Z Voxel t-value

left supplementary motor cortex 550 −6 14 46 5.42

left middle Frontal Gyrus 483 −42 26 26 5.1

Parametri c−

Demand Avoidants

right middle temporal gyrus 2776 52 −60 6 7.04

medial superior frontal gyrus 10580 10 48 16 7

right hippocampus 246 32 −28 −10 6.51

middle cingulate gyrus 1952 4 −12 38 6.16

left middle temporal gyrus 905 −64 −20 −14 5.8

left precentral gyrus 308 −46 −10 54 5.24

left posterior insula 404 −38 −16 −2 4.86

Demand Seekers

left superior frontal gyrus 456 −12 42 26 5.13
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