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Abstract

Mercury (Hg) toxicity continues to represent a global health concern. Given that human 

populations are mostly exposed to low chronic levels of mercurial compounds (methylmercury 

through fish, mercury vapor from dental amalgams and ethylmercury from vaccines) the need for 

more sensitive and refined tools to assess the effects and/or susceptibility to adverse metal-

mediated health risks remains. Traditional biomarkers, such as hair or blood Hg levels, are 

practical and provide a reliable measure of exposure, but given intra-population variability it is 

difficult to establish accurate cause-effect relationships. It is therefore important to identify and 

validate biomarkers that are predictive of early adverse effects prior to adversehealth outcomes 

becoming irreversible.This review describes the predominant biomarkers used by toxicologists and 

epidemiologists to evaluate exposure, effect and susceptibility to Hg compounds, weighing on 

their advantages and disadvantages. Most importantly, and in light of recent findings on the 

molecular mechanisms underlying Hg-mediated toxicity, potential novel biomarkers that might be 

predictive of toxic effect are presented and the applicability of these parameters in risk assessment 

is examined.
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Mercury toxicity

Mercury (Hg) is a ubiquitous environmental pollutant to which humans are exposed to in 

varying amounts and chemical forms (Clarkson and Magos, 2006). The three main forms of 

Hg that are a cause of concern to non-occupationally exposed human populations include 
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methylmercury (MeHg), mercury vapor (Hg0) and ethylmercury (EtHg) (Clarkson et al., 

2003). Ingestion of fish containing MeHg is by far the most common route of exposure to 

Hg, inhalation of Hg0 occurs due to its release from dental amalgams whereas exposure to 

EtHg results from the use of Thimerosal (Ethyl (2-mercaptobenzoato-(2-)-O,S) 

mercurate(1-) sodium)-containing vaccines (TCV) (Dórea et al. 2013). In addition, given 

that Hg compounds are still in use in many human activities, occupational exposure is also 

of relevance to metal-induced toxicity and an important driving force for the discovery of 

new putative biomarkers. It is well-known that Hg0 was employed in artisanal small-scale 

gold mining (ASSGM) mainly in developing countries (Armah et al., 2016; Bose-O’Reilly 

et al., 2016; Castilhos et al. 2015; Gibb & O’Leary, 2014; Kristensen et al. 2014) and the 

number of humans exposed to this element is still high (Gibb & O’Leary, 2014).

All Hg forms generate Hg2+. In the case of Hg0 oxidation is facilitated by catalase (CAT), a 

process first described in red blood cells by Halbach and Clarkson (1978). Demethylathion 

of MeHg to Hg2+ is also known to occur (Mottet et al., 1997; Vahter et al., 1995; Watanabe, 

2002). Several hypotheses suggest the involvement of selenium (Se) and free radical attack 

in this process but the precise mechanism has yet to be determined (Yang et al., 2008).

The main adverse health effects of Hg include neurotoxicity, teratogenicity, nephrotoxicity 

and immunotoxicity (Ratcliffe et al, 1996; Sweet and Zelikoff, 2001; Counter et al, 2002). 

The magnitude of these toxic effects may vary considerably, depending upon the life-stage, 

dose and duration of exposure (Clarkson and Magos, 2006), and symptoms may intensify, 

become irreversible and eventually lead to death (WHO, 2003). Even though the adverse 

health effects attributed to Hg compounds are well-known, the molecular basis underlying 

the development of toxicity is still not fully understood. Given the adverse effects of Hg 

compounds it is imperative to assess exposure and detect early effects predictive of toxicity, 

i.e. an early stage of an adverse effect, especially in vulnerable populations. This is of 

extreme importance for risk assessment, particularly when dealing with exposure levels at 

the lower-end of the dose-response curve, since biomarkers of early effects exhibit greater 

sensitivity when compared to classical assessment of clinical symptoms, functional tests, or 

morbidity (Bernard, 2008; Ratcliffe et al., 1996).

Biomarkers are indicator-signaling events in biological systems or samples (body fluids, 

cells or tissues) (NRC, 1987). The usefulness of biomarkers in identifying a postulated 

adverse health effect is intrinsically related to their role (Benford et al., 2000) within the 

mode of action of the toxicant.

The objective of this review is to describe the principal biomarkers used in the evaluation of 

Hg-induced toxicity weighing their predictiveness and/or insufficiencies. In addition, recent 

discoveries on the mechanisms underlying Hg-mediated toxicity are presented and examine 

whether these findings, for which there may be none or limited epidemiological data 

available, may potentially prove useful as novel biomarkers of metal-induced toxicity.
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Biomarker Applications

Biomarkers have been defined as measures in cellular or biochemical components or 

processes, structures or functions (including neurobehavioral) that can be measured in a 

biological system (Gil and Pla, 2001; Kendall et al., 2001; Paustenbach, 2001; Silbergeld 

and Davis, 1994; Tan et al, 2012; Wallace et al, 2016). These alterations may occur at any 

stage along the causal pathway, which varies from minimal molecular changes resulting 

from exposure to the toxic compound until establishment of overt toxicity, when evident 

end-points of toxicity become apparent from a clinical perspective (Figure 1A) (Bendford et 

al., 2000; Wallace et al, 2016). Ideally, biomarkers should be non-invasive, sensitive and 

specific for the xenobiotic that is being assessed (Bernard, 2008; Grandjean et al., 1994; 

Paustenbach, 2001; Tan et al, 2012). Biomarkers play an essential role in risk assessment by 

reducing overall uncertainty (Maier et al., 2004).

Classically, biomarkers have been divided into biomarkers of exposure, effect or 

susceptibility (NRC, 1987), although the boundaries between these are difficult to establish 

(WHO, 1993; Grandjean et al., 1994) (Figure 1A). Currently, the use of biomarkers has 

broadened, encompassing employment of pharmacogenomics and other biomarkers in 

medicine as shown in Figure 1B.

Exposure biomarkers may be markers of internal dose, i.e. the direct measurement of the 

compound, its metabolites or conjugates in a biological sample such as urine, blood, hair, 

and markers of biologically effective dose (BED) when they evaluate interaction between 

xenobiotics and macromolecules, such as proteins or DNA (WHO, 1993). Although markers 

of BED are not crucial for development of toxicity as they are not linked to the events that 

trigger the neurotoxicity nephrotoxicity, or other biological system, these markers share a 

common etiology (NRC, 1987; Timbrell, 1998; Woods, 1995).

Biomarkers of effect represent alterations including biochemical, physiological or behavioral 

that can be measured in an organism and attributed to exposure to a xenobiotic. Hence, 

biomarkers of effect are directly linked to toxicity (this needs biomarker validation). Ideally, 

these biomarkers should be predictive of effect, as these measures should identify initial 

alterations or adverse effects prior to becoming irreversible or considered pathological 

evidence (Bendford et al., 2000; Bernard, 2008; Gil and Pla, 2001; WHO, 1993). 

Biomarkers of susceptibility reflect characteristics that increase individual sensitivity to a 

given compound by either increasing its internal dose or by lowering the threshold toxic 

dose, for example, as a result of genetic polymorphisms (Schmidt, 2006).

Mercury biomarkers

Biomarkers of Exposure

Monitoring of exposure levels in the human population, in particular in groups at risk, such 

as pregnant women, newborns, children and occupationally exposed workers, has been the 

basis of Hg-associated risk assessment. Mercury enters the human body by various routes 

and in different chemical forms and each of these has its own distinctive toxicological 

features. Thus, not all biological indicators have the same reliability as biomarkers of 
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exposure for all Hg compounds. Consequently, it is important that the biological indicator 

used as a biomarker of exposure translates the Hg burden in the organism especially at the 

target organ(s). In addition, the appropriate biomarker of exposure depends upon the type of 

exposure (acute vs. chronic) (Clarkson et al., 2007).

Biomarkers of Exposure: Internal Dose

The most common biomarkers of exposure to mercurials are internal dose markers tha 

encompass measurements of total Hg levels in hair, urine and blood (Berglund et al., 2005), 

in the absence of speciation analysis. Other biomarkers, such as the levels of Hg in placental 

cord-blood, feces, breast-milk or nails, are seldom used although in particular situations they 

have been proven quite useful (Bose-O’Reilly et al., 2010; Cooke, 2014; LaKind et al., 

2005; Ohono et al., 2007). Despite their common use in Hg-induced toxicity evaluation 

(Maier et al., 2004) it should be stressed that, due to the inter-individual human variability, 

the levels of Hg in hair, blood or urine do not necessarily reflect the presence or absence of 

toxicity (Bose O’Reilly et al., 2010).

Mercury Levels in the Hair

MeHg binds sulfhydryl (SH-) groups of keratin and is integrated in the hair (Mottet et al., 

1997) constituting more than 80% of the hair metal burden (Berglund et al., 2005). Hair 

follicles are thought to accumulate the same transportable species that reach the brain 

(Clarkson et al., 2007). In fact, hair Hg levels correlate well with levels in the brain and 

whole blood at a ratio of 250:5:1, respectively (Clarkson and Magos, 2006) (Figure 3). 

However, the ratio of Hg levels between blood and brain, and blood and hair may vary 

according to individual’s characteristics such as age, gender and genetics (Bartell et al., 

2000; Doi and Tagawa, 1983).

The concentration of Hg in hair is an appropriate biomarker to address exposure to MeHg in 

a non-invasive manner (Berglund et al., 2005; Satoh, 2000). Normal levels of Hg in hair 

range between 1 and 2 μg/g, but individuals who consume large amounts of fish may have 

hair Hg levels in excess of 10 μg/g (WHO/UNEP, 2008) with the lowest observable adverse 

effect level (LOAEL) for neurotoxic effects (paresthesia) in adults set at 50 μg/g (Clarkson 

and Magos, 2006).

Another advantage of quantifying Hg levels in hair is that it allows for retrospective studies 

by evaluation of Hg in different sections of the hair strand (Mottet et al., 1997). Additionally, 

levels of Hg in maternal hair correlate well with the blood Hg levels in the fetus, which 

makes it a useful biomarker of pre-natal exposure for risk assessment purposes (Cooke et al., 

2014; WHO/UNEP, 2008). The no observable adverse effect level (NOAEL) for 

developmental effects is estimated to be 10 μg Hg/g in maternal hair (Clarkson and Magos, 

2006).

During pregnancy, maternal hair Hg levels may decrease up to 20%, indicating placental 

transfer of Hg to the fetus (Barbosa et al., 1998). In fact, placental transfer of MeHg is far 

more important than transfer by breast-milk (Barbosa et al., 1998; Björnberg et al., 2005) in 

determining the relationship between maternal and newborn hair Hg levels, in fish eating 

populations (Barbosa et al., 1998; Díez et al., 2009; Kim et al., 2008; Marques et al., 2013; 
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2015; Oliveira et al., 2010; Ou et al., 2015; Savabieasfahani et al., 2012; Sikorski et al, 

1986). Infant hair Hg concentration is a reliable biomarker for in utero MeHg exposure. 

Notably, breast-fed infants receiving Thimerosal-containing vaccines (TCV) show 

asymmetric changes in Hg hair levels relatively to their mother, indicating that hair Hg levels 

also reflect exposure to EtHg in addition to MeHg (Marques et al., 2007). Speciation 

analysis demonstrated that EtHg levels in hair are positively correlated to the number of 

TCV vaccinations and negatively correlated to the time elapsed since the last vaccination 

(Dórea et al., 2011). This additional burden of EtHg from TCV further adds to the pre and 

post-natal Hg burden (Dórea et al., 2012). However, it should be stressed that several 

epidemiological studies (Andrews et al., 2004; Fombonne et al., 2006; Heron and Golding, 

2004; Hviid et al., 2003; Madsen et al., 2003; Stehr-Green et al., 2003; Taylor et al., 2014; 

Uno et al., 2015; Verstraeten et al., 2003) failed to detect any positive association between 

TCVs and impaired neurodevelopment.

Hair Hg levels are normally not considered an appropriate biomarker of exposure to Hg0 

(Mottet et al., 1997), as the Hg2+ found in hair is likely the result of MeHg demethylation 

within hair follicles (Berglund et al., 2005) or external deposition (Bose-O’ Reilly et al., 

2008). Moreover, in pregnant women living in areas where ASSGM is practiced, Hg levels 

in hair did not accurately reflect concentrations found in other biological media such as 

breast-milk, which might underestimate infant exposure (Bose-O’ Reilly et al., 2008). 

Barbosa et al. (1995) compared populations from the Brazilian Amazon that were exposed to 

Hg by different routes (ASSGM vs. fish consumption) and showed that in general, levels in 

hair were a more reliable descriptor for exposure to Hg from fish (mainly MeHg) than for 

Hg vapor from ASSGM activities. However, in utero exposure to Hg0 from maternal dental 

amalgams was claimed to contribute increased levels of Hg in baby hair (Lindow et al., 

2003). To overcome the possibility of mixed sources of exposure (dietary MeHg vs. 
occupational Hg0) the measurement of Hg stable isotopic signatures in hair was applied as a 

useful technique to distinguish between different sources of Hg in the organism (Laffont et 

al., 2011).

Mercury Levels in Urine

The concentration of Hg in urine (U-Hg) is the most common biomarker of exposure to Hg0 

both in occupational exposures as well as to dental amalgams (Magos, 1997). Its utilization 

in monitoring workers exposed to Hg dates back to the first half of the 20th century (Buckell 

et al., 1946; Neal, 1938). Urinary mercury is derived from Hg that accumulates in kidney 

cells after acute (Bose-O’ Reilly et al., 2010) or chronic exposure to Hg0 (Cherian et al., 

1976), and consequently in the mid- to long- term this reflects the Hg2+ body burden 

(Clarkson and Magos, 2006; Zalups, 2000). Neurotoxic effects attributed to Hg0 are evident 

in subjects with U-Hg levels exceeding 35 μg/g creatinine (SCOEL, 2007). However, several 

investigators indicated the occurrence of neurobehavioral effects in the 20–30 μg of Hg /g 

creatinine range or lower (Echeverria et al., 1998; Meyer-Baron et al., 2002).

Experiments with rats showed that even in chronic exposures the urinary excretion of MeHg 

is low (Zalups et al., 1992), since the MeHg-Cys conjugate is slowly excreted in urine 

(Yasutake et al., 1989). In addition, in human populations exposed to different sources of 
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Hg, urine levels were noted to be a less sensitive biomarker for MeHg exposure through fish 

consumption in comparison to Hg0 derived from ASSGM activities (Barbosa et al., 1995). 

Accordingly, U-Hg levels are not considered a useful biomarker for assessing MeHg 

exposure (Berglund et al., 2005).

Mercury Levels in Blood

The blood is responsible for the distribution of all forms of Hg to target organs (Clarkson et 

al., 2007). Thus, the concentration of Hg in blood (B-Hg) is considered a reliable biomarker 

of exposure. In fish eating populations, metal levels in whole blood are usually interpreted as 

reflecting exposure to MeHg (Berglund et al, 2005; Bose-O’ Reilly et al., 2010). B-Hg levels 

in individuals with no consumption of highly contaminated fish are normally between 5 to 

10 μg/L (WHO/UNEP, 2008), while in populations with limited fish consumption B-Hg 

normally does not exceed 2μg/L (NRC, 2000). In blood, approximately 90% of MeHg is 

found in red blood cells (RBC) bound to hemoglobin (Figure 3), while inorganic Hg (Hg0 

and Hg2+) is evenly distributed between RBCs and plasma (Berglund et al., 2005; Clarkson 

et al., 2007). Plasma Hg accounts for a smaller fraction of whole blood Hg that may range 

from 5–35%, depending upon the characteristics of the population such as age and diet 

(Carneiro et al., 2014). Hg2+ is normally the dominant species, although large variations 

exist between individuals concerning the ratio between Hg2+ and MeHg in plasma (Carneiro 

et al., 2014). Since Hg kinetics in blood is relatively fast, this biomarker has the limitation of 

only being useful for a short time after an acute exposure, or in the case of continuous 

(chronic) exposure (Satoh, 2000).

Concerning pre-natal development, Hg cord-blood levels may be employed to quantify fetal 

exposure to MeHg (Aylward et al., 2014; Cooke, 2014). However, since fetal blood levels 

are known to be 1.5 to 2-fold higher than maternal blood concentrations, the latter is the 

preferred biomarker for assessing pre-natal exposure (WHO/UNEP, 2008).

Biomarkers of exposure: biologically effective dose (BED)

As referred to above, biomarkers of biologically effective dose (BED) indicate the 

interaction of the xenobiotic with macromolecules such as proteins including albumin or 

hemoglobin in blood or nucleic acids but these interactions are mainly a consequence of the 

absorption distribution metabolism excretion (ADME) processes and not necessarily related 

to adverse effects development. Due to the electrophilic nature of Hg, once absorbed into the 

organism, it binds nucleophilic groups, such as thiols (SH) and selenols (SeH) in cysteine 

(Cys) and selenocysteine (Sec), respectively. Consequently, peptides and proteins containing 

these moieties are targeted by mercurials (Carvalho et al., 2008a; Farina et al. 2009; Rooney 

2007; Silva de Paula et al, 2016).

Conjugation of Hg compounds with cysteine-containing compounds such as GSH, primarily 

facilitates detoxification (Clarkson and Magos, 2006; Bridges and Zalups, 2010); however, it 

may also trigger toxicity upon metabolism. Simmon-Willis et al (2002) showed that by 

binding to the thiol in Cys, MeHg gains access to the central nervous system (CNS), since 

the MeHg-Cys complex mimics the amino acid methionine and thus transported across 

membranes by neutral amino acid transporters. Similarly, Hg2+ is known to bind two Cys or 
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GSH molecules forming complexes similar to cystine (Cys-Cys) and glutathione disulfide 

(GSSG). Formation of these types of conjugates has been involved in Hg2+ and MeHg 

uptake and excretion from the CNS, kidneys, liver, intestine, placenta (Bridges and Zalups, 

2010). In addition, inhibition of Cys- and Sec-containing enzymes produced by covalent 

binding of mercurials (discussed below) may lead to increased reactive oxygen species 

(ROS) generation and oxidative stress.

Taken together, Hg compounds have several potential binding targets and it becomes 

challenging to determine which of these interactions are critical for development of toxicity. 

The BED biomarkers end-points which have been thoroughly studied in relation to Hg 

toxicity are presented; however, these have not been directly linked to the main pathways of 

toxicity that culminate in cell death. Some of the important BED biomarkers for Hg 

exposure and their potential value are discussed below.

Depletion of Intracellular Glutathione (GSH)

Glutathione is the most abundant non-protein cellular thiol, present at millimolar 

concentrations in several organs including liver, kidneys and brain (Meister, 1988; Pastore et 

al., 2003). Conjugation with GSH is an important step in the toxicokinetics and systemic 

transport of mercurials, and several in vitro and in vivo studies (Bo et al., 1993; Franco et al., 

2007; Fujiyama et al., 1994; Piccoli et al., 2012) demonstrated GSH depletion following 

exposure to MeHg and Hg2+. However, for the case of Hg2+, the binding to free Cys is more 

important than GSH, because Hg-Cys complexes are more efficiently transported than Hg-

GSH complexes in tubular cells (Zalups and Barfuss, 2002a).

An excessive Hg burden may result in marked depletion of reduced GSH, with serious 

consequences to the cell antioxidant capacity (Farina et al., 2011). However, it is difficult to 

understand how the equimolar interaction between Hg and GSH might lead to GSH 

depletion and, consequently, oxidative stress. In fact, GSH is present in some mammalian 

cells at concentrations as high as 10 millimolar (Cooper and Kristal, 1997) and Hg 

compounds (particularly, MeHg) were reported to induce oxidative damage in cultured cells 

when present at concentrations as low as 1 micromolar (Farina et al., 2009). In addition, 

experimental studies based on in vivo approaches noted reduced cerebellar (Franco et al., 

2006), cerebral (Stringari et al., 2008) and blood (Silva de Paula et al., 2016) GSH levels in 

MeHg-exposed animals when Hg levels in these organs were in the low micromolar range. 

Thus, it is noteworthy that decreased GSH levels following Hg exposure do not necessarily 

indicate direct interaction between Hg and thiol groups, but may represent the consequence 

of direct oxidative effects of reactive species (i.e. hydrogen peroxide) whose levels are 

increased after Hg exposure (Franco et al., 2007).

A comparison of blood GSH levels in populations from the Amazon showed an association 

with hair Hg concentrations (Pinheiro et al., 2008). In fact, hair Hg levels above 10 μg/g 

typically led to higher GSH (20 to 60%) quantities than following lower exposure (hair Hg 

levels below <4 μg/g on average), even tough the correlation is scattered (Pinheiro et al., 

2008). Similarly, elevated GSH levels in blood (+45%) were associated with seasonal 

variation in hair Hg concentrations in sports fishermen (1.4 μg/g vs. 2.8 μg/g) (Bélanger et 

al., 2008).
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In miners, previously exposed to Hg0, a 10% increase in erythrocyte GSH levels was noted 

(Kobal et al., 2008). Nonetheless, in older, retired miners levels of GSH were 20% lower 

than in controls, suggesting the existence of age related factors influencing overall GSH 

blood levels (Kobal et al., 2008). However, many other compounds, such as paraquat (Djukic 

et al., 2012), arsenic (Jain et al., 2012), benzo(a)pyrene (Romero et al., 1997) and 

acetaminophen (McMurtry et al., 1978) may also decrease GSH levels. Consequently, in a 

multi-contaminant or therapeutic context this end-point does not permit distinction of Hg 

related toxicity from that produced by other compounds. Thus, the usefulness of GSH as a 

BED is quite limited.

Impairment of Heme- Biosynthesis and Coproporphyrin Accumulation

Porphyrin metabolism has been proposed as an indicator of metal exposure and toxicity 

(Woods, 1995). The synthesis of the prosthetic group heme- is an important physiological 

process that occurs in all tissues and involves several product intermediates and enzymatic 

processes, from the initial substrate (Succinil CoA) to the final heme group (Figure 4) 

(Woods et al., 2009). In the normal unfolding of the heme biosynthesis process, 

overproduction of intermediate porphyrinogens is followed by their oxidation to porphyrins, 

which are then excreted in the urine (Woods et al., 1993). Several metals, including lead 

(Pb), arsenic (As) and mercury (MeHg and Hg2+) (Fowler and Mahaffey, 1978; Pingree et 

al., 2001; Sakai, 2000; Woods and Fowler, 1977; 1978), interfere in a dose-dependent 

manner with the normal course of the heme biosynthetic pathway by inhibiting the activity 

of several of the specific enzymes involved and promoting porphyrin accumulation (Woods 

et al., 2009). These accumulated prophyrins are then excreted and their rise in urine can be 

utilized as a biomarker of exposure to metals. Mercury targets the enzymes 

uroporphyrinogen decarboxylase (UROD), and especially coproporphyrinogen oxidase 

(CPOX), thus leading to accumulation and excretion of 4 and 5 carboxyl porphyrines 

(Woods, 1995; Woods et al., 2005). Specifically, in the case of Hg, there is also excretion of 

an atypical “precoproporphyrin” known as keto-isocoproporphyrin (KICP) (Woods et al., 

1991), which was proposed as a biomarker of exposure for both MeHg and Hg0 (Marks, 

1985; Woods, 1995). Moreover, such alterations occur prior to the onset of target tissue 

injury, suggesting that porphyrines may be used as biomarkers predictive of early toxic 

effects (Woods, 1995; Woods et al., 2009). Animal studies (Pingree et al., 2001) have 

supported the usefulness of coproporphyrines in predicting nephrotoxic effects. Further, a 

relationship between urinary porphyrin changes and alterations in neurobehavioral function 

resulting from prolonged Hg exposure were described by Echeverria et al (1994). However, 

alterations in porphyrin excretion do not necessarily represent a step in the casual pathway 

between exposure and effect and thus, its value as a predictive biomarker of neurotoxic 

effects has yet to be established.

Induction of Metallothioneins

Metallothioneins (MTs) are low-molecular weight proteins (6–7 kDa) rich in Cys residues 

(30% of amino acid residues of MT are cysteine) and without aromatic amino acids (Eroglu 

et al., 2005). Therefore, MTs contain several thiol groups, which may be complexed by 

heavy metal ions (up to 7 molecules). Hg0 and MeHg are known to induce MT synthesis 

after conversion to Hg2+ in tissues, especially in the kidney and liver (Gerson and Shaik, 
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1982; Piotrowski et al., 1974; Yasutake and Nakamura, 2011), and binding to its SH groups 

concurrently enhances urinary excretion of Cu2+ and Zn2+ (Chmielnicka et al. 1986, Liu et 

al. 1992). However, other metals, both essential (Zn2+ and Cu2+) and non-essential (Ag2+; 

Cd2+) also induce MT synthesis (Zalups, 2000); thus, it becomes exceedingly difficult to 

discern between Hg-induced alterations in the presence of other metals with this biomarker.

Oxidative stress indicators (ROS and NOS)

Mercurials are known to enhance production of reactive oxygen/nitrogen species (ROS/

RNS), such as hydrogen peroxide (H2O2), the superoxide anion (O2
-) and nitrous oxide 

(NO-) (Farina et al., 2011; Grotto et al. 2010; Lund et al., 1991; 1993). Increased ROS 

production enhances lipid peroxidation (LPO), which has been widely used as an indicator 

of Hg-mediated oxidative stress (Huang et al 2011; Kong et al. 2012; Mahboob et al., 2001; 

Suda and Takabashi, 1992). However, many compounds in the environment increase ROS 

production including pesticides, cadmium, and PAHs to name a few. Thus, analogous to 

GSH, these biochemical changes are not ideal markers of selective Hg-induced toxicity in a 

multi-contaminant scenario due to the lack of specificity.

Biomarkers of Effect

Neurobehavioral alterations—In order to correlate exposure to mercurials with 

development of neurotoxic effects, many studies relied on clinical observations of subtle 

alterations in neuromotor, neuropsychological and neurophysiological functions (Bose 

O’Reilly et al., 2010). These include assessment of various endpoints such as language 

skills, attention deficit, memory, hand–eye coordination, reaction time, IQ tests and 

neurological and cardiac function (Bose O’Reilly et al., 2010; Cordier et al., 2002; Dahl et 

al., 1996; Grandjean et al., 1997; 1999; Lebel et al., 1998; Myers et al., 1997; 2003). In 

toddlers, frequently assessed endpoints include the age-related achievement of 

developmental milestones such as sitting, standing up, walking and talking (Dórea et al., 

2014; Grandjean et al., 1995; Myers et al., 1997).

The strength of association between Hg exposure and neurobehavioral alterations varies 

according to the endpoint analyzed (Wigle et al., 2008), which correlates with the fact that 

inherent to this type of endpoints is the occurrence of confounding factors that main 

interpretation of results difficult (Grandjean et al., 1995). In addition, these alterations may 

represent either reversible effects or already established manifestations of toxicity; thus, for 

risk prevention, it is imperative to identify biomarkers predictive of early toxic 

manifestations (Santos et al., 2007). Of note, several of the aforementioned behavioral 

impairments, which are detected in Hg-exposed humans, were also observed in rodent-based 

models following in vivo exposures (Dietrich et al., 2005; Haut et al., 1999; Moreira et al., 

2012; Watanabe et al., 199b; Zimmermann et al., 2014). Notably, these behavioral changes 

were also noted after exposures to xenobiotics other that Hg compounds, thus not enabling 

for specific use as biomarkers of Hg associated effects. Nonetheless, neurobehavioral 

alteration may be employed as tools for quantifying the extent of toxicity (mainly 

neurotoxicity) in subjects knowingly exposed to Hg compound.
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Renal dysfunction—The kidneys are the main organs of Hg accumulation following 

exposure to Hg0 and Hg2+ and all mercuric forms produce nephrotoxicity (Zalups, 2000; 

Bridges and Zalups, 2010). The primary site of Hg deposition in the kidney is the proximal 

tubule with segments S2 and S3 being affected first (Bridges and Zalups, 2010). Unless 

exposure to Hg compounds occurs acutely, in which case kidney accumulation the metal 

rapidly (Zalups and Barfuss, 2002b), alterations in renal function often remain clinically 

undectected (Bernard and Lauwerys, 1989). Thus, the need arises for reliable biomarkers 

capable of detecting changes in kidney function prior to their irreversible damage.

Early toxicity to the proximal tubule is identified by measuring the activity in urinary 

enzyme activities from the luminal brush-border of the proximal tubule, such as γ-

glutamiltransferase (γ -GT) (Diamond and Zalups, 1998). As toxicity and cell death 

progress, intracellular enzymes such as lactate dehydrogenase (LDH), N-acetyl-β-D-

glucosaminidase (NAG) and β-galactosidase are found in urine (Bernard and Lauwerys, 

1989). Levels of α1, β2 microglobulins and retinol-binding protein (RBP) also represent 

sensitive markers of tubular dysfunction (Franko et al., 2005). Kidney injury molecule-1 

(Kim-1) has also been associated with Hg-mediated nephrotoxicity in animal studies (Wang 

et al., 2015; Zalups et al., 2014; Zhang et al., 2008; Zhou et al., 2008) and is claimed to 

allow detection of early tubular damage (Zhou et al., 2008). Neutrophile gelatinase-

associated lipocalin (Ngal) was utilized as a predictor of early metal nephrotoxicity (Zalups 

et al., 2014). Altered, glomerular kidney function is often assessed by measuring urinary 

levels of high molecular proteins, such as albumin, IgG and transferrin (Bernard and 

Lauwerys, 1989) or by evaluating glomerular filtration rate (eGFR) by measuring plasma 

creatinine or blood urea nitrogen (Zalups et al., 2014).

Several studies in humans used different combinations of these biomarkers to establish a 

connection between nephrotoxic effects and Hg exposure. In chloroalkali workers exposed 

to Hg (U-Hg range: 1.1–124 μg/g creatinine), a significant increase in NAG activity was 

observed as well as in α1-microglobulin excretion (U-Hg > 35 μg/g creatinine) (Jarosinska 

et al., 2008).The same study reported elevated albumin levels in urine, indicating altered 

glomerular function. Similarly, workers exposed to Hg0 with U-Hg above 50 μg Hg/g 

creatinine showed signs of glomerular proteinuria as evidenced by enhanced excretion of 

albumin, IgG and transferrin (Bernard and Lauwerys, 1989). In miners, previously exposed 

to Hg (average U-Hg: 68.24 μg/L), glomerular and tubular dysfunction was noted with 

elevated excretion of albumin, IgG and α1-microglobulin, suggesting that nephrotoxic 

effects remain long after cessation of exposure (Franko et al., 2005).

In non-occupationally exposed subjects, where excretion of U-Hg is considerably lower, the 

response observed in renal function markers is unclear. In subjects living near chloralkali 

plants, no significant association between U-Hg (median 1.2 μg Hg/g creatinine) and renal 

markers (α1-microglobulin, NAG, albumin) was observed (Jarosinska et al., 2008). In 

contrast, in individuals residing in the vicinity of a ASSGM area in China (average 1.24 μg 

Hg/L urine) concentrations of β2 microglobulin were increased relative to control subjects 

(Tian et al., 2009).
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The effect of Hg0 release from dental amalgams on kidney function has also been addressed 

in several studies. NAG activity in urine demonstrated significant positive correlation with 

Hg0 release from dental amalgam fillings in children from Saudi Arabia (average 2.75 μg 

Hg/g creatinine) (Al-Saleh et al. 2012). However, in a similar study in US children, no 

marked effect of Hg0 was found with NAG activity in urine (Barregard et al., 2008). In both 

studies, no significant correlation was noted between Hg and α1 and β2-microglobulin, RBP 

or albumin levels. In addition, in a study analyzing renal function markers in a population 

with low exposure to different metals, including Hg (median urine levels= 1.4 μg Hg/g 

creatinine), no marked correlation between urinary Hg with eGFR and Kim-1 (Callan et al., 

2015) was noted. Assessment of the relationship between Hg exposure (blood Hg) and renal 

function in the US population (aged over 40 years) by Lin and co-workers (2014) showed no 

significant association between exposure (<10 μg Hg/L) and albuminuria. Nevertheless, Hg 

blood levels correlated negatively with eGFR. A prospective cohort examining 

premenopausal women with low-level exposure to metals reported that a 2-fold elevation in 

Hg was associated with increased protein levels in serum, whereas alkaline phosphatase was 

reduced (Pollack et al., 2015). The significance of these biomarker responses to low 

exposure levels findings is unclear; however, it is evident that the abundance of markers of 

renal function allowing for identification of early nephrotoxicity effects, contrasts with the 

absence of measurable biochemical endpoints predictive of early neurotoxic effects.

Indicators of susceptibility—Common indicators of susceptibility to Hg include life-

stage, socio-economic and geographic situation, fish consumption habits and occupation 

(WHO/UNEP, 2008). The in utero developing fetus and first stages of infancy are the life-

stages most sensitive to mercurials (Clarkson and Magos, 2006) and thus these population 

groups constitute the core target of Hg risk assessment (Carvalho et al., 2008b; Grandjean et 

al., 1992; 1997, 2004; Myers et al., 2003, Nunes et al., 2014a; 2014b). Further, the 

constraints imposed by geographical and socio-economic context (Burger et al., 1999; 

Carvalho et al., 2008b) of a population, such as food habits (high fish consumption) or 

occupation (ASSGM workers) might alter vulnerability to Hg-mediated toxicity and have 

been used in epidemiological studies as indicators of susceptibility (Bose O’ Reilly 2008; 

Carvalho et al., 2008b; Cordier et al, 2002; Grandjean, 2004).

New perspectives: mechanistic-based biomarkers

Research linking genetic polymorphisms to susceptibility to mercuric compounds has 

brought a new perspective into identifying vulnerable population sub-groups. These genetic 

factors are subsequently discussed.

New biomarkers of effect

As previously mentioned, biomonitoring of Hg exposure is predominantly based upon 

quantitative analyses of Hg in tissues and biological fluids such as urine, nails, blood and 

hair. In addition, there are specific proteins (enzymes, transporters and transcriptional 

factors) and signaling pathways that have been linked to exposure to Hg compounds. Albeit, 

there is no consensus whether these proteins and pathways might be adequate to quantify the 
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extent of toxicity in Hg-exposed subjects, some of these “end-points” may potentially be 

useful as biomarkers.

Conjugation of mercury compounds with cysteine (Cys)-containing compounds and Se (e.g. 

SeCys-containing proteins), may lead to toxicity. Our knowledge regarding metal speciation 

in relation to binding to both low molecular mass molecules containing selenol and thiol 

groups or high molecular mass proteins is limited. The identification of single- or, 

preferentially, multi-targets of Hg that might represent early markers of effect to low levels 

of mercurial exposure is highly desirable, yet a difficult task to achieve. “Proteomic 

profiling” has recently emerged as a strategy capable of identifying early targets of Hg that 

may potentially be employed as new biomarkers (de Oliveira Souza et al., 2016) albeit this 

toxicoproteomic approach remains incipient (Merrick, 2006). Thus, future studies need to be 

conducted in experimental models of intoxication with mercurials encompassing Hg 

speciation in plasma, blood and target tissues. This requires advances in high throughput 

accurate mass and time (AMT) proteomic analytical techniques, mass spectroscopy 

techniques (MS), particularly inductively coupled plasma-MS (ICP-MS), MALDI and ESI-

MS to identify proteins covalently bound to Hg. It is noteworthy that micro-liquid 

chromatography (μLC)-ICP-MS, ESI-MS and MALDI-MS techniques were utilized to 

quantify the labeling of ovalbumin by para-hydroxy-mercurybenzoate (Kutscher et al., 

2008). The development of new biomarkers is particularly important to enable prediction of 

adverse effects to overcome insufficiencies in risk assessment analysis, particularly inter-

individual variations in sensitivity to Hg compounds.

Assessment of Hg-induced nephrotoxicity relies on biomarkers present in urine that reflect 

directly early target organ (kidney) toxicity. The equivalent in neurotoxicity evaluation 

would be to analyze biomarkers in the cerebrospinal fluid, which is not feasible for routine 

analysis. Thus, the major challenge in Hg-mediated toxicity is to develop biomarkers that are 

predictive of neurotoxic events, similar to those existing for nephrotoxicity.

Glutamine/glutamate changes

Mercuric compounds affect multiple neurotransmitter systems. Neurotoxic effects associated 

with MeHg were shown to involve the glutamate/glutamine cycle. Glutamate is the 

predominant excitatory neurotransmitter in the CNS, but in excess is a neurotoxin. For this 

reason, glutamate is actively removed from the synapse. While both neurons and astrocytes 

take up glutamate, the majority is removed by astrocytes. Excitatory amino acid carrier 1 

(EAAT3), excitatory amino acid transporter 4 and 5 (EAAT4 and EAAT5), glutamate/

aspartate transporter (GLAST), and glutamate transporter 1 (GLT1) are implicated in the 

removal of glutamate from the synapse by astrocytes (GLT and GLAST) and neurons 

(EAAT3, EAAT4, and EAAT5). MeHg preferentially accumulates in astrocytes and 

increases extracellular glutamate levels by reducing glutamate uptake by GLT and GLAST 

(Aschner et al., 1993; Brookes, 1992; Qu et al., 2003). In mice exposed to MeHg through 

milk, there was nearly 50% reduction in glutamate uptake in cerebellar slices compared to 

controls (Manfroi et al., 2004). Increased levels of synaptic glutamate resulted in N-methyl-

D-aspartate (NMDA) receptor-dependent excitotoxicity. Park et al (1996) found that 

blockade of the NMDA receptor with antagonists prevented death in cultured cerebral 
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neurons. In addition, MeHg primes neurons for excitotoxic death by enhancing expression of 

NMDA receptor NR-2B subunit in the hippocampus of exposed rats (Baraldi et al., 2002).

Glutamate released from neurons is normally taken up by astrocytes, where it is converted 

into glutamine to be transported back to the neuronal terminal. In addition to inhibiting 

uptake of glutamate, Hg compounds disrupt glutamine synthesis and transport. All Hg 

compounds were reported to decrease glutamine synthetase (GS) activity and inhibit 

glutamine transport in cultured astrocytes (Allen et al., 2001a; Yin et al., 2007) and in rat 

brain (de Oliveira Souza et al., 2016). Further, MeHg inhibits GS activity in brains of rats, 

mice and sheep, where elevated blood levels of MeHg correlated to reduced GS activity 

(Kwon and Park, 2003). Both MeHg and HgCl2 were found to inhibit the glutamine/amino 

acid transporter (ASCT2), which shuttles glutamine into neurons from astrocytes 

(Oppedisano et al., 2010).

In summary, the use of glutamatergic transmission as a marker of Hg exposure in humans is 

complicated due to lack of sensitivity, selectivity or predictability as a biological indicator of 

Hg exposure per se. The presence of NMDA-like receptors and high levels of glutamate in 

platelets (Franconi et al., 1996; 1998; Kalev-Zylinska et al., 2014) indicates that NMDA-

mediated responses do not necessarily reflect exposure to Hg, as these receptors are 

modifified by a myriad of factors including genetic, epigenetiv metabolic and external 

stressors including other metals as well as age and gender.

Glial fibrillary acidic protein

Injury to the CNS by multiple stimuli, including Hg compounds, results in reactive gliosis, a 

condition where there is hypertrophy and activation of glial cells, particularly astrocytes. 

Glial fibrillary acidic protein (GFAP) is one of many intermediate filament proteins that are 

up-regulated in glial cells during reactive gliosis. Exposure to non-cytotoxic concentrations 

of MeHg increased the expression of GFAP in both primary rat astrocytes and microglia in 
vitro, which correlated with decreased glutamate and serotonin reuptake by astrocytes and 

enhanced IL-6 release from microglia (Dave et al., 1994; Eskes et al., 2002). Interestingly, 

Jebbett et al (2013) found that MeHg increased ciliary neurotrophic factor (CNTF)-induced 

expression of STAT3-target genes, including GFAP, in neural progenitor cells enabling glial 

differentiation.

Data suggest that developmental exposure to MeHg may affect proper glial differentiation in 
vivo. In rat pups exposed to MeHg in utero, elevated levels of GFAP were detected in the 

corpus callosum, brain stem, cerebellum and hippocampus (Barone et al., 1998; El-Fawal et 

al., 1996; Gao et al., 2006). Increased GFAP following MeHg exposure was also observed in 

zebrafish (Cambier et al., 2012), suggesting its use as a biomarker for analyzing wild-life 

specimens. It is noteworthy that exposure to organophosphates or neoniocotinoid also results 

in enhanced GFAP staining in humans rats (Abou-Donia et al, 2008; 2013). In summary, the 

use of GFAP as a marker of Hg exposure in humans lacks sensitivity, selectivity or 

predictability as a biological indicator of Hg exposure per se.
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Changes in the activity of enzymatic systems

As previously mentioned, many critical enzymes including those involved in antioxidant 

defense rely on the presence of reactive thiol and/or selenol groups in the active site. Binding 

of mercurials to these groups impairs their catalytic activity and leads to toxicity. Enzymes 

containing reactive thiol and/or selenol groups are potential targets for Hg compounds and 

thus may constitute useful biomarkers.

Notably, selenols (SeH) have generally higher nucleophilicity than thiols and are present in 

mammalian cells as selenocysteine (Sec) in the active site of selenoproteins catalyzing redox 

reactions (Hatfield et al. 2014; Lu and Holmgren, 2009). The selenol group is generally 

more reactive than thiols (lower pKa) towards electrophilic forms of Hg (Sugiura et al., 

1976). In addition, abundance of selenoproteins is lower. Accordingly, selenoproteins 

represent important (and relatively “more specific”) targets for Hg-mediated toxicity. 

Among the enzymes known to be altered by exposure to Hg compounds, one needs to 

consider ROS scavenging enzymatic systems, such as superoxide dismutase (SOD), catalase 

(CAT)and glutathione peroxidase (GPx), and redox active proteins from the thioredoxin 

(Trx) system.

Catalase and Superoxide Dismutase

Changes in CAT and SOD activities were proposed as biomarkers of Hg-induced oxidative 

stress. However, reported findings are inconsistent regarding the effect of mercurials on the 

activity of these enzymes in vivo. In workers exposed to Hg0, Perrin-Nadif et al. (1996) 

observed a rise in CAT activity in plasma similar to the observations by Kobal et al. (2004; 

2008) comparing miners with past exposure to Hg (U-Hg: 2.1 μg/L) and control subjects (U-

Hg: 1.4 μg/L). On the other hand, Pinheiro et al (2008) found a negative association between 

blood CAT activity and Hg exposure as seen in hair levels in women living in the Amazon. 

Similarly, Carneiro and co-workers (2014) observed a negative association between plasma 

MeHg and CAT activity. These contradictory results are also inherent in animal studies. In 

rats Nath et al. (1996) and more recently Silva de Paula et al. (2016) noted no significant 

changes in CAT activity following exposure to Hg compounds, whereas Kong et al. (2012) 

reported a decrease in activity levels during the embryonic development of a fish-model.

The lack of a clear pattern was also demonstrated for SOD activity levels following exposure 

to Hg (Hussain et al., 1997; Perrin-Nadif et al., 1996). A numerical decrease in erythrocyte 

SOD activity (5%) was observed in workers exposed to Hg0 (U-Hg: 77.44 ± 48.15 μg/L) 

(Zabínski et al., 2000). In Hg0 exposed dental personnel (B-Hg: 7.74 ± 1.03 μg/L vs 4.79 

± 0.84 μg/L in control subjects), Samir and Aref (2011), reported that erythrocyte SOD 

activity was reduced by 40% and that this decrease was inversely correlated to the number of 

working years. Kobal et al (2004) compared RBC SOD activity between former Hg miners 

(U-Hg: 2.1 μg/L) and control subjects (U-Hg: 1.4 μg/L), and noted no significant difference.

In fish exposed to MeHg no marked effect on SOD activity was found in liver and brain 

(Branco et al., 2011), whereas in brain of rats exposed to MeHg a significant increase in 

activity was observed (de Oliveira Souza et al., 2016). In the blood of rats chronically 
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exposed to MeHg SOD activity remained unchanged relative to controls (Silva de Paula et 

al., 2016)

Glutathione peroxidase

Selenols are present in the active site of selenoproteins catalyzing redox reactions (Lu and 

Holmgren, 2009; Hatfield et al. 2014) and are preferential targets for Hg-mediated toxicity. 

An experimental in vitro study with primary cultures of cerebellar neurons showed that the 

activity of the selenoenzyme glutathione peroxidase (isoform 1; GPx1), was decreased by 

low-dose MeHg (Farina et al., 2009), prior to changes in several biochemical parameters that 

are normally affected by high-dose MeHg exposures. The diminished enzyme activity was a 

consequence of direct inhibitory effects, which were probably related to Hg-selenol 

interactions. Interestingly, these events were responsible for enhanced susceptibility to 

peroxides, enhanced lipid peroxidation and neuronal death (Farina et al., 2009). In 

agreement, another study established that GPx also serves as a crucial molecule involved 

with MeHg-induced neurotoxicity (Franco et al., 2009).

Zemolin and coworkers (2012) showed that the protein levels of GPx4, an important isoform 

of GPx family whose activity is crucial to detoxify lipid peroxides in cell membranes was 

decreased in encephalic structures of MeHg-exposed mice. Thus, in addition to direct 

interaction between MeHg and the selenol group of GPx, the fall in GPx expression also 

contributes to loss of activity. In agreement, cultured cells exposed to MeHg demonstrated a 

“selenium-deficient-like” condition, which affects GPx1 synthesis through a 

posttranscriptional action (Usuki et al., 2011). Collectively, these effects indicate that the 

selenoenzyme GPx as an important molecular target of MeHg-induced neurotoxicity. 

Nevertheless, studies in humans are less clear. In dental workers exposed to Hg0 (B-Hg: 7.74 

± 1.03 μg/L vs 4.79 ± 0.84 μg/L in control subjects), a negative correlation was found 

between Hg exposure and GPx activity (40% reduction) in erythrocytes (Samir and Aref, 

2011). However, for higher exposure levels (average B-Hg: 79.1 μg/L), Jayaprakash (2009) 

reported a reduction of only 30% in RBC GPx activity. Interestingly, Kobal et al. (2008), 

found no marked differences in RBC GPx activity between former Hg miners (average U-

Hg: 2.53 μg/g creatinine) and control subjects (average U-Hg: 1.31 μg/g creatinine), even 

though Se excretion was higher in miners as evidenced by lower plasma and higher urinary 

Se (Kobal et al., 2004). In contrast, in Chinese workers, Hg0 exposure (U-Hg: 86.8±65.2 vs 

1.25±1.5 μg/L) was associated with higher (+13%) plasma activity of GPx (Chen et al., 

2006). In addition, in sports fishermen consuming Hg via dietary fish, a positive effect of 

exposure was seen in the activity of blood GPx (+10%), albeit with only numerical rise in 

blood Se (Bélanger et al., 2008) whereas in a fish-eating population from the Brazilian 

Amazon, a negative association between plasma MeHg and GPx activity was detected 

(Carneiro et al., 2014).

Thioredoxin and Thioredoxin Reductase

Carvalho et al., (2008a; 2011) showed in vitro that mercurials target the enzymes of the 

thioredoxin system – thioredoxin reductase (TrxR) and thioredoxin (Trx) - binding to their 

active site thus decreasing activity. The thioredoxin system is found in all tissues and 

involved in multiple functions associated with cellular maintenance and survival including 
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protein repair, regulation of the cell cycle, cell signaling (Lillig and Holmgren, 2007). Since 

the Trx system is upstream of several biochemical pathways, its inhibition by mercurials 

represents a key step in mediation of Hg-induced toxicity (Carvalho et al., 2008a).

Several compounds are known to produce inhibition of both enzymes of the Trx system, 

with TrxR being particularly prone to interaction with electrophilic agents due the presence 

of selenol (selenolate at physiological pH) in the open C-terminus of its active site (Arnér, 

2009). As depicted in Table 1, many of the compounds known to target TrxR include soft 

metals, such as gold and platinum (e.g. aurofin and cisplatin) (Mustacich and Powis, 2000; 

Rigobello et al., 2004; Witte et al., 2005) cadmium, arsenic and zinc (Lu et al., 2007; 

Rigobello et al., 2004).

It is noteworthy that Hg compounds especially of Hg2+exhibit an inhibitory capacity against 

purified TrxR1 which is remarkable among metallic compounds (Table 1). Further, the 

inhibitory effect of mercurial compounds is particularly fast, with complete blockade of 

TrxR activity after only 5 min incubation (Carvalho et al., 2008a). These results clearly show 

that TrxR is highly susceptible to inhibition by mercurials (Carvalho et al., 2008a; 2011). In 

addition, it is significant that Hg2+ displays greater potency as an inhibitor of TrxR, 

suggesting that MeHg upon demethylation produces an even greater toxic outcome 

(Carvalho et al., 2008a). Trx activity was also found to decrease upon exposure to Hg in 
vitro, with both Hg2+ and MeHg targeting the dithiol at the active site of Trx leading to loss 

of activity, albeit with higher IC50 than the one observed for TrxR (Carvalho et al. 2008a).

Mercurials also affect TrxR in HeLa and HEK293 cells in a time- and concentration-

dependent manner (Carvalho et al., 2008a). Inhibition of TrxR was detected after only 7 hr 

exposure (Carvalho et al., 2008a), correlating well with observations in vitro showing a rapid 

inhibition of TrxR by mercurials. Interestingly, the activity of glutathione reductase (GR) 

was not affected by mercurials in HeLa cells, reinforcing the fact that the Sec residue in the 

C-terminus of TrxR is a target for Hg (Carvalho et al., 2008a). Experiments in a fish model 

(Branco et al., 2011; 2012a) further corroborated the importance of targeting the Trx system 

and in particular TrxR as a key step in mediating Hg toxicity. This fact was further supported 

by the findings that the activities of GR and GPx1 were less sensitive to Hg compounds 

(Branco et al., 2011; 2012a). Experiments with rodents also demonstrated that TrxR activity 

is modified by MeHg administration; however, the mangnitude of the effects varied 

depending upon the schedule of intoxication, the species, developmental period, animal 

gender and subcellular fraction considered (Dalla Corte et al. 2013; Ruszkiewicz et al. 2016; 

Wagner et al. 2010). Trx was also reported to be affected by mercurials in cells and animal 

models but not as severely as TrxR (Carvalho et al. 2008a, Branco et al., 2011; 2012a; 

Ruszkiewicz et al. 2016).

Results in human THP1 monocytic cells exposed to Hg2+ suggested that Hg induced 

transcription of the enzymes of the Trx system, via an increase in nuclear factor (erythroid-

derived 2)-like 2(Nrf2) levels (Wataha et al., 2008). Recently, it was shown that induction of 

cytosolic thioredoxin reductase (TrxR1) via Nrf-2 is faster during exposure of liver cells to 

Hg2+ - leading to elevated mRNA and enzyme expression – than to MeHg, which may 

explain the higher cytotoxicity of this compound (Branco et al., 2014). Most importantly 

Branco et al. Page 16

J Toxicol Environ Health B Crit Rev. Author manuscript; available in PMC 2019 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mitochondrial thioredoxin reductase (TrxR2) is not regulated by Nrf-2 and its activity is 

markedly affected by both Hg2+ and MeHg, suggesting its importance as a target for Hg-

associated toxicity (Branco et al., 2014) (Figure 6). The targeting of the mitochondria and 

the effects of Hg in the overall function of this organelle may therefore constitute a 

promising field of research in the discovery of additional novel biomarkers.

Overall, results to date indicate that both TrxR and Trx are important targets for mercurials 

and their inhibition is likely upstream of development of Hg-initiated toxic outcomes 

(Branco et al, 2012b). Accordingly, evaluation of TrxR and Trx in accessible matrices, such 

as blood and plasma may provide a useful tool for the prediction of Hg-induced adverse 

effects but to our best knowledge this possibility has not been addressed in human subjects.

Only few studies evaluated changes in the activity of selenoenzymes in humans exposed to 

Hg (Chen et al. 2006; Hagmar et al., 1998); however, the status of Se may be critical in 

limiting the toxicity of Hg (Farina et al., 2011; Khan and Wang, 2009; Watanabe, 2002). 

Consequently, the use of selenoenzymes and/or selenoproteins as biomarkers of effect for 

Hg might require concomitant Se status determination.

Pentose Phosphate Pathway dehydrogenases

NADPH is mostly generated by the thiol-containing enzymes glucose-6-phosphate 

dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH) of the pentose 

phosphate pathway (PPP). NADPH functions as one of the main intracellular reducing 

agents and an essential co-factor required for the normal function of antioxidant cycles, such 

as GSH and Trx systems (Horecker, 2002). Targeting of these enzymes by Hg compounds 

was reported for several mercurials in HepG2 and SH-SY5Y cells with inhibition intensity 

of Hg2+>MeHg≈EtHg>Thimerosal (Rodrigues et al., 2015). EtHg and MeHg produced 

equivalent and significant inhibition of G6PDH activity and to a lesser extent 6PGDH, 

especially in neuroblastoma cells. In MeHg-incubated fibroblasts Amoli et al (2011) noted a 

decrease in the activity of the oxidative branch of PPP impairs ribose synthesis which is 

essential for nucleotide production causing DNA damage.Interestingly, Zabinski et al. 

(2000) observed that in workers exposed to Hg0 (U-Hg: 77.44 ± 48.15 μg Hg/L) G6PDH 

activity in erythrocytes was redeuced by 25% relative to non-exposed controls.

During the last decade evidence has been accumulating concerning the role of 

selenoenzymes, namely TrxR and GPx, as targets for Hg compounds. The importance of 

these enzymes as well as of Trx and GSH for cellular function and homeostasis stresses the 

importance of a more comprehensive understanding of their role in Hg-associated toxicity. It 

is worthwhile noting that it possible to measure in plasma the activity of these enzymes, and 

thus it is necessary to determine if activity of selenoenzymes in blood reflects Hg exposure 

and whether enzymic activity is affected in brain. In the case of the thioredoxin system 

(TrxR and Trx), since their inhibition is an early event in Mg-mediated toxicity, this system 

may serve as a potential predictive biomarkers of toxic effect.

Transcription factors

Altered gene transcription following MeHg exposure has been documented in many recent 

toxicogenomics studies (Hwang et al., 2011a; Robinson et al., 2011; Theunissen et al., 2011; 
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Yadetie et al., 2013). Most of these studies were performed using cell lines; however, their 

application to in vivo exposures is relevant as demonstrated by studies investigating the roles 

of the transcription factors nuclear factor (erythroid-derived 2)-like 2(Nrf2) and nuclear 

factor kappa-light-chain-enhancer of activated B cells (NF-κB) as discussed below.

Nrf2

Nrf2 is a basic leucine zipper transcription factor that responds to oxidative stress. Under 

basal conditions, Nrf2 resides in the cytoplasm bound by kelch-like ECH-associated 

protein1 (Keap1). Keap1 is associated with Cullin 3, an E3 ubiquitin ligase, which targets 

Nrf2 for proteasomal degradation (Baird and Dinkova-Kostova, 2011).

Oxidative stress in general, including exposure to MeHg, enhances Nrf2 to be released from 

Keap1 by disruption of cysteine residues on Keap1 or through oxidant-dependent kinase 

signaling. Unbound Nrf2 translocates into the nucleus, where it can bind to antioxidant 

response element (ARE) promoters as a heterodimer with Maf proteins (Baird and Dinkova-

Kostova, 2011). Nrf2 induces the expression of several cytoprotective proteins, including 

NAD(P)H quinine oxidoreductase (NQO1), glutamate-cysteine ligase catalytic subunit and 

modifier subunit (GCLC and GCLM), and heme oxygenase-1 (HO-1) (Baird and Dinkova-

Kostova, 2011). Nrf-2 also enhances transcription of the TXNRD1 gene, increasing TrxR1 

mRNA build up in the cytosol and TrxR1 de novo synthesis. In HepG2 cells Branco et al 

(2014) demonstrated that this process is faster upon exposure to Hg+2 than to MeHg (Figure 

6).

In addition to redox regulation, Nrf2 is also regulated by protein kinase pathways (Sherratt 

et al., 2004). Nrf2 interacts with p38 mitogen-activated protein kinase (Alam et al., 2000; Yu 

et al., 2000), ER-resident kinase PERK (Kobayashi et al., 2006) and a Src family tyrosine 

kinase, Fyn (Jain and Jaiswal, 2006). The PI3K/Akt pathway controls Nrf2’s function 

upstream of Fyn (Niture et al., 2014). Activation of Nrf2 by MeHg was noted in cell lines 

and primary cells allowing for up-regulation of NQO1 and HO-1 (Ni et al., 2010; Toyama et 

al., 2010; 2011b; Wang et al., 2009). Further, MeHg induced Nrf2 activity in rodents and 

fish (Deng et al., 2014; Toyama et al., 2011a; Yadetie et al., 2013). Interestingly, levels of 

Cullin 3 were decreased following MeHg exposure in SH-SY5Y cells (Toyama et al., 

2011b), suggesting that there is coordinated control to prevent degradation of Nrf2. While 

oxidative stress derived from MeHg exposure might activate Nrf2, direct Nrf2 activation was 

observed following MeHg binding to recombinant Keap1 and by MeHg-GSH adducts 

(Toyama et al., 2007; Yoshida et al., 2014). Kinase regulation of MeHg-induced Nrf2 

activation has yet to be demonstrated, although microarray studies of Atlantic cod found 

upregulation of MAP kinase MEK4 by MeHg, which potentially may activate Nrf2 by JNK 

activation (Yadetie et al., 2013). Nrf2 was shown to be protective in a Caenorhabditis 
elegans (C. elegans) model of dopaminergic neurodegeneration induced by MeHg, where 

reduction of SKN-1, the Nrf2 homologue, increases the vulnerability for neurodegeneration 

following either an acute or a chronic exposure to this compound (Martinez-Finley et al., 

2013; Vanduyn et al., 2010). Knockdown of Nrf2 in worms displays a elevated levels of 

ROS and increased measures of dopaminergic cell dysfunction (Martinez-Finley et al., 

Branco et al. Page 18

J Toxicol Environ Health B Crit Rev. Author manuscript; available in PMC 2019 January 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2013). Activation of Nrf2 by MeHg represents a protective response; however, MeHg often 

alters gene expression resulting in neurotoxic effects.

NF-κB

NF-κB is a transcription factor that controls the regulation of inflammatory cytokines ( IL-6 

and IL-8) and chemokines (CCL2 and CCL4), as well as anti-apoptotic proteins (Bcl2, 

TRAF1 and TRAF2). NF-κB consists of a heterodimer of a class I NF-κB protein (p50 or 

p52) and a class II NF-κB protein (p65/RelA, RelB, or c-Rel) (Hoesel and Schmid, 2013). 

Combinations of the subunits vary by cell type and development stage. NF-κB is bound in 

the cytoplasm by the inhibitor IκB where it is sequestered from activating transcription. 

When stimulated, IκB kinase (IKK) phosphorylates IκB, targeting IκB for proteasomal 

degradation, leaving NF-κB free to translocate to the nucleus and initiate gene transcription. 

There are several stimuli that result in activation of NF-κB. Binding of cytokines or bacterial 

or viral antigens to cell surface receptors activate kinase cascades, which ultimately 

phosphorylate IKK, leading to its activation. Many of these kinases (IKK, PI3K, AKT, 

MEKK-1) are redox sensitive (Pantano et al., 2006), enabling activation by oxidative 

stressors, such as ROS and oxidized lipids. Therefore, both lipid peroxidation end products 

and ROS derived from MeHg exposure possess the potential to activate NF-κB.

Exposure to MeHg leads to increased markers of inflammation mediated by NF-κB gene 

trascription. MeHg exposure enhanced NF-κB activation as measured by elevated levels of 

the RelA/p65 subunit and DNA bound NF-κB, in both cerebrum and cerebellum of rats and 

mice (Dong et al., 2001; Hwang et al., 2011). This leads to increased expression of 

chemokines CCL2 and CCL4 and anti-apoptosis protein Bcl2a1b (Hwang et al., 2011; Lee 

et al., 2012). In vitro MeHg elevated both CCL2 and IL-6 release from glial cells (Chang, 

2007; Kim et al., 2012).

Even though there is sufficient evidence reporting a relationship between Hg exposure and 

changes in Nrf2 and NF-κB pathways, most of the available data are derived from 

experimental (mainly in vitro) studies. Further, these responses lack specificity and are 

highly pleiotropic which diminishes their value as biomarkers of Hg-induced toxicity. Thus, 

it is difficult to predict the usefulness of these transcription factors for employment as 

human biomarkers. In sunmmary, due to the numerous stimuli activate NF-kB, these are not 

specific biomarkers for Hg exposure.

Immunological outcomes

Immunotoxicity due to mercurial compounds has been described in a variety of animal 

species, including humans (Sweet and Zelikoff, 2001). Immunotoxic effects arise at Hg 

concentrations that are below those reported to damage the CNS and kidneys (Vas and 

Monestier, 2008) and consequently, may be considered as a critical effect for development of 

toxicity. The mercuric ion exerts a general stimulatory effect on the immune system and 

several studies in rodents (Fournie et al., 2001; Nielsen and Hultman, 2002; Pollard and 

Hultman, 1997) demomstrated the ability of Hg2+ to promote autoimmunity, which is 

primarily mediated via NF-kB signaling (Pollard and Kono, 2013).
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In vitro results suggest that MeHg exerts a similar effect on the immune system as Hg2+ with 

induction of pro-inflammatory cytokines. However in vivo, the immune response to MeHg 

appears to be more complex, since it acts initially as an immunosuppressor, but as exposure 

continues and it is converted to Hg2+, a stimulating effect on the immune system occurs 

inducing production of autoantibodies and increasing serum pro-inflammatory cytokine 

levels (Havarinasab and Hultman, 2005).

Data in cells indicate that EtHg appears to yield an atypical pattern of pro- and anti-

inflammatory cytokines (Gardner et al., 2010b). Dendritic cells exposed to increasing levels 

of Thimerosal, showed a reduction in secretion of pro-inflammatory cytokines associated 

with GSH depletion. Consequently, Th2 activation is enhanced while Th1 dependent 

inflammatory response is reduced (Agrawal et al. 2007). In contrast, in H2 mice exposed to 

Thimerosal, the immune response was skewed towards Th1 activation similarly to a typical 

Hg2+ exposure (Havrinasab et al., 2007) and resulted in production of antinucleolar 

antibodies towards a 34-kDa nucleolar protein fibrillarin (Havarinasab et al., 2005). This 

autoimmune response is significantly more potent when mice are exposed to EtHg (as 

Thimerosal) compared to MeHg, which might be attributed to a faster conversion to Hg2+ 

(Havarinasab et al., 2004; 2005).

Occupational exposure to Hg0 has also been associated with a rise in serum levels of both 

antinuclear (ANA) and antinucleolar (ANoA) autoantibodies and pro-inflammatory 

cytokines (IFN-γ, TNF-α and IL-1β) (Gardner et al., 2010a; Motts et al., 2014). 

Accordingly, in sensitized individuals, exposure to low levels of Hg0 or MeHg from fish 

deregulate the immune response, altering serum levels of pro-inflammatory cytokines (e.g. 

IL-1β and TNF-α) and anti-inflammatory cytokines such as IL-4 and IL-17 (Nyland et al., 

2011).

In summary, immune responses to mercurial compounds have not been thoroughly 

investigated and knowledge of molecular mechanisms is still elusive. However, a limitation 

exists in that these responses occur with numerous compounds and thus could not be 

reasonably employed as biomarkers of Hg-mediated toxicity. Nevertheless, potential for 

discovery and validation of new biomarkers is possible.

Other Biological Responses to Mercury

Protein adducts—Protein adducts may occur in response to Hg exposure by two 

mechanisms. Mercury, given its electrophilicity, directly interacts with protein thiol and 

selenol groups leading to a loss in residues nucleophilic potential. This may result in 

decreased protein activity. As indicated previously, MeHg binds the selenol group in GPx1 

contributing to ROS generation (Farina et al., 2009). MeHg was also found to directly 

modify cysteine groups of delta-aminolevulinate dehydratase (ALAD), an enzyme important 

for heme biosynthesis (Rocha et al., 1993). ALAD inhibition was reduced in both brain and 

liver of suckling rats exposed to MeHg; however, the enzyme was not inhibited in kidney. 

There is potential to use ALAD inhibition as a biomarker for MeHg exposure, as ALAD 

activity assays are commonly performed in blood (Fujita, 2001). However it is unknown 

whether there is enzymatic inhibition of ALAD in this tissue by mercury. It should be 
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stressed that measurement of this enzyme is affected by other metals and not a specific 

indicator of Hg --mediated toxicity.

In addition, oxidative stress derived from Hg exposure may lead to modification of proteins. 

MeHg induces inhibition of glutamate, cystine and cysteine uptake, thus adversely affecting 

intracellular GSH content and redox status in astrocytes (Alen et al., 2001b; 2001c; Aschner 

et al., 1993; Shanker and Aschner, 2001; Shanker et al., 2001, 2003). MeHg also stimulates 

cytosolic phospholipase A2 (cPLA2) resulting in arachidonic acid (AA) release from 

astrocytes, the latter directly inhibiting glutamate transporters and glutamate uptake into 

astrocytes (Aschner, 2000; Shanker et al., 2003). ROS interact with cysteine thiol groups on 

proteins. Nucleophilic Sec and Cys residues readily react with electrophilic ROS to form 

sulfenic (-SOH) or selenenic acids (-SeOH) which are short lived, either reacting with other 

cysteine residues to form disulfide bonds or further oxidized to sulfinic (-SO2H) and 

sulfonic acids (-SO3H) by potent oxidants such as superoxide anion (Janssen-Heininger et 

al., 2008). Both sulfinic and sulfonic acid formation are irreversible, and their intracellular 

accumulation may lead to altered protein function, protein degradation and even cell death. 

RNS formed from MeHg-induced activation of nNOS produces nitrosylation of amino acids, 

such as tyrosine (Caito et al., 2014; Miyamoto et al., 2001). NMDA, one such protein 

nitrosylated by MeHg, altered synaptic activity of cortical neurons (Miyamoto et al., 2001).

Surprisingly, there are no data in humans concerning this type of interactions with Hg 

compounds. However, these interactions lack specificity and thus diminish theirv utility as 

bionmarkers solely for Hg-associated toxicity.

Lipid peroxidation and F(2)-isoprostanes—Lipid peroxidation (LPO) is the process 

by which reactive species may damage lipid membranes. Mercury-induced lipid 

peroxidation is mainly dependent upon the ability of this metal to increase, directly or 

indirectly, the levels of H2O2 and superoxide anion. Although the induction of lipid 

peroxidation by H2O2 or superoxide is relatively low, both molecules may contribute to the 

formation of the hydroxyl radical by the Fenton reaction, allowing for initiation of LPO. 

Indeed, the chelator deferoxamine is protective against MeHg-induced lipid peroxidation in 

rat brain (LeBel et al., 1992), by preventing the Fenton reaction secondary to ROS and 

biological metals, such as iron. Organs such as the brain contain large amounts of 

polyunsaturated fatty acids, which are highly susceptible to LPO (Grintal et al., 2009), 

which seems to occur not only is the cell membrane susceptible to peroxidation, but also 

intracellular organelles. Damage to both lysosomal and the mitochondrial membranes by Hg 

compounds might lead to apoptotic cell death (Dare et al., 2001; Franco et al., 2010). 

Evidence for Hg compounds eliciting LPO has been extensively reported in both cultured 

cells and rodent models (Huang et al., 2011; Lin et al., 1996; Martinez et al., 2014; Silva de 

Paula et al., 2016; Vendrell et al., 2007; Watanabe et al., 1999a; Yin et al., 2007). Several 

studies demonstrated a link between enhanced LPO and Hg exposure in humans. Chen and 

co-workers (2006) analyzed serum samples from miners exposed to Hg0 and found a 

positive correlation between MDA levels and exposure. Further, Kobal et al (2004) found 

higher urinary levels of MDA in miners exposed to Hg0 even though the total amount of 

lipid peroxides did not change. In addition, LPO has been used for biomonitoring wild-life 

exposure to MeHg (Berntssen et al., 2003; Hoffman et al., 2005). In these samples, LPO is 
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typically measured by levels of individual LPO species, such as malondialdehyde, or by 

thiobarbituric acid reactive species (TBARS) assay (Huang et al., 2011; Watanabe et al., 

1999a). However, the limitation to the utilization of LPO as a biomarker for Hg exposure 

lies in the fact that a vast amount of chemicals act via oxidative stress and consequent LPO 

that this measure could not be reasonably used to address the issue of mercury-related 

toxicity.

F(2)-isoprostanes (F2-IsoPs) are specific LPO products non-enzymatically formed from 

peroxidation of arachidonic acid by ROS. Due to their chemical stability and prevalence in 

all human tissues and biological fluids, F2-IsoPs are regarded as the gold standard for 

quantification of oxidative damage in mammals (Morrow et al., 1990). Exposure to MeHg in 
vivo and in vitro showed increased levels of F2-IsoPs (Farina et al., 2009; Jin et al., 2012; 

Stringari et al., 2008; Wormser et al., 2012). There are few studies that examined the use of 

F2-IsoPs in human tissues. In a study of premenopausal women in New York State found no 

significant relationship between MeHg blood levels (mean of 1.1 μg/l) and F2-IsoPs (Pollack 

et al., 2012). Similarly, a study of Canadian Inuits noted an inverse correlation between 

blood Se levels and F2-IsoPs, but no correlation with Hg. Interestingly in the same study 

Alkazemi et al (2013) found a correlation between blood Hg levels and isofuran (IsoFs) 

levels. IsoFs are also formed by LPO from archidonic acid under conditions of elevated 

oxygen tension that occur during mitochondrial dysfunction (Fessel and Roberts, 2005). 

Although more research is needed to verify IsoFs as biomarkers for Hg exposure, this 

parameter would unfortunately lack specificity.

Paraoxonase—Paraoxonase-1 (PON1), is an enzyme present on high-density lipoproteins 

that prevents oxidation of blood lipids and their deposition in vascular endothelium. PON1 is 

potentially useful as a clinical biomarker of cardiovascular risk, as well as a critical enzyme 

in detoxification of certain organophosphate oxons. MeHg and other metals are known to 

inhibit PON1 activity in vitro. MeHg was associated with lowered serum PON1 activity in a 

fish-eating population and this maybe related to the MeHg-induced cardiovascular risk 

(Ginsberg et al., 2014).

New Biomarkers of susceptibility to mercury

As research on the interaction between genes and environment evolves, it has become 

increasingly apparent that toxicity and disease risk are the result of complex interactions 

between genetic and environmental (epigenetic) factors that determine a high degree of 

variability in individual response to a given exposure (Basu et al., 2014).

Polymorphisms

A field of research that has grown in recent years is the study in human populations of the 

relationship between Hg exposure biomarker levels and genetic polymorphisms namely, 

single nucleotide polymorphisms (SNPs) in genes linked to xenobiotic ADME. The 

influence of these particular genes on Hg accumulation may vary considerably depending 

upon the level of exposure, the Hg species to which the population is exposed and also 

degree to which the SNP is inherent in the population or if the trait is poligenic (Barcelos et 
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al., 2013; Llop et al., 2015). Further, false-positive findings cannot be totally ruled out 

(Schläwicke-Engström et al., 2008).

Among the several SNPs related to Hg exposure, those concerning GSH synthesis and 

metabolism are the best studied. Several investigators (Barcelos et al., 2013; Custodio et al., 

2004; 2005; Goodrich et al., 2011; Gundacker et al., 2009; Parajuli et al., 2016. Schläwicke-

Engström et al., 2008) showed that Hg accumulation was altered by SNPs in genes encoding 

for glutamyl cysteine ligase (GCL) and glutathione synthetase (GS), enzymes involved in 

GSH synthesis. Depending upon the resulting phenotype (increase or decreased expression), 

such SNPs may lead to different levels of GSH, affecting Hg retention/excretion. similarly, 

SNPs in genes controlling the synthesis of different classes of glutathione S-transferases 

(GST), which are responsible for mediating GSH-xenobiotic conjugation reactions, have a 

well-documented link to individual variability in excretion of mercuric compounds 

(Barcelos et al., 2013; Custodio et al., 2004; 2005; Goodrich et al., 2011; Gundacker et al., 

2009; Lee et al., 2010; Parajuli et al., 2016; Schläwicke-Engström et al., 2008, Woods et al., 

2014a).

Polymorphisms of genes encoding for ATP binding cassette (ABC) membrane transporters, 

have been linked to elevated uptake of MeHg across the placenta and increased cord-blood 

Hg levels (Llop et al., 2014), and altered urinary excretion of Hg in ASSGM exposed 

populations (Engström et al., 2013). Other membrane transporters such as organic anion 

transporters (OATs) and L-amino acid transporters (LATs) are known to be involved in Hg 

uptake through membranes (Bridges and Zalups, 2005; Zalups, 1998), and SNPs in their 

genes have also been related to changes in Hg excretion and accumulation (Engström et al., 

2013). Similarly, SNPs in genes encoding for metallothioneins (MTs), especially the 

isoforms MT1, MT2 and MT4, have been associated to alterations in concentrations of 

exposure biomarkers, namely Hg levels in urine and hair (Gundacker et al., 2009; Wang et 

al., 2012), and neurobehavioral endpoints (Woods et al., 2013; 2014a). The precise 

significance of these SNPs for MT function has not been clarified, but it is reasonable to 

postulate that SNPs might lead to structural changes in MTs that consequently alter protein 

ability to bind metals (Wang et al., 2012).

A polymorphism in the gene encoding for inositol 1,4,5-triphosphate kinase C (ITPKC) has 

been related to development of Kawasaki syndrome (KS) in susceptible children, following 

exposure to EtHg after TCV immunization (Yeter and Deth, 2012). This SNP results in 

increased Ca release from cells, which is at the basis for observed autoimmunity and 

coronary arterial lesions in KS (Yeter and Deth, 2012).

In a study on the effect of Hg0 exposure via dental amalgams in children, it was found that a 

genetic variant of coproporphyrinogen oxidase (CPOX), CPOX4, was associated with 

enhanced susceptibility to Hg, as evidenced by lower performance in neurobehavioral testing 

(Woods et al., 2012; 2014a). Similar outcomes were noted in subjects with SNPs in 

catechol-O-methyltransferase (COMT) (Woods et al., 2014a; 2014b). Notably, both effect of 

CPOX4 and COMT SNPs were only evident in boys and not girls suggesting gender related 

differences in susceptibility. Specific polymorphisms of COMT (Val158Met), brain-derived 

neurotrophic factor (BDNF) and serotonin transporter gene promoter region (5-HTTLPR) 
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have been associated with elevated Hg levels and moodiness in dental workers exposed to 

Hg0 (Heyer et al., 2004, 2008, 2009, Parajuli et al., 2016, Woods et al., 2014a).

It is of interestin that SNPs in the gene encoding for selenoprotein P1 (SelP1) were linked to 

changes in Hg2+ excretion in urine and MeHg incorporation in hair (Goodrich et al., 2011). 

SelP1 contains multiple Sec residues and secreted from liver to plasma and thought to be 

involved in Se distribution throughout the body (Burk and Hill, 2005; Papp et al., 2007) as 

well as known to bind Hg (Suzuki and Ogra, 2001). Thus, changes in SelP1expression or 

Sec content resulting from SNPs may exert an important impact in Hg distribution, excretion 

and affect the pool of Se available for metabolism. In this sense it would be of interest to 

extend this analysis to the effects of other critical molecular targets for mercurials. In 

addition to SelP1, Parajuli et al. (2016) found a positive association between an SNP in the 

gene encoding for TrxR2 and internal dose makers for Hg. Given the relevance of this 

enzyme for Hg toxicity this association is worth further detailed analysis.

Several other SNPs have been related with alterations in levels of Hg exposure biomarkers 

even though correlations are often absent or non-existent. Among others, these include 

apolipoprotein E (Ng, 2013; Woods et al., 2014a), eNos (de Marco et al., 2011), 

paraoxonase 1 progesterone receptor, transferrin (Julvez et al., 2013), kidney and brain 

expressed protein (KIBRA), and glutamate receptors (Woods et al., 2014a).

One of the main limitations of SNPs analysis is related to sample size, which needs to be 

sufficient to incorporate a significant number of the less frequent alleles in the population, in 

order to enable an adequate statistical analysis and understanding of the actual relevance of 

the polymorphism to Hg toxicity. It should be noted that prospective birth-cohort studies, 

with appropriate confounding controls aimed at addressing the link between SNPs and 

neurotoxicity in children remain to be done (Llop et al., 2015). Nevertheless, this is a 

promising field of research and may serve a great value at identifying more vulnerable 

populations or its subsets, which could then be the focus of risk management/

communication strategies.

Epigenetic Markers

The effect of Hg compounds on factors affecting gene expression other than direct 

modification of DNA sequences is the most recently emerging field of research in this metal 

toxicology. Altough there a few studies concerning the influence of Hg exposure on 

epigenetic markers in wildlife and lab animals (Basu et al., 2014) data from human studies 

are scarce.

Hypermethylation of CpG islands, and epigenetic trait associated to gene silencing, was 

described by Cardenas and co-workers (2015) in umbilical cord-blood of infants exposed in 
utero to Hg. In addition, both GSTM1 (Hanna et al., 2012) and SEPP1 genes (Goodrich et 

al., 2013) were shown to be hypermethylated. Sanders et al (2015) examined cervical swabs 

from pregnant women and found that the expression of several miRNA was negatively 

associated with Hg exposure, but the significance of such findings is not totally clear.
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Remarks and Perspectives

The available knowledge concerning Hg toxicity and biomarkers suggests that:

– Among the possibilities for putative biomarkers in Hg toxicity, promising 

endpoints include selenoprotein (such as TrxR and GPx isoforms) activities in 

non-invasive biological samples. The latter may serve in the future as potential 

early indicators of cellular damage, i.e. predictive of damage and eventual 

disease.

– Although transcription factors such as Nrf2 and NF-kappa B, as well as proteins 

such as GFAP and glutamate transporters, are considered as important molecules 

affected by and modulating MeHg-induced neurotoxicity, their use as 

biomarkers is likely not practical because of the lack of specificity with respect 

to solely Hg, as well as dificulty of properly assessing samples from the CNS.

– Immunotoxicity, including autoimmune effects have been established at metal 

concentrations well below the adverse threshold for CNS and kidney toxicity, 

and this issue seems to have been overlooked as a critical effect; however, the 

responses noted again are not practical due to lack of specificity.

– Protein adducts with mercuric species are presently amenable to analysis by 

sophisticated methods based on mass spectrometry and this undoubtedly provide 

a future focus for the discovery of protein targets with critical function(s) as 

predictive biomarkers of Hg-induced toxicity. Finally, new developments in 

genomics and SNPs identification of target proteins and epigenetic markers may 

lead to individualized prediction of Hg-induced toxicity;

Taken together, a critical need exists for validation of reliable and specific biomarkers that 

represent the earliest signs of Hg exposure in an attempt to reduce or eliminate exposure and 

protect the most vulnerable populations from this metal. New insights on the mechanistic 

pathways affected by mercurial compounds might further stimulate discovery in this fast 

evolving field.
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Figure 1. Applications of biomarkers in different areas of Toxicology and Medicine.
Biomarkers can be used to evaluate exposure and predict the toxicity (A) of a xenobiotic by 

measuring the internal dose, the dose interacting with molecular targets or molecular effects 

that reflect early changes or that represent an established toxic response. If toxicity persists, 

disease ensues (B) and it may be diagnosed by standard clinical markers. New approaches 

make use of biomarkers for the development of new medicines and moreover the 

identification of biomarkers that follow disease progression will become a key element for 

personalized medicine.
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Figure 2. 
Pathway leading from exposure to a xenobiotic to toxic manifestations, and the relative 

position of exposure and effect biomarkers.
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Figure 3. Main pathways of exposure to mercury compounds, exposure biomarkers and relative 
concentrations of MeHg in hair, brain and blood.
Humans are exposed to different mercury compounds by different routes, such as MeHg 

(fish consumption), Hg0 (dental amalgams), and EtHg (TCV). The major target organs 

include the brain, kidney and the developing fetus, and exposure levels are normally 

assessed by measuring mercury levels in hair, blood and urine. In the case of MeHg levels in 

hair and blood correlate well with the values found in the brain in the proportion 250:5:1. 

(adapted from Clarkson et al., 2007)
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Figure 4. The Heme Biosynthetic Pathway.
The enzymes involved in heme biosynthesis include: 1- δ-aminolevulinic acid (ALA) 

synthetase; 2- ALA dehydratase; 3- uroporphyrinogen I synthetase; 4- uroporphyrinogen III 

cosynthetase; 5- uroporphyrinogen decarboxylase; 6- coproporphyrinogen oxidase; 7- 

protoporphyrinogen oxidase; 8- ferrochelatase. Mercury targets the enzymes 

uroporphyrinogen decarboxylase (UROD; 5), and especially coproporphyrinogen oxidase 

(CPOX; 6), thus leading to the accumulation and excretion of 4 and 5 

carboxylporphyrinogens which afterwards are oxidized to porphyrins and excreted in urine 

(adapted from Pingree et al., 2001).
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Figure 5. Potential mechanisms by which MeHg decreases selenoproteins’ homeostasis.
(A) MeHg directly interacts with the selenol group of selenocysteine. Due to its high 

electrophilicity, MeHg directly interacts with the selenol group (–SeH) of selenoccysteine 

(red arrow). Because this group is classically responsible for catalytic activity in several 

selenoproteins, loss of protein function is observed. (B) MeHg may impair the 
biosynthesis of selenocysteine. Selenocysteine (Sec) is crucial for the proper synthesis and 

functioning of selenoproteins. The biosynthesis of Sec occurs on its tRNA, and the pathway 

begins with the attachment of serine to Sec tRNA[Ser]Sec (event 1; catalyzed by seryl-

tRNAsynthetase) in the presence of ATP. Phosphoseryl-tRNA kinase (event 2) 

phosphorylates the serine moiety to form an intermediate, phosphoseryl-tRNA[Ser]Sec (PSer-

tRNA[Ser]Sec). Sec synthase (event 3) catalyzes the formation of Sec-tRNA[Ser]Sec, which is 

subsequently incorporated into selenoproteins during protein synthesis. This metabolic step 

requires the presence of selenophosphate (H2SePO3
–), whose precursor is selenide (HSe-) 

(event 4). MeHg (CH3Hg+) directly interacts with selenide (red arrow), leading to a 

“selenium-deficient-like” condition, which lead to inappropriate selenoprotein synthesis 

(Usuki et al., 2011). For additional details on Sec biosynthesis, see Hatfield et al., 2014. 

Abbreviations: Pi, inorganic phosphate; PPi, inorganic pyrophosphate.
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Figure 6. Interaction between mercury compounds and TrxR1 and TrxR2 at the cytosol and 
mitochondria.
Mercury compounds enter liver cells and target TrxR1 and 2 at the cytosol and 

mitochondria, respectively (1A and 1B), leading to a decrease in activity. Loss of TrxR1 

promotes Nrf-2 release from Keap-1 (2 and 3) and its subsequent translocation to the 

nucleus of the cell (4) where it binds the ARE element in the promoter region of the 

TXNRD1 gene (5). This process is faster upon exposure to Hg2+ than to MeHg (see Branco 

et al., 2014 for detailed explanation). Transcription of the gene is enhanced and TrxR1 

mRNA builds up in the cytosol (6) and TrxR1 is de novo synthetized (7)
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Table 1:

Comparison of IC50 values for the inhibition of purified TrxR by different metals.

Compound [TrxR]
(nM)

IC50
(µM)

incubation time
(min) Reference

Mercury
HgCl2 50 0.0072 5 Carvalho et al.,

2008a
MeHgCl 50 0.0197 5

Gold (I)

Auranofin 2 0.020 10

Rigobello et al.,
2004

TEPAu 2 0.065 10

Aurothiomalate 2 0.280 10

Gold (III)

Aupy 2 1.42 10

Audien 2 0.42 10

Aubipy 2 0.28 10

Aubipyxil 2 0.21 10

Tin Tributyltin 2 76.1 10
Rigobello et al.,

2004Cadmium Cadmiumacetate 2 23.5 10

Zinc
ZincAcetate 2 19.5 10

Zincpyrithione 2 11.8 10

Platinum
Cisplatin 300 ~200 20 Witte et al.,

2005Oxaliplatin 300 ~100 20

Silver Ag2SO4 25 ~0.025/5 5 Srivastava et al.,
2012

Arsenic As2O3 50 0.25/30 30 Lu et al., 2007
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