
Inhibition of Inflammatory Signaling in Tet2 Mutant Preleukemic 
Cells Mitigates Stress Induced Abnormalities and Clonal 
Hematopoiesis

Zhigang Cai1,2, Jonathan J. Kotzin3,4, Baskar Ramdas1, Sisi Chen1, Sai Nelanuthala1, 
Lakshmi Reddy Palam1, Ruchi Pandey1, Raghuveer Singh Mali1, Yan Liu1, Mark R. Kelley1, 
George Sandusky5, Morvarid Mohseni6, Adam Williams7,8, Jorge Henao-Mejia3,4, and 
Reuben Kapur1,2

1Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University 
School of Medicine, Indianapolis, IN 46202

2Department of Microbiology & Immunology, Indiana University School of Medicine, Indianapolis, 
IN 46202

3Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 
19104, USA

4Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 
PA 19104, USA

5Department of Pathology, Indiana University School of Medicine, Indianapolis, IN 46202

6Lab Head Oncology, Novartis Institutes of Biomedical Research, Cambridge, MA, USA

7The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, 06032, USA

8Department of Genetics and Genomic Sciences, University of Connecticut Health Center, 
Farmington, Connecticut, 06032, USA.

SUMMARY

Corresponding author(s): Reuben Kapur or Zhigang Cai, Herman B Wells Center for Pediatric Research, Department of Pediatrics, 
Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA, rkapur@iupui.edu or zcai@iupui.edu Phone: 
317-274-4658.
AUTHOR CONTRIBUTIONS
RK conceived the project. ZC and RK designed the experiments, analyzed data and wrote the manuscript. ZC performed most of the 
experiments and acquired the data. GS analyzed the histology and pathology of bone marrow and spleen. AW, JHM, JJK, MM, MK 
and YL provided reagents, shared unpublished data and contributed to the drafting and revision of the manuscript. BR, SC, SN, RP 
and RSM assisted with certain experiments and acquired part of the data.

DECLARATION OF INTERESTS
Dr. Mark R. Kelley has licensed E3330 (APX3330) through Indiana University Research and Technology Corporation to Apexian 
Pharmaceuticals. Apexian Pharmaceuticals had neither control nor oversight of the studies, interpretation, or presentation of the data 
in this manuscript. Morvarid Mohseni is an employee of Novartis Institutes of Biomedical Research. Other authors declare no 
competing financial interests.

SUPPLEMENTAL INFORMATION
Supplemental Information includes seven Figures and can be found with this article online.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Cell Stem Cell. Author manuscript; available in PMC 2019 December 06.

Published in final edited form as:
Cell Stem Cell. 2018 December 06; 23(6): 833–849.e5. doi:10.1016/j.stem.2018.10.013.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Inflammation is a risk factor for cancer development. Individuals with preleukemic TET2 
mutations manifest clonal hematopoiesis and are at a higher risk of developing leukemia. How 

inflammatory signals influence the survival of preleukemic hematopoietic stem and progenitor 

cells (preleukemic-HSPCs) is unclear. We show a rapid increase in the frequency and absolute 

number of Tet2-KO mature myeloid cells and HSPCs in response to inflammatory stress, which 

results in enhanced production of inflammatory cytokines, including IL-6, and resistance to 

apoptosis. IL-6 induces hyperactivation of the Shp2-Stat3 signaling axis, resulting in increased 

expression of a novel anti-apoptotic lncRNA, Morrbid, in Tet2-KO myeloid cells and HSPCs. 

Expression of activated Shp2 in HSPCs phenocopies Tet2 loss, with regard to hyperactivation of 

Stat3 and Morrbid. In vivo, pharmacologic inhibition of Shp2 or Stat3 or genetic loss of Morrbid 
in Tet2-mutant mice rescues inflammatory stress-induced abnormalities in HSPCs and mature 

myeloid cells including clonal hematopoiesis.

ETOC paragraph:

Cai et al report that Tet2-deficient hematopoietic stem and progenitor cells manifest hyperactive 

IL-6/Shp2/Stat3/Morrbid pathway, which promotes cell survival under basal conditions as well as 

in response to inflammatory stress. Blocking this pathway using anti-inflammatory drugs E3330 

and SHP099 or by genetic loss of Morrbid mitigates this response.

Gaphical Abstract

INTRODUCTION

Myeloid malignancies such as acute myeloid leukemia (AML), chronic myelomonocytic 

leukemia (CMML), myeloproliferative neoplasia (MPN) and myelodysplastic syndromes 

(MDS) are considered clonal blood disorders. Hematopoietic stem and progenitor cells 

(HSPCs) with mutation(s) in AML-related genes such as TET2 or DNMT3A represent what 

are commonly defined as preleukemic HSPCs (Jan et al., 2012; Shlush and Minden, 2015; 
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Shlush et al., 2014; Sperling et al., 2017). The selection and expansion of preleukemic-

HSPC clones precede the development of AML (Abkowitz 2014; Grove and Vassiliou, 2014; 

Jan et al., 2012). Additionally, preleukemic-HSPCs can transform through serial acquisition 

of additional somatic mutations over time and contribute to the development of full-blown 

AML. What is unclear is the nature of environmental signals that might contribute to the 

“switch” from a preleukemic state to a leukemic state in cells bearing these mutations. In 

this context, inflammation has been hypothesized to play an essential role, but precisely how 

inflammatory signals influence the growth, survival, differentiation and the overall 

engraftment potential of preleukemic-HSPCs is poorly understood.

Older mice carrying loss of function alleles in Tet2 or Dnmt3a manifest an expanded HSPC 

pool, including a hematopoietic stem cell (HSC)-enriched fraction defined by cell surface 

markers Lineage-/Sca-1+/c-Kit+ (LSK). Some of these genetically modified mice go on to 

develop CMML or MPN with modest penetration when aged (Challen et al., 2012; Chu et 

al., 2012; Ko et al., 2011; Li et al., 2011; Moran-Crusio et al., 2011; Quivoron et al., 2011). 

The majority of preleukemic mutations on their own are insufficient to cause AML in mice, 

suggesting that a single mutation among the above-described mutations defines a 

preleukemic state, and perhaps additional cooperating mutations and/or environmental 

factors are necessary to provide a more effective selection advantage for preleukemic-

HSPCs leading to the development of full-blown leukemia.

Inflammation has been linked to tumor induction and transformation in solid tissues, and has 

recently been speculated as an enabling characteristic of cancer and its malignancies 

(Grivennikov et al., 2010; Hanahan and Weinberg, 2011; Mantovani et al., 2008). 

Inflammation caused by environmental exposure, infection, autoimmunity, or ageing may 

result in mutations and genomic instability in somatic cells as well as in reprogramming of 

the tumor microenvironment through regulating angiogenesis and expression of cytokines 

and chemokines. Considering that both innate and adaptive immune cells are generated from 

HSPCs and are involved in regulating local as well as whole-body inflammatory processes, 

the relationship between inflammation and hematopoietic malignancies is likely to be 

complex. While the influence of inflammatory stress on normal HSPCs has recently gained 

significant attention, recent studies have begun to address how preleukemic HSPCs respond 

or contribute to inflammation (Abegunde et al., 2018; Hasselbalch, 2012; Kobayashi et al., 

2016; Meisel et al., 2018; Mirantes et al., 2014; Sano et al., 2018; Takizawa et al., 2012; 

Zhao and Baltimore, 2015). Because HSPCs in adults reside in the bone marrow and are 

surrounded by mature immune cells, the inflammatory microenvironment is likely to 

influence the growth and self-renewal of these cells in part by producing pro-inflammatory 

cytokines and chemokines. In support of this hypothesis are epidemiologic findings 

demonstrating that infection may act as a trigger for AML development in humans 

(Kristinsson et al., 2011).

In the present study, we asked whether and how Tet2-KO HSPCs maintain survival 

advantage during pathological stress by examining how Tet2-KO preleukemic-HSPCs 

respond to inflammatory stress.
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RESULTS

A transient but enhanced neutrophil response to acute inflammatory stress in Tet2-KO 
mice

Lipopolysaccharide (LPS), a ligand that functions by stimulating the Toll-like receptor 4 

(TLR4)/NFκB signaling pathway, is widely used to induce inflammation in mice (Manz and 

Boettcher, 2014). To assess how Tet2-KO pre-leukemic stem, progenitor and mature cells 

respond to acute inflammation, we injected LPS in Tet2-KO mice and their wildtype 

counterparts and followed these mice for 7 days to assess changes in peripheral blood (PB) 

hematologic parameters (Rodriguez et al., 2009). On day 2 (48 hours) post LPS treatment, a 

significant increase in white blood cells (WBC) was observed in Tet2-KO mice relative to 

controls (Figure 1A). The increase in WBCs in these mice was associated with an increase 

in the absolute number and the frequency of neutrophils (NE), consistent with enhanced 

“emergency granulopoietic” response (Figure, 1A and 1B) (Manz and Boettcher, 2014). The 

number of monocytes (MO) was comparable between wildtype and Tet2-KO mice post LPS 

treatment while eosinophil (EO) and basophil (BA) counts were also elevated like 

neutrophils in Tet2-KO mice (Figure S1A and data not shown). In addition, the number of 

lymphocytes (LY), platelets (PLT) and red blood cells (RBC) were comparable between 

wildtype and Tet2-KO mice (Figure S1A). Although no changes in the histology of bone 

marrow and spleen was seen upon LPS challenge (Figure S2B), flow cytometry analysis 

revealed a significant increase in the frequency of Mac1+ myeloid cells in Tet2-KO mice on 

day 2-post LPS treatment compared to wildtype controls (Figure S1C). Taken together, these 

data suggest that Tet2-KO mice manifest a transient but significant increase in both number 

and frequency of neutrophils in response to acute inflammatory stress.

Acute inflammatory stress results in increased numbers of myeloid progenitors and 
hematopoietic stem cells in the bone marrow of Tet2-KO mice

Infection induces acute inflammation and modulates hematopoiesis at the level of both 

hematopoietic stem cells (HSC) and progenitor cells (HPC) to adapt to pathological insult 

(King and Goodell, 2011; Takizawa et al., 2012). In contrast to steady state hematopoiesis 

(naïve; hematopoietic hierarchy illustrated in Figure 1C), infection/stress-induced 

hematopoiesis in the bone marrow (BM) is recognized as “emergency hematopoiesis” 

(Trumpp et al., 2010; Wilson et al., 2008). Post LPS challenge, we analyzed the LSK and 

HSC compartments (defined by LSK/CD48-/CD150+) in wildtype and Tet2-KO mice (Kiel 

et al., 2008). We also analyzed various bone marrow progenitor cell subsets comprising of 

common myeloid progenitors (CMP, defined by Lin-/Sca-1-/c-Kit+/CD16-/CD34+), 

granulocyte-macrophage progenitors (GMP, defined by Lin-/Sca-1-/c-Kit+/CD16+/CD34+), 

and megakaryocyte-erythroid progenitors (MEP, defined by Lin-/Sca-1-/c-Kit+/CD16-/

CD34-) in these mice (Figure 1D). We observed a similar drop in the overall BM cellularity 

in both wildtype and Tet2-KO mice post LPS challenge (Figure 1E). In contrast, LPS 

treatment resulted in significant differences in the frequencies and absolute number of BM 

progenitors in Tet2-KO mice relative to controls post LPS challenge. Quantitatively, LPS 

challenge of Tet2-KO mice resulted in increased number and frequencies of CMPs and 

GMPs but not MEPs (Figure 1E and data not shown). A significant enrichment in LSK and 

HSC frequency and numbers was also observed in Tet2-KO mice compared to controls post 
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LPS treatment (Figure 1E). Similarly, Tet2-KO mice exhibit an increase in multipotent 

progenitors (MPPs, defined by LSK/CD48+/CD150-) and short-term HSCs (ST-HSC, 

defined by LSK/CD48+/CD150+) post-LPS challenge (Figure S1D). Given that adult (12–16 

week old) Tet2-KO mice also manifest increased basal (day 0, before LPS challenge) levels 

of CMPs, LSKs and HSCs compared to controls, we assessed if juvenile (younger) Tet2-KO 

mice, which show similar frequency and number of CMPs, LSKs and HSCs as wildtype 

controls under basal conditions, respond to LPS challenge in a manner similar to older Tet2-

KO mice. As shown in Figure S1E, juvenile Tet2-KO mice also exhibit enhanced response to 

LPS challenge in all the BM progenitor subsets examined including CMPs, LSKs and HSCs 

compared to controls. Collectively, these data suggest that deficiency of Tet2 in HSPCs 

primes them to respond to acute inflammatory stress much more efficiently than WT 

controls.

Differential impact of acute inflammatory stress on the function of normal vs. Tet2-KO 
hematopoietic stem cells

Recent studies have shown that LPS challenge or bacterial infection in mice not only 

expands the HSC/LSK population in the BM, but also potentially depletes HSCs and impairs 

their self-renewing capability (Esplin et al., 2011; Matatall et al., 2016; Rodriguez et al., 

2009). We asked whether LPS-challenged Tet2-KO HSPCs also demonstrate impaired stem 

cell activity after being exposed to an inflammatory stress. To assess this, we first performed 

a competitive repopulation assay using whole bone marrow cells pre- and post-LPS 

challenge. The scheme for conducting competitive bone marrow transplantation (cBMT) is 

shown in Figure 2A. Peripheral blood chimerism revealed that the repopulating activity of 

CD45.2 donor cells from WT mice on day 2 post LPS treatment (% CD45.2_WT_day 2 in 

primary recipients) was significantly reduced compared to non LPS treated wildtype donor 

cells (% CD45.2_WT_day 0 in primary recipients) (% CD45.2_WT_day 2 vs. % 

CD45.2_WT_day 0, * P<0.05, Figure 2B). In contrast, LPS-stressed Tet2-KO CD45.2 donor 

cells did not show any decline in repopulating ability on any of the post LPS treatment time 

points examined (Figures 2B). Further, at every time point post LPS treatment, Tet2-KO 

CD45.2 bone marrow donor cells demonstrated higher repopulating ability compared to WT 

CD45.2 donor controls, and the greatest difference was observed on day 2 post LPS 

treatment (i.e. % CD45.2_WT_Day 2 vs. % CD45.2_Tet2-KO_Day 2, ** P<0.01, Figure 2B 

and S2A). Secondary cBMT experiments further confirmed that WT CD45.2 donor cells on 

day 2 post LPS treatment showed a significant decrease in the repopulating activity while 

Tet2-KO CD45.2 donor cells were resistant to LPS stress and maintained robust engraftment 

advantage (Figure 2C). Chimerism analysis of various fractions of BM cells including Lin- 

cells, LSK cells, myeloid cells (labeled by Mac1), B-cells (labeled by CD19) and T-cells 

(labeled by CD3) in the BM of primary cBMT recipients also demonstrated that the 

repopulation of Tet2-KO donor cells was higher than controls (Figure S2A, S2B, S2C and 

S2D).

To further compare the repopulating activity of stem cells after LPS-induced inflammatory 

damage in wildtype and Tet2-KO mice, identical number of LSK cells from pre- and post-

LPS treated wildtype and Tet2-KO mice were sorted and subjected to colony forming unit 

assay (CFU assay) in vitro and BM transplantation assay in vivo (Figure 2D). Because the 
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frequencies of HSCs in the LSK pool were comparable between wildtype and Tet2-KO mice 

(Figure S2E), the analysis using LSK cells allowed us to assess the functional difference 

between the two groups with regards to HSCs upon LPS challenge. Consistent with our data 

utilizing whole bone marrow cells (Figure 2B), purified wildtype LSK cells derived from 

mice 2 days post LPS treatment showed impaired colony forming ability in vitro and 

significantly reduced repopulating activity in vivo compared to Tet2-KO LSK cells, which 

were significantly more resistant to inflammatory insult (Figure 2E and 2F). Taken together, 

our functional data demonstrate that while the repopulating activity of wildtype HSPCs is 

significantly impaired in response to LPS-induced inflammatory stress, LPS-treated Tet2-

KO HSPCs maintain greater engraftment and are resistant to inflammatory stress.

Hematopoietic stem and progenitor cells lacking Tet2 resist apoptosis in response to 
acute inflammatory stress

Given our results demonstrating increased frequency, increased number and enhanced 

engraftment of Tet2-KO HSPCs upon LPS challenge, we sought to determine if Tet2-KO 

HSPCs compared to wildtype HSPCs manifest differences in apoptosis and/or proliferation 

upon encountering inflammatory stress. We analyzed apoptosis in HSPCs by Annexin-V and 

7-AAD staining followed by flow cytometry analysis post-LPS treatment (Figure 3A). We 

also determined proliferation by assessing the percentage of Ki67+ HSPCs (Figure S3A). 

Although we observed only subtle changes in proliferating LSK pool (Figure S3A), 

remarkable and consistent differences in apoptosis were detected in both Lin-negative and 

LSK pool between wildtype and Tet2-KO upon LPS challenge (Figure 3A and 3B). 

Furthermore, the phenotypic observation with regard to reduced apoptosis in Tet2-KO cells 

post LPS treatment was consistent with changes in the expression of pro-apoptotic genes 

including Casp1, encoding Caspase 1 and Bcl2l11, encoding Bim, which were significantly 

reduced in Tet2-KO cells (Figure 3C). Furthermore, pro-survival genes including Bcl2 and 

Morrbid showed increased expression in Tet2-KO cells in both naïve condition and upon 

LPS challenge (Figure 3C). Morrbid is a recently identified long non-coding RNA (lncRNA) 

involved in regulating the expression of Bim and in the survival of myeloid cells including 

neutrophils; however, the role of Morrbid in the survival of pre-leukemic HSPCs is not 

known (Kotzin et al., 2016). We hypothesized that the hyperactivation of Morrbid in Tet2-

KO HSPCs could be mediated via direct regulation of Morrbid promoter by Tet2 or perhaps 

via an indirect mechanism involving transcription factors that regulate inflammation. It has 

been reported that knock-out of a specific promoter region (~800 bp) of Morrbid impairs its 

activity (Kotzin et al., 2016). Detailed methylation analysis on the ~800-bp promoter region 

of Morrbid showed no profound difference in either 5-mC or 5-hmC modifications (Figure 

S3B-E). In contrast, we readily detected hyperactive phospho-Stat3 (pStat3) in Tet2-KO 

cells by flow cytometry and by western blot analysis (Figure 3E and 3F). Furthermore, we 

detected increased binding of Stat3 to the Morrbid promoter (Figure 3G). Taken together, 

these results suggest that Tet2 loss results in survival advantage in preleukemic cells, which 

is associated with increased expression of Morrbid and activation of Stat3.

Tet2-KO mice show enhanced expression of pro-inflammatory cytokines

Acute inflammatory stress can induce an immediate and transient “cytokine storm” to 

regulate emergency hematopoiesis and granulopoiesis (Manz and Boettcher, 2014). To 
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determine the upstream regulators of Stat3-Morrbid survival pathway and to see if the 

observed resistance to inflammatory stress in Tet2-KO HSPCs is in part due to dysregulated 

expression of inflammatory cytokines in Tet2-KO mice, we quantified thirty-one cytokines 

and chemokines to assess their levels in serum. Fifteen cytokines or chemokines (G-CSF, 

IL-6, CCL2, CCL4, CXCL1, CCL5, TNFα, CXCL9, CXCL10, IL-10, GM-CSF, IL-1α, 

IL-1β, M-CSF, IL-2) were found to be stimulated in serum by LPS on day 1 and/or day 2 

compared to day 0 in wildtype and Tet2-KO mice (Figure 4A and S4A). However, we 

consistently observed that loss of Tet2 resulted in a profound increase in serum IL-6 levels 

on day 0, while a further increase was observed on days 1 and 2 post LPS treatment (Figure 

4A). Ccl2, Ccl4, TNFα and CXCL9 were also increased in Tet2-KO mice on day 2 (Figure 

4A). G-CSF, one of the most essential cytokines for granulopoiesis, was also slightly but not 

significantly increased in Tet2-KO mice on day 2 post LPS-treatment compared to wildtype 

(p=0.06, Figure 4A). Recent studies suggest that LPS can directly induce the production of 

multiple cytokines including IL-6, IL-1β, GM-CSF and TNFα in wildtype HSPCs (Zhao et 

al., 2014). We therefore examined to see if Tet2-KO HSPCs also produce these cytokines. 

IL-6 was expressed more highly by mature BM cells as well as by immature BM cells 

(HSPCs) lacking Tet2 upon LPS treatment compared to wildtype controls (Figure 4B, 4C, 

4D and S4B). TNFα was expressed at a higher level on day 1 in Lin- BM cells derived from 

Tet2-KO mice (Figure S4C). Expression of IL-1β and GM-CSF was also enhanced by LPS 

treatment but was comparable between wildtype and Tet2-KO HSPCs (Figure S4D and 

S4E). QRT-PCR analysis on Lin- BM cells confirmed that Il6 mRNA was significantly 

elevated on day 0 and days 1 and 2-post LPS treatment in adult Tet2-KO mice relative to 

controls (Figure 4E). Likewise, in juvenile mice, where serum IL-6 and expression of Il6 
were comparable between wildtype and Tet2-KO cells on day 0, LPS challenge resulted in 

significantly higher expression of Il6 in Lin- cells derived from Tet2-KO mice relative to 

controls (Figure 4F). Expression of Ccl2 was also increased in the serum and in Lin- cells on 

day 1 post LPS treatment in Tet2-KO mice relative to controls (Figure 4A, 4E and 4F). 

Taken together, these data suggest that Tet2-KO preleukemic hematopoietic cells produce 

elevated pro-inflammatory cytokines including IL-6 upon LPS challenge.

A selective Shp2 inhibitor SHP099 or Stat3 inhibitor E3330 blocks IL-6 induced 
hyperactivaton of Morrbid in vitro

LPS activates canonical TLR4/NFκB signaling, which induces the expression of 

inflammatory cytokines such as IL-6 to induce emergency hematopoiesis (a schematic of the 

TLR4/NFκB/IL-6 and IL-6/Shp2/Stat3 signaling pathways is illustrated in Figure 5A) (Lu et 

al., 2008). Interestingly, multiple components of TLR4/NFκB/IL-6/Stat3 signaling pathway 

including Tlr4, Nfkbiz, Il6 and Stat3 were elevated in Tet2-KO Linnegative cells with or 

without LPS challenge, consistent with a heightened inflammatory response in Tet2-KO 

HSPCs (Figure S5A, S5B and S5C). Given the increased expression of IL-6 in Tet2-KO 

HSPCs, we asked how IL-6 might contribute to the enhanced survival of Tet2-KO HSPCs. In 
vitro stimulation of Lin- Tet2-KO cells with IL-6 resulted in reduced apoptosis of these cells 

compared to controls (Figure 5B). Importantly, the reduced apoptosis of Tet2-KO cells in the 

presence of IL-6 was associated with increased activation of Stat3 and expression of 

lncRNA, Morrbid (Figure S5D and 5C). Given the importance of IL-6 in activating Stat3 via 

Shp2 (Heinrich et al., 2003), we examined the consequence of constitutively active Shp2 

Cai et al. Page 7

Cell Stem Cell. Author manuscript; available in PMC 2019 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



expression in Linnegative cells on Morrbid activation. Consistent with IL-6 stimulation of 

Morrbid in vitro, HSPCs with expression of a constitutive Shp2 isoform, Shp2E76K, also 

demonstrated reduced apoptosis, enhanced activation of Stat3, increased binding of Stat3 to 

the Morrbid promoter, increased expression of Morrbid, and reduced expression of Bim; 

essentially phenocopying the heightened survival advantage of Tet2-KO preleukemic cells 

(Figure 4D and S5E). Taken together, these gain of function studies further indicate the 

importance of the IL-6/Shp2/Stat3/Morrbid axis in driving the enhanced survival observed in 

Tet2-KO Lin- cells.

To further verify the role of Stat3 and Shp2 in regulating the IL-6/Morrbid axis in Tet2-KO 

Lin-negative cells, we treated the cells with E3330, a pan inhibitor of both NFκB and Stat3 

(Cardoso et al., 2012; Jedinak et al., 2011), and SHP099, a novel selective allosteric 

inhibitor of Shp2 (Chen et al., 2016). E3330 is being advanced in cancer clinical trials as a 

novel, oral, first-in-class drug in humans to target APE-1 (IND# 125360). SHP099 

(TN0155) is also being tested in phase I clinical trial (NCT03114319) for solid tumors with 

mutations in the receptor tyrosine kinases. We observed a significant inhibition in replating 

efficiency of Tet2-KO Lin-negative cells relative to controls in the presence of E3330 or 

SHP099 (Figure 5E and 5F), which was associated with reduced expression of IL-6, reduced 

activation of Stat3 and enhanced apoptosis (Figure S5F and 5G). Of note, the repressive 

activity of E3330 and SHP099 exhibited a similar trend in CFU assays in control and Tet2-

KO cells, however the repression was more profound in Tet2-KO cells. Consistent with these 

observations, we also observed a significant reduction in the binding of Stat3 to Morrbid 
promoter in the presence of these drugs (Figure 5H). Taken together, these data suggest that 

IL-6, Shp2 and Stat3 are upstream regulators of Morrbid and that E3330 and SHP099 impair 

the growth of Tet2-KO Lin-negative cells in part by modulating the expression of Morrbid.

Tet2 loss-induced aberrant hematopoietic expansion and emergency granulopoiesis is 
repressed by E3330 or SHP099

We next asked if SHP099 or E3330 are also effective in mice that mimic Tet2 loss-induced 

clonal hematopoiesis or early signs of myeloid neoplasia. We first examined the in vivo 
impact of E3330 and SHP099 treatment on LPS-induced emergency hematopoiesis. A 

significant decrease in LPS-induced neutrophilia in PB, as well as in the frequency of LSK 

cells, in BM of Tet2-KO mice was observed as early as 2 days post-LPS treatment in the 

presence of E3330 or SHP099 treatment, demonstrating that these two drugs possess potent 

anti-inflammatory activity, not only in vitro but also in vivo (Figure S6A). Following a 

similar approach as described before (Fuster et al., 2017), we next developed an 

experimental model of clonal hematopoiesis/clonal expansion by mixing Tet2-KO BM cells 

(from Tet2 mutant mice, CD45.2) with wildtype cells (from Boy J mice, CD45.1) at a low 

ratio (1 : 5) prior to transplantation into recipient animals (F1 mice, CD45.2/CD45.1) 

(Figure 6A). The proportion of Tet2-KO cells consistently expanded with time, and the ratio 

of Tet2-KO to wildtype cells almost doubled every month (ratio value was calculated by 

assessing the percentage of CD45.2+ cells to percentage of CD45.1+ cells) (Figure 6B and 

data not shown). Next, we tested if continuous administration of LPS (mimicking chronic 

infection), E3330, or SHP099 alters Tet2 loss-induced clonal expansion (procedure scheme 

illustrated in Figure 6A). As shown in Figure 6B and 6C, stimulation of chimeric mice with 
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LPS further increased the ratio of Tet2-KO to wildtype cells in this model; daily treatment 

with E3330 or SHP099 significantly repressed the hematopoietic cell expansion of Tet2-KO 

cells compared to controls. These results demonstrate that Tet2 loss-induced clonal 

expansion of preleukemic HSPCs is inhibited by the treatment of these mice with E3330 or 

SHP099.

In addition to examining the role of these two drugs in chimeric mice demonstrating 

inhibition of clonal expansion, we also assessed the efficacy of E3330 and SHP099 in a 

cohort of Tet2-KO mice. Since Tet2-KO mice develop age-dependent CMML-like disease 

symptoms (Figure S6B), we chose both juvenile (~1 month old) and old Tet2-KO mice (~6 

months old) for the drug treatment. Although wildtype control mice were tolerant of the 

drug treatment and showed no changes in any of the hematologic parameters tested (Figure 

S6C), a two-month continuous treatment of Tet2-KO mice with E3330 or SHP099 reversed 

multiple early signs of aberrant HSPC dysregulation associated with Tet2-deficiency, 

including enhanced frequency of CMPs, LSKs, HSCs and splenomegaly (Figure 6D). 

Importantly, and consistent with our in vitro observations, expression of IL-6, pStat3, 

Morrbid and Bim were significantly corrected in Tet2-KO cells treated with E3330 or 

SHP099 (Figure 6D). In a short-term treatment regimen (14 days) on aged Tet2-KO mice, 

E3330 and SHP099 failed to reverse the frequency of LSKs and CMPs. However, both these 

drugs were able to promptly and significantly reduce the neutrophil and white blood cell 

(WBC) burden, and also restored the anemia including the red blood cell (RBC) and platelet 

counts in Tet2-KO mice relative to controls (Figure 6E and S6D). In addition, a reduction in 

spleen weight was observed in SHP099-treated Tet2-KO mice, although it did not reach 

statistical significance (p=0.09, Figure S6D). Importantly, Serum IL-6 levels were also 

reduced upon E3330 or SHP099 treatment in Tet2-KO mice (Figure 6E). Taken together, 

these findings suggest that through targeted inhibition of IL-6/Shp2/Stat3/Morrbid signaling 

axis, treatment with E3330 or SHP099 offers an anti-inflammatory benefit and rescues 

clonal hematopoiesis as well as some aspects of Tet2 deficiency-associated HSPC 

aberrations including CMML-like disease.

Genetic loss of Morrbid in Tet2+/− HSPCs rescues inflammatory stress-induced defects 
associated with loss of Tet2

Given the observed upregulation of Morrbid via the enhanced binding of Stat3 to the 

Morrbid gene in Tet2-KO Lin- cells, we next directly tested the requirement for Morrbid in 

Tet2 loss-induced aberrant hematopoietic phenotype(s), including clonal hematopoiesis and 

CMML-like disease. We inhibited the expression of Morrbid by knocking-down its 

expression using a lentivirus in Tet2-KO cells (Figure S7A), or by breeding Morrbid+/− mice 

to Tet2+/− mice, given that both heterozygous mutants closely mimic the phenotype observed 

in complete knockout for these genes (Figure 7A) (Kotzin et al., 2016; Quivoron et al., 

2011).

When analyzing the compound mutant mice, loss of Morrbid (Morrbid+/−) mitigated the 

enhanced emergency granulopoiesis in Tet2+/− mice upon LPS challenge and reversed the 

splenomegaly normally observed in these mice (Figure 7B and 7C). Similarly, genetic loss 

of IL-6 or TLR4 (IL-6−/− or TLR4−/−) also reversed LPS-induced heightened emergency 
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granulopoiesis in Tet2-KO mice (Figure S7E and S7F). As shown in Figure S7B and S7C, 

targeting Morrbid by two distinct shRNAs decreased the replating activity of Tet2-KO cells 

in a CFU assay in vitro and engraftment in a short-term transplantation assay in vivo. 
Consistent with these findings, Tet2+/−; Morrbid+/− Lin- cells failed to manifest replating 

advantage seen in Tet2+/− Lin- cells in a CFU assay in vitro and enhanced repopulating 

advantage in a cBMT assay in vivo (Figure 7D and 7E). The phenotypic corrections 

observed in Tet2+/−; Morrbid+/− mice were due in part to increased expression of Bim, 

which was associated with enhanced apoptosis in both mature myeloid cells and progenitor 

cells compared to controls (Figure S7D). Taken together, these data demonstrate that 

Morrbid is an essential mediator of aberrant “emergency hematopoiesis” and clonal 

hematopoiesis due to loss of Tet2 in HSPCs.

DISCUSSION

In this study, we examined the impact of inflammation on the function of pre-leukemic stem 

and progenitor cells lacking the enzyme Tet2. TET2 is frequently mutated in patients with 

myeloid malignancies and these mutations are also present in normal individuals who lack 

signs of AML but demonstrate clonal hematopoiesis (Busque et al., 2012; Genovese et al., 

2014; Jaiswal et al., 2014). Some of these individuals develop full-blown hematologic 

malignancies later on in life. It is however unclear what the risk factors are in these 

individuals, which push them to progress from clonal hematopoiesis to full-blown leukemia. 

In solid tumors, infection/inflammation contribute to colon cancer (Bernstein et al., 2001; 

Newman et al., 2001). Here, we have examined how acute inflammation changes the 

behavior of hematopoietic stem and progenitor cells in a mouse model of pre-leukemic stem 

and progenitor cells that shows signs of clonal hematopoiesis. Specifically, we studied if 

Tet2-KO pre-leukemic stem and progenitor cells themselves produce inflammatory 

cytokines and how they respond to an inflammatory challenge. Our findings demonstrate 

that Tet2-KO pre-leukemic stem and progenitor cells show enhanced response to 

inflammatory stimuli within the more primitive and mature stem/progenitor cell 

compartment of the BM. Tet2-KO HSPCs show sustained survival in response to 

inflammation. Serum IL-6 levels, as well as the expression of IL-6 is significantly 

upregulated in Tet2-KO HSPCs with or without LPS stimulation. Functionally, Tet2-KO 

HSCs demonstrate resistance to inflammation-induced damage. Pharmacologically, an anti-

inflammatory drug E3330 or a SHP2 inhibitor, SHP099, normalizes inflammation-induced 

emergency hematopoiesis, represses aberrant hematopoietic phenotypes in the bone marrow 

of young Tet2-KO mice, and reverses the imbalance of WBC/RBCs in aged Tet2-KO mice. 

Mechanistically, hyperactive Morrbid, in part contributes, to the aberrant growth advantage 

caused by Tet2 loss. Taken together, these findings suggest that Tet2-KO pre-leukemic 

HSPCs are powered with a selection advantage under conditions of inflammation-induced 

stress. The growth advantage seen in Tet2-KO pre-leukemic stem cells is likely due to 

elevated NFκB/IL-6/Stat3/Morrbid signaling in both mature (supplying IL-6) and immature 

cells (supplying and responding to IL-6), which likely forms a feed-forward loop to promote 

myeloid malignancies with age (Figure S7G).

TET2 catalyzes the 5-hydroxylation of 5-methylcytosine (5-mc) to 5-hydroxymethylcytosine 

(5-hmc) and is an essential epigenetic regulator of the genome (Shih et al., 2012). TET2 is a 
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tumor suppressor in myeloid and solid cancer (Ko et al., 2010; Lian et al., 2012). Although 

studies have shown that Tet2-deficient (Tet2−/− or Tet2+/−) LSK/HSC cells have increased 

self-renewal activity, the underlying molecular mechanisms that control this process are 

largely unknown. During the course of our studies, Zhang et al, utilized Tet2-KO dendritic 

cells and macrophages and showed that, upon LPS treatment, Tet2-KO mature immune cells 

produce higher levels of IL-6 and fail to resolve inflammation as efficiently as wildtype 

cells, implicating an important role of Tet2 in regulating inflammation (Zhang et al., 2015). 

Jaiswal et al and Fuster et al also reported that Tet2 loss results in aberrant inflammation and 

clonal hematopoietic expansion, which further promotes myeloid cell-driven diseases such 

as cardiovascular disease (Fuster et al., 2017; Jaiswal et al., 2017). In the current study, we 

observed higher levels of IL-6 in the serum and in HSPCs lacking Tet2 upon LPS challenge. 

Surprisingly, we also found that adult and older naïve Tet2-KO mice also possess increased 

expression of IL-6 in serum and in HSPCs. This observation has not been appreciated before 

and strongly suggests that Tet2-KO HSPCs perpetuate a baseline high level of inflammation, 

which may be one of the mechanism(s) involved in driving clonal hematopoiesis (Figure 

S7G).

IL-6 is one of the major pro-inflammatory cytokine circulating in the blood and also 

functions locally (Hunter and Jones, 2015). IL-6 can be synthesized in large amounts in 

response to LPS challenge. In addition to playing an essential role in regulating immunity, 

IL-6 can also regulate hematopoietic cell development and leukemia transformation. Recent 

studies utilizing a mouse model of chronic myeloid leukemia (CML) showed that leukemia 

in this model is dependent on increased levels of inflammatory cytokine IL-6, and that 

blocking IL-6/IL6R signaling prevents CML development (Reynaud et al., 2011; Welner et 

al., 2015). These observations and our present findings support a persuasive hypothesis that 

increased levels of the pro-inflammatory cytokine IL-6 is an essential trigger of CMML-like 

disease observed in Tet2-KO mice with age (Li et al., 2011; Moran-Crusio et al., 2011; 

Quivoron et al., 2011). In addition to IL-6, other cytokines such as IFNα, IFNγ, IL-1α, 

IL-1β, and TNFα can also directly activate HSCs (Baldridge et al., 2010; Essers et al., 2009; 

Pietras et al., 2014; Pietras et al., 2016; Sujer, 2014). As we only tested the levels of 

intracellular IL-6, IL-1β, TNFα and GM-CSF at defined time points, we cannot rule out the 

possibility that the presence of these additional cytokines may also contribute to the 

observed phenotype seen in Tet2-KO mice. Interestingly, we detected increased expression 

of TLR4 in Tet2-KO HSPCs (Figure S5C). Meisel et al have recently reported increased 

expression of IL6Rα in Tet2-KO HSPCs (Meisel et al., 2018). These observations may 

provide further explanation as to why Tet2-deficient (Tet2−/− or Tet2+/−) preleukemic cells 

are primed and more sensitive to LPS and IL-6 signaling compared to wildtype cells.

While Bim−/− mice manifest increased myeloid cells in peripheral blood (Bouillet et al., 

1999), Morrbid negatively regulates Bcl2l12 (encoding Bim) expression, and Morrbid+/− or 

Morrbid−/− mice manifest decreased myeloid cells in peripheral blood (Kotzin et al., 2016). 

We show that shRNA-mediated knockdown of Morrbid or genetic loss of Morrbid in the 

setting of Tet2-deficiency failed to undergo aberrant hematopoietic clonal expansion; and 

that Tet2+/−; Morrbid+/− HSPCs failed to manifest amplified “emergency granulopoiesis” 

upon LPS challenge. Likewise, when a cohort of young Tet2-KO mice were treated with 

E3330 or SHP099, recovery of Bim and repression of IL-6 was observed, suggesting that 
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these two drugs largely function via the NFκB/IL-6/Stat3/Morrbid pathway for inducing the 

disease phenotype associated with Tet2 loss.

It is generally accepted that cancer, including solid tumors and leukemia, undergo an 

evolutionary process relying on adaptive advantages of acquired somatic mutations (intrinsic 

factors) with fitness for niche selection (extrinsic factors), with similar bioecological 

principles as indicated in Darwinian natural selection (Greaves and Maley, 2012). A recent 

study showed that once lymphocyte progenitors are primed with constitutive expression of 

oncogenes such as BCR-ABL, NRASV12 or Myc, progenitor cells have a selection 

advantage in age-induced inflammatory niche and transform into leukemia (Henry et al., 

2015). By conducting primary and secondary cBMT assays, we show that Tet2-KO HSPCs 

always outperform wildtype control cells. Essentially, when wildtype donor cells are isolated 

from their endogenous microenvironment on day 2-post LPS treatment, they lose their 

normal repopulating activity in recipient mice. In contrast, and in agreement with the finding 

by Ko et al (Ko et al., 2011), even though the primary cBMT only received half the number 

of Tet2-KO bone marrow donor cells, the recipient animals still developed early signs of 

MPN or CMML, strongly indicating that Tet2-deficiency induces growth and repopulating 

advantage to HSCs.

Based on the results from our study along with what others have shown, we have created a 

schematic that summarizes our findings (Figure S7G). Our data suggest that loss of Tet2 

results in multiple changes in the level of key molecules including IL-6 and Morrbid, which 

may render the self-renewal, differentiation, survival and clonal evolution of mutant HSCs to 

include myeloid skewing and development of MPN or CMML like disease with age. Given 

the hyperactivation of the IL-6/Shp2/Stat3/Morrbid pathway in Tet2-KO cells, we employed 

small molecule inhibitors, E3330 and SHP099, to determine their impact on emergency 

hematopoiesis. Our results show that both E3330 and SHP099 can effectively repress LPS-

induced emergency granulopoiesis and LSK expansion. More importantly, our results show 

that E3330 and SHP099 treatment prevents aberrant hematopoietic phenotypes in bone 

marrow of young Tet2-KO mice and reverses neutrophil counts and serum IL-6 levels in 

aged naïve Tet2-KO mice, suggesting that these drugs, through their specific inhibition of 

Ape1-NFκB activation or Shp2-Stat3 activation, might provide an anti-inflammatory benefit 

in AML patients bearing TET2 mutations and in normal healthy individuals bearing TET2 
mutations and clonal hematopoiesis. Given that emerging evidence suggests that 

inflammation very likely plays a causative role in the pathology of MPN (Fleischman, 2015; 

Koschmieder et al., 2016), testing these drugs in other pre-leukemic models may be of 

clinical benefit.

STAR*METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Reuben Kapur (rkapur@iupui.edu).
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EXPERIMENTAL MODEL

Mice—All mice were bred and maintained under specified pathogen-free (SPF) conditions 

in the animal facility at Indiana University School of Medicine with 12-hr light/dark cycle 

and were provided food and water ad libitum. The Institutional Animal Care and Use 

Committee (IACUC) at Indiana University School of Medicine approved experiments with 

mice. Tet2-deficient mice (Tet2−/− or Tet2+/−, CD45.2) and Morrbid-deficient mice (Morrbid
+/−, CD45.2) are on C57BL/6 genetic background and have been described previously 

(Kotzin et al., 2016; Li et al., 2011). Tet2+/− mice were bred with Morrbid+/− mice to 

generate Tet2+/−; Morrbid+/− mice and all the controls. Wildtype C57BL/6 (CD45.2) mice 

were purchased from The Jackson Laboratory and used as controls. BoyJ mice (CD45.1) 

were purchased from The Jackson Laboratory for transplantation and chimerism analysis. 

The Shp2E76K mice have been described (Xu et al., 2011). TLR4−/− and IL6−/− were 

purchased from Jackson Laboratory (Cat #007727; Cat #002650). Whenever possible 

littermates were used as controls for all experiments. The age of mice has been indicated 

specifically for certain analysis in Figure 1 to Figure 7. In general, juvenile mice were 

between 1~2 months of age, adult mice between 3~4 months of age and older mice between 

6~12 months of age. Mice of both sexes were used for experiments. Mice were not mated or 

used in previous procedure before experimentation.

METHOD DETAILS

In vivo treatments—Lipopolysaccharide (LPS) was purchased from Sigma (Cat # L8643) 

and dissolved in sterile phosphate-buffered saline (PBS) prior to being administered to mice 

(single dose; 0.8 mg/kg, i.p.). E3330, also called APX3330 was synthesized as described 

(Jiang et al., 2010; Nyland et al., 2010). E3330 was dissolved in Cremophor: EtOH (1:1) 

(Cremophor was purchased from Sigma, Cat # C5135) for stock solution generation and 

diluted in PBS prior to use for pre-LPS treatment or post-LPS treatment (20 mg/kg, twice a 

day, i.p. for Figure S6A; 20 mg/kg, one dose per day, daily by gavage for experiments in 

Figure 6C, 6D, 6E and Figure S6C and S6D). SHP099 (provided by Novartis), was dissolved 

in 0.5% Methylcellulose (Sigma, Cat# M0262) and 0.1% Tween-80 (Fisher Scientific, Cat 

#BP338–500) and given to animals by gavage (daily, 50 mg/kg) for all the in vivo 
treatments. Male and female mice between 3–4 weeks as juvenile mice, or 8–16 weeks of 

age as adult mice, or 6~8 month of age as aged mice, were used for indicated experiments.

Hematological cell counts—Hematologic parameters in peripheral blood (PB, from tail 

bleeding) were analyzed by an automated cell counter machine (Drew Hemavet 950). Total 

bone marrow (BM) cells were harvested from two femurs and two tibias and kept on ice or 

in refrigerator and stored in sterile blocking buffer containing 2% rat-serum prior to analysis. 

BM cellularity (viable cell counts) was analyzed by an automated cell counter (Beckman the 

Vi-CELL™ Cell Counter for Cell Viability Analyzer).

Flow cytometry—Non-lysed BM cells were used for analysis of erythroid lineage 

progenitor cells (Ter119 and CD71 staining). Remaining flow cytometry analysis was 

performed on lysed bone marrow cells (Lysis Buffer, BD, Cat # 555899). Antibodies against 

Ter119, Mac1, Gr1, B220, CD3, CD4 and CD8 were used for detecting mature cells 

(Lineage labeling). Progenitor cells were labeled and analyzed using the indicated 
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antibodies. Antibody labeled BM cells were analyzed using a BD FACS-CANTO II machine 

with a two-laser and six-filter configuration. The properly compensated flow data were 

analyzed by Flow Jo software (V10.2). Events plotting, calculation of frequency, mean 

fluorescence intensity (MFI), and histogram overlays were analyzed by Flow Jo software. A 

panel of PE-conjugated antibodies against TER-119, Gr1, Mac1, B220, CD3, CD4 and 

CD8a surface antigens were mixed as a cocktail for lineage labeling (Lin-PE cocktail). A 

panel of antibodies containing Lin-PE cocktail, c-Kit APC, Sca-1 APC/Cy7, CD150 PE/Cy5 

and CD48 PE/Cy7 were used for LSK/HSC labeling. A panel of antibodies containing Lin-

PE cocktail, c-Kit APC, Sca-1 APC/Cy7, CD127 PE/Cy5, CD16/32 PE/Cy7 and CD34 

FITC were used for CMP/GMP/MEP/CLP labeling. A panel of antibodies containing Lin-

PE cocktail, c-Kit APC, Sca-1 APC/Cy7, Annexin FITC and 7-AAD were used for 

apoptosis labeling. For detecting the expression of TLR4 in mature cells, TLR4 PE/Cy7 was 

mixed with Mac1 PE, B220 APC and CD3 PE. For detecting the expression of TLR4 in 

HSPCs, TLR4 PE/Cy7 was mixed with Lin-PE cocktail, c-Kit APC, Sca-1 APC/Cy7 and 

CD150 PE/Cy5. For chimerism analysis in mature cells, CD45.2 PerCP/Cy5.5 and CD45.1 

PE/Cy7 were mixed with Mac1 PE, B220 APC and CD3 PE. For chimerism analysis in 

HSPCs, CD45.2 PerCP/Cy5.5 and CD45.1 PE/Cy7 were mixed with Lin-PE cocktail, c-Kit 

APC, Sca-1 APC/Cy7 and CD150 PE/Cy5. Mac1 PE and Ly6G FITC were mixed for 

neutrophil labeling. Intracelluar flow cytometry (ICFC) was performed to detect the 

expression of Bim, GM-CSF, IL-6, IL-1β, Ki-67, NFκB, phospho-Stat3, and TNFα. Briefly, 

freshly prepared bone marrow cells were pre-stained by using cell surface antibodies for 

mature cells or for HSPCs and then fixed with BD Cytofix and washed using BD Cytoperm 

three times. The pre-stained cells were then restained with the appropriate indicated 

antibodies. Staining with an Annexin-V and 7-AAD kit (BioLegend, Cat # 640922) was 

performed according to the manufacturer’s instruction for apoptosis analysis, along with 

labeling of LSK cells.

A full list of antibodies is provided in KEY RESOURCES TABLE.

Multiplex cytokine assays—Serum samples were prepared from PB (tail-bleeding) and 

diluted in sterile PBS (1 to 2 dilution). Thirty-one cytokines or chemokines were quantified 

by multiplex immunoassay with a BioPlex 200 instrument (Eve Technologies, Mouse 

Cytokine Array/Chemokine Array 31-Plex, Cat # MD31).

Isolation of Lin-negative BM cells, LSK cells and qRT-PCR assays—Lin- BM 

cells (~1 × 106) were purified by an EasySep™ Mouse Hematopoietic Progenitor Cell 

Isolation Kit (StemCell, Cat # 19856) according to manufacturer’s instruction. LSK cells 

were purified from Lin- negative BM cells by staining the cells with antibodies against c-Kit 

and Sca-1 followed by sorting them (Fluorescence-activated cell sorting (FACS) (BD 

FACSARIA). Total RNA was extracted from Lin- cells using RNeasy Mini Kit (Qiagen, Cat 

# 74104) according to the manufacturer’s instructions. Isolated RNA was quantified by 

spectrophotometer and RNA concentrations were normalized. cDNA was synthesized by 

SuperScript II Reverse Transcriptase (ThermoFisher Scientific, Cat # 18064014). Resulting 

cDNA was analyzed by SYBR Green master mix (Life Technologies, Cat # 4385612) with 

indicated primers on a ViiA7 Real-Time PCR instrument. Expression of Actin-b was used as 
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an internal control (Forward, 5’-GACGGCCAGGTCATCACTATTG-3’ and Reverse 5’-

AGGAAGGCTGGAAAAGAGCC-3’) for calculating fold changes of indicated genes. The 

information of qRT-PCR primers for Morrbid and IL-6 is provided in KEY RESOURCES 

TABLE. See also Table Supplement-1 for a list of additional qRT-PCR primers.

CFU assay—Bone marrow Lin- negative cells or LSK cells were isolated as described 

above and platted in 24-well plate (10K cells per 0.5 mL medium per well) using 

MethoCult™ GF M3434 (Stem Cell). E3330 and SHP099 were dissolved in DMSO as 

inhibitors. Colonies were counted after 7-days of culture.

In vitro suspension culture with IL-6 and drugs—Bone marrow Lin- negative cells 

were isolated as described above and cultured in basal medium (Gibco IMDM containing 

2% FBS) or with IL-6 as indicated in Figure 6 and S6. Drugs E3330 or SHP099 were added 

as indicated. After cultured for 36~48 hours, cells were washed by PBS and analyzed by 

flow cytometry or by qRT-PCR.

CHIP-qPCR assay—BM Lin-negative cells were used to extract chromatin DNA using 

MAGnify™ Chromatin Immunoprecipitation System (ThermoFisher, Cat # 492024) 

according to the manufacturer’s instruction. CHIP purified chromatin DNA and input DNA 

were normalized to identical concentration for qPCR validation and enrichment analysis 

(1% enrichment of input level was defined as unit 1). Anti-Stat3 (Cell Signaling 

Technologies, #9319) was used for chromatin precipitation. Primers for CHIP-qPCR 

analysis are listed in KEY RESOURCES TABLE.

Analysis of 5mC and 5hmC level on the Morrbid promoter—Genomic DNA from 

Lin-negative cells derived from wild type and Tet2-KO mice was purified by Thermo 

Scientific Genomic DNA Purification Kit (Cat #K0512). For analyzing 5mC level of the 

indicated CCGG site by MspI and HpaI enzymes, the DNA samples were pretreated by 

Qiagen EpiTect Bisulfite Kits (Cat #59104) for bisulfite conversion, followed by MspI or 

HapI digestion. The digested products were used as templates for quantitative PCR (qPCR) 

analysis and/or DNA gel running by the indicated primers targeting the promoter region 

(oligos used for the ~800-bp promoter are included in KEY RESOURCES TABLE). For 

analyzing 5hmC level of the indicated CCGG site, the DNA was pretreated by Zymo Quest 

5-hmC Detection Kit for 5ghmC conversion, followed by Msp digestion (Cat #D5415). 

Similarly the digested products were used as templates for quantitative PCR (qPCR) analysis 

and/or DNA gel running by the indicated primers targeting the promoter region. For 

analyzing the indicated CpG sites 1 to 4 by bisulfite sequencing PCR (BSP), the DNA 

samples were pretreated by Qiagen EpiTect Bisulfite Kit (Cat #59104) for bisulfite 

conversion and then amplified by indicated primers (oligos used for the 4 CpG sites are 

included in Supplemental Table-4). The amplified products were cloned into T-vector 

(Promega, Cat #A3610). Twenty-four proper clones were randomly selected for sequencing 

analysis to determine the methylation level on the CpG sites. 5mC level (percentage) is 

measured by the percentage of “C-T” conversion.

Competitive bone marrow transplantation (cBMT)—B6.SJL-Ptprca Pepcb/Boy 

(BoyJ, CD45.1) mice were purchased from The Jackson Laboratory. Recipient animals (F1, 

Cai et al. Page 15

Cell Stem Cell. Author manuscript; available in PMC 2019 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CD45.2/CD45.1) were lethally irradiated (700 cGy plus 400 cGy) one day prior to 

transplantation (intravenous tail injection) of donor cells. For primary cBMT, CD45.2 donor 

BM cells from naïve or LPS-treated mice were mixed with BoyJ CD45.1 competitor BM 

donor cells (with an equal number of viable total cells, 500K: 500K). For secondary cBMT, 

donor BM cells from primary cBMT recipients were mixed with BoyJ CD45.1 competitor 

BM cells (with an equal number of viable total cells). For LSK cell engraftment, 2000 LSK 

cells from LPS treated or control mice were mixed with 500,000 BoyJ CD45.1 supporting 

cells (2K: 500K). For generating chimeric mice mimicking hematopoietic clonal expansion, 

Tet2-KO donor cells and BoyJ donor cells were mixed at a ratio of 1: 5 (100K: 500K). For 

assessing the repopulating advantage of Tet2+/−; Morrbid+/− cells, bone marrow donor cells 

from Tet2+/−; Morrbid+/− mice and all other controls were equally mixed with BoyJ donor 

cells respectively (500K: 500K). Chimerism analysis for progressive engraftment was 

analyzed on PB samples monthly (every 4-week interval) post BM transplantation.

shRNA generation and approach for knocking down the expression of Morrbid
—Empty vector for pGreen shRNA cloning and shRNA-containing vectors for knocking-

down Morrbid, shRNA1 and shRNA2 have been described before (Kotzin et al., 2016). 

Lentivirus supernatants were generated by transfecting 293T cells with an envelope plasmid 

(Addgene: #12260), packaging plasmid (Addgene: #12260), and the shRNA-containing 

vector or empty vector (1ug: 3ug: 6ug) per 10-cm dish. Virus soup was collected on day 1, 

day 2 and day 3 after transfection, combined, filtered and enriched by high-speed 

centrifugation (10 × 103 g). Lin- cells from wildtype or Tet2-KO mice were freshly isolated 

and pre-cultured over-night at 37°C in 6-well plate (1× 106 per mL) with medium containing 

mIL-3 (10 ng/mL), mIL-6 (5 ng/mL) and mSCF (50 ng/mL) (all are from PeproTech). Cell 

number was readjusted to make them equal at equal in 2 mL at 2.0 × 106 per well in a 6-well 

plate and spinfected for 2 hours with 5 ug/mL polybrene. After overnight culture, the 

transfection efficiency was determined by flow cytometry for GFP expression. 

Approximately 60–70% infection efficiency was achieved in most cases. For CFU assays, 

infected cells were purified by FACS. For cBMT assays, infected cells were washed three 

times in PBS, diluted and mixed with BoyJ cells (100K: 500K) prior to transplantation. Cells 

targeted by Morrbid-shRNA or empty vector were monitored by examining the GFP+% in 

the CD45.2 pool.

QUANTIFICATION AND STATISTICAL ANALYSIS

All experimental procedures on Tet2-KO samples were always run in parallel with wildtype 

controls (sex and age matched littermate controls when possible) for observing experiment 

variabilities. Analysis of grouped data was not blinded and no samples were excluded. Aged 

Tet2-KO mice were randomized into two groups for treatment with E3330 or vehicle, 

SHP099 or vehicle (Figure 6). P value was calculated using an unpaired t-test for comparing 

means of two groups (GraphPad Prism 6.0). Error bars indicate the standard error of mean 

(s.e.m.).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Tet2-KO HSPCs maintain repopulation advantage post-acute inflammatory 

insult

• Hyperactivation of IL-6/Shp2/Stat3/Morrbid and reduced apoptosis in Tet2-

KO HPSCs

• Anti-inflammation drugs E3330 or SHP099 inhibit survival advantage of 

Tet2-KO HSPCs

• Morrbid+/− counters emergency granulopoiesis and clonal hematopoiesis in 

Tet2+/−
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Figure 1. Tet2-KO mice exhibit transient but amplified neutrophil and HSPCs in response to 
acute inflammatory challenge
(A) Hematologic changes in the peripheral blood (PB) of LPS-treated wildtype and Tet2-KO 

mice over a 7-day period. A single dose of LPS (i.p., 0.8 mg/kg) was administered to adult 

wildtype or Tet2-KO mice (3~4 month old). n=4–10 mice per group, results are pooled from 

multiple experiments.

(B) LPS induces aberrant emergency granulopoiesis in Tet2-KO mice, revealed by flow 

cytometry analysis using neutrophil markers Mac1 and Ly6G. n=4 mice per group.

(C) A schematic demonstrating hematopoietic hierarchy.
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(D) Representative flow cytometry profiles showing gating strategy and changes in various 

bone marrow HSPC subsets.

(E) Quantification of the frequency (Freq.) and absolute cell number (No.) of CMP, LSK and 

HSCs on day 0 and day 2 post LPS treatment in adult wildtype and Tet2-KO mice. n =4 

mice per group.

Results are representative of two independent experiments. P value: * P < 0.05, ** P < 0.01, 

*** P < 0.001. n.s., not significant. Statistical analysis performed by unpaired, two-tailed 

Student’s t-test. See also Figure S1 for additional supporting data.
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Figure 2. LPS-stressed Tet2-KO bone marrow cells maintain repopulating advantage
(A) A schematic describing primary and secondary competitive bone marrow transplantation 

(cBMT) assay. The age of the mice for donor cells was about 3~4 months old.

(B-C) Tet2-KO bone marrow cells with or without LPS treatment manifest significantly 

higher engraftment in primary and secondary recipients compared to wildtype controls. (D-

F) Identical number of LSK cells were purified from wildtype and Tet2-KO mice pre-and 

post-LPS treatment and subjected to ex vivo CFU assay (E) and in vivo cBMT assay (F), 
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respectively. Transplant experiments were conducted as described in (D). Data in (B) are 

from a representative experiment (n=5 recipients for cBMT analysis, mean ± s.e.m.).

Results are representative of two independent experiments. Data in (C) are from a single 

experiment (n=5 recipients per group, mean ± s.e.m.). Data in (E) is from pooled analysis of 

two mice per group performed in replicates of 4 (mean ± s.e.m, n=4 replicates). P value: * P 
< 0.05, ** P < 0.01, *** P < 0.001. n.s., not significant. Statistical analysis performed by 

unpaired, two-tailed Student’s t-test. See also Figure S2 for additional supporting data.
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Figure 3. Tet2-KO hematopoietic progenitor cells show sustained cell survival and heightened 
activation of Morrbid in response to acute inflammatory challenge
(A-B) Level of apoptosis in Lin- cells and LSK cells pre and post LPS treatment as assessed 

by Annexin-V/7-AAD staining. A, representative flow profile of Annexin/7-AAD staining. 

B, quantification of apoptosis level.

(C) Differential expression of pro-apoptotic and pro-survival genes in Lin- cells pre- and 

post-LPS treatment.

(D) A scheme for two possible mechanisms by which Tet2 loss induces hyperactivation of 

Morrbid: one is through direct regulation of Morrbid promoter and another one is through 
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cytokine-modulated phosphorylation of Stat3 (pStat3), which may bind to Morrbid promoter 

and activate its expression.

(E-F) Tet2-KO HSPCs maintain elevated expression of pStat3, revealed by flow cytometry 

(E) and by western blot (F).

(G) Stat3 binds to Morrbid locus revealed by CHIP-qPCR enrichment assay. Shown is 

relative enrichment in binding (1% of input as unit 1).

Data in (A) is a representative profile of flow cytometry. Data in (B-G) are from a 

representative experiment (n=4 mice per group, mean ± s.e.m.). Results are representative of 

two independent experiments. P value: * P < 0.05, ** P < 0.01, *** P < 0.001. n.s., not 

significant. Statistical analysis performed by unpaired, two-tailed Student’s t-test. See also 

Figure S3 for additional supporting data.
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Figure 4. Tet2-KO mice show increased expression of IL-6 in serum and in various bone marrow 
subsets
(A) Multiple cytokines/chemokines were increased on day 1 and/or day 2 post- LPS 

treatment in Tet2-KO mice, compared to wildtype controls.

(B-C) Intracellular flow cytometry analysis (ICFC) of IL-6 expression in total bone marrow 

cells and in Lin- bone marrow cells pre- and post-LPS treatment.

(D) Expression of IL-6 in indicated bone marrow subsets as assessed by flow cytometry and 

MFI quantification.
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(E-F) QRT-PCR analysis of Il6 and Ccl2 expression in bone marrow Lin- cells derived from 

adult and juvenile pre- and post-LPS treated wildtype and Tet2-KO mice.

Data in (A) are from a single experiment (n=4 mice per group, mean ± s.e.m.). Data in (B) 

and (C) are from a representative experiment. Results are representative of two independent 

experiments. Data in (D), (E) and (F) are from a representative experiment (n= 4 mice per 

group, mean ± s.e.m.). Results are representative of two independent experiments. P value: * 

P < 0.05, ** P < 0.01, *** P < 0.001. n.s., not significant. Statistical analysis performed by 

unpaired, two-tailed Student’s t-test. See also Figure S4 for additional supporting data.
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Figure 5. IL-6 stimulates a Shp2/Stat3/Morrbid-mediated pro-survival pathway in vitro, which is 
inhibited by pharmacologic inhibitors SHP099 and E3330.
(A) A schematic describing an abbreviated form of canonical TLR4/NFκB/IL-6 and putative 

IL-6/Stat3/Morrbid signaling pathway.

(B) IL-6 promotes the survival of Lin- cells in liquid culture assay.

(C) IL-6 induces the expression of activation of Morrbid in wildtype and Tet2-KO Lin- cells.

(D) Lin- cells expressing Shp2E76K, a gain-of-function isoform of Shp2, manifest 

decreased apoptosis, decreased expression of Bim and elevated expression of Morrbid, 

compared to wildtype controls.
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(E and F) E3330 or SHP099 treatment of Tet2-KO Lin-negative bone marrow cells corrects 

the aberrant colony-forming ability of Tet2-KO cells in primary and secondary replating 

assay. E3330, 0.5 μM. SHP099, 0.1 μM.

(G) E3330 or SHP099 treatment of Tet2-KO Lin-negative bone marrow cells inhibits IL-6 

induced cell survival.

(H) E3330 or SHP099 inhibits Stat3 binding to the Morrbid promoter as revealed by CHIP-

qPCR assay. E3330, 0.5 μM. SHP099, 0.1 μM.

Data in (B-H) are from a representative experiment (n=3 to 4 per group, mean ± s.e.m.). 

Experiments were repeated twice. P value: * P < 0.05, ** P < 0.01, *** P < 0.001. n.s., not 

significant. Statistical analysis performed by unpaired, two-tailed Student’s t-test. See also 

Figure S5 for additional supporting data.
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Figure 6. E3330 and SHP099 treatment represses clonal expansion of Tet2-KO HSPCs and 
prevents aberrant early signs of MPN in both young and aged Tet2 mutant mice
(A) A schematic showing the experimental procedure used for generating chimeric mice 

mimicking clonal expansion of Tet2-KO cells. Tet2-KO bone marrow cells (CD45.2) were 

mixed with BoyJ bone marrow cells (CD45.1) at a ratio 1 to 5 (100K: 500K). Two months 

post-transplant, the chimeric mice were subjected to continuous treatment with LPS (0.8 

mg/kg, i.p. injection every other day for 1 month) or a daily injection of E3330 or SHP099 

(oral gavage, 20 mg/kg for E3330, 50 mg/kg for SHP099 for 3 months). Chimerism in 

peripheral blood was analyzed monthly at indicated time points.
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(B) Clonal expansion of Tet2-KO HSPCs is heightened by continuous administration of 

LPS.

(C) Clonal expansion of Tet2-KO HSPCs is repressed by daily injection of E3330 or 

SHP099.

(D) Long-term treatment of juvenile Tet2-KO mice with E3330 or SHP099 results in the 

rescue of multiple phenotypic defects associated with Tet2 deficiency including frequency of 

CMPs, LSKs, HSCs, expression of Morrbid, Bim, IL-6 and pStat3 as well as spleen weight.

(E) Short-term treatment of aged Tet2-KO mice with E3330 or SHP099 prevents early 

hematological signs of CMML in peripheral blood. E3330, 20 mg/kg and SHP099, 50 

mg/kg, oral gavage.

Transplant data in (B) and (C) are derived from using 5 recipient mice per group, mean ± 

s.e.m. 15 doses of LPS were given at 0.8 mg/kg over a period of one month (i.p. injection, 

every other day). E3330 (20 mg/kg) and SHP099 (50 mg/kg) were administered by oral 

gavage daily for 12 weeks in (D) or for 2 weeks in (E). Drug treatment studies in (D) and (E) 

are pooled data from two independent experiments (n=4 to 5 mice per group, mean ± 

s.e.m.).

P value: * P < 0.05, ** P < 0.01. n.s., not significant. Statistical analysis performed by 

unpaired, two-tailed Student’s t-test. See also Figure S6 for additional supporting data.
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Figure 7: Genetic loss of Morrbid represses the growth advantage in Tet2-deficient preleukemic 
cells
(A) A schematic showing the experimental procedures for testing genetic requirement of 

Morrbid in Tet2 deficiency-mediated aberrant hematopoietic phenotypes in naïve mice or 

LPS-challenged mice, and in ex vivo repopulation assays and in vivo cBMT assays.

(B) Tet2+/−; Morrbid+/− mice fail to manifest amplified “emergency hematopoiesis” seen in 

Tet2+/− mice upon LPS treatment.

(C) Rescue of splenomegaly in Tet2+/−;Morrbid+/− mice relative to Tet2+/− mice.
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(D) Tet2+/− HSPCs with Morrbid haplo-insufficiency corrects the enhanced self-renewing 

ability of Tet2+/− HSPCs in an in vitro serial replating assay.

(E) Tet2+/− HSPCs with Morrbid haplo-insufficiency rescues the enhanced clonal expansion 

seen with Tet2+/− HSPCs as assessed in a chimeric cBMT assay.

Data in (B), (C), and (E) are from a representative experiment (n = 4 to 5 mice per group, 

mean ± s.e.m.). Data in (D) is pooled from two mice performed in replicates of 4. Data in 

(E) are from 4 to 5 recipient mice for every group at every time point [4 to 16 weeks] (n=4 to 

5, mean ± s.e.m.). Similar results were seen in another independent experiment (n=4 to 5 

mice per group; analyzed at 8 weeks). P value: * P < 0.05, ** P < 0.01, *** P < 0.001. n.s., 

not significant. Statistical analysis performed by unpaired, two-tailed Student’s t-test. See 

also Figure S7 for additional supporting data.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Mouse: Tet2−/− (Tet2-KO), Tet2+/− Li et al., 2011 N/A

Mouse: Morrbid+/− Kotzin et al., 2016 N/A

Mouse: Shp2E76K Xu et al., 2011 N/A

Mouse: Tlr4-KO Jackson Laboratory Cat #007727

Mouse: IL6-KO Jackson Laboratory Cat #002650

Mouse: C57/B6 Jackson Laboratory Cat #000664

Mouse: BoyJ Jackson Laboratory Cat #002014

Critical Commercial Assays

Multiplex cytokine assays Eve Technologies #MD31

CFU assays StemCell #M3434

EasySep Mouse Hematopoietic Progenitor Cell Isolation Kit StemCell #19856

Rneasy Mini Kit Qiagen #74104

SuperScript II Reverse Transcriptase Fisher Scientific #18064014

SYBR Green master mix Life Technologies #4385612

MAGnify Chromatin Immunoprecipitation System Fisher Scientific #492024

Genomic DNA purification Kit Fisher Scientific #K0512

EpiTect Bisulfite Kit Qiagen #59104

Quest 5-hmC Detection Kit Zymo #5415

MspI NEB R0106S

HpaI NEB R0105S

Chemicals, Peptides, and Recombinant Proteins

LPS Sigma #L8643

Cremophor Sigma #C5135

Methylcellulose Sigma #M0262

Tween-80 Fisher Scientific #BP338–500

E3330 Kelley Laboratory N/A

SHP099 Mohseni Laboratory (Novartis) N/A

Lysis Buffer BD #555899

Cytofix/Cytoperm Kit BD #554714

mIL-3 peptide PeproTech #213–13

mIL-6 peptide PeproTech #216–16

mSCF peptide PeproTech #250–03

Antibodies for Western Blot or CHIP assays

phospho-Stat3 Cell Signaling Tech #9145

Stat3 Cell Signaling Tech #9139

Antibodies for Flow Cytometry

TER-119, PE BioLegend #116208
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Gr1, PE BioLegend #108408

Mac1, PE BioLegend #101208

B220, PE BioLegend #103208

CD3, PE BioLegend #100206

CD4, PE BioLegend #116006

CD8a, PE BioLegend #100708

c-Kit, APC BioLegend #105812

Sca-1, APC/Cy7 BioLegend #108126

CD150, PE/Cy5 BioLegend #115912

CD48, PE/Cy7 BioLegend #103424

CD127, PE/Cy5 BioLegend #135016

CD16/32, PE/Cy7 bioLegend #101318

CD34, FITC eBioscience #11–0341-85

Annexin V, FITC BioLegend #640906

7-AAD BioLegend #79993

TLR4, PE/Cy7 BioLegend #145408

IL-6, AF488 BD #561363

TNFa, AF488 BioLegend #506315

IL-1b, FITC eBioscience #11–7114-80

GM-CSF, FITC BioLegend #505403

Ki67, FITC BioLegend #652410

NFkB1 (p50), PE Cell Signaling Tech #24961

phospho-Stat3, AF488 Cell Signaling Tech #4323

Bim mAb (C34C5), AF488 Cell Signaling Tech #94805S

CD45.2, PerCP/Cy5.5 BioLegend #109928

CD45.1, PE/Cy7 BioLegend #110730

Ly-6G, FITC BioLegend #127606

Oligonucleotides

Part-I: Key oligonucleotides for qRT-PCR, See also Table Supplement-1 for information 
of additional oligonucleotides for qRT-PCR

Morrbid, Forward TCTGAGAATGAGGGGACTGG Kotzin, J. J. et al., Nature, 2016 N/A

Morrbid, Reverse TGTGCTGTGAAGATCCCAAG Kotzin, J. J. et al., Nature, 2016 N/A

II6, Forward AGTTGCCTTCTTGGGACTGA Inoue, S. et al., Cancer Cell, 2016 N/A

II6, Reverse TCCACGATTTCCCAGAGAAC Inoue, S. et al., Cancer Cell, 2016 N/A

Part-II: Oligonucleotides for CHIP-qPCR

Promoter of Morrbid (~130 bp), Forward AGCACGAGTCATCTGGTTCC Kotzin, J. J. et al., Nature, 2016 N/A

Promoter of Morrbid (~130 bp), Reverse ACCCAGTCCCCTCATTCTCA Kotzin, J. J. et al., Nature, 2016 N/A

Part-III: Oligonucleotides for 5mC/5hmC analysis

Promoter of Morrbid (~800 bp), Forward ACC CCC AAG TCT CCTA ACCA Kotzin, J. J. et al., Nature, 2016 N/A

Promoter of Morrbid (~800 bp), Reverse GTT CAA CCT CAG TGC CCAGT Kotzin, J. J. et al., Nature, 2016
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Promoter Region with 4 CpG island sites, Forward 
ATTTAAGGTTTGGGAAGTTGTTTTT

This paper N/A

Promoter Region with 4 CpG island sites, Reverse 
CAAACACCTCAATCTTCATTATCACTA

This paper

Software and Algorithms

FlowJo FlowJo V10.2

Prism GraphPad Software V6.0

Adobe Illustrator Adobe CC-2015
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