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Abstract. Spirulina, an edible blue‑green alga, has great 
potential for various applications in human health, possibly 
including reduced skin aging. The mechanisms by which 
spirulina crude protein (SPCP) may influence human skin 
fibroblast viability are not yet understood; therefore, a human 
dermal fibroblast cell line (CCD‑986sk) was used as a cell model 
system to study the influence of SPCP on human skin fibroblast 
viability. An enzyme‑linked immunosorbent assay showed 
that collagen formation improved in SPCP‑treated cells in a 
dose‑dependent manner, while elastase activity was decreased. 
In addition, western blot analysis showed a dose‑dependent 
decrease in the expression of the aging‑associated gene 
matrix metalloproteinase‑8, a collagen‑degradative enzyme. 
It was also shown that SPCP upregulated epidermal growth 
factor receptor (EGFR) activity, leading to activation of the 
mitogen‑activated protein kinase  (MAPK)/extracellular 
signal‑regulated kinase (ERK) signaling pathway. Together, 
these results demonstrated that SPCP increases human fibroblast 
viability by activation of the EGFR/MAPK signaling pathway. 
This contribution sheds light on the molecular mechanism for 
SPCP increasing the viability of human skin cell and provides 
a potential efficient cosmeceutical for protecting human skin.

Introduction

The blue‑green microalga, spirulina (Arthrospira platensis), 
has recently been used as a food source due to its high protein 
content and nutritional value (1,2). Spirulina has been exten-
sively studied owing to its nutrient composition, which has 

been demonstrated to effectively treat a number of medical 
conditions (such as anti‑cancer, inhibiting senescence and 
enhancing the non‑specific cellular immune function)  (3). 
Spirulina has also been reported to have an inhibitory effect 
on ultraviolet B‑induced skin inflammation (4,5). It has an 
antioxidant defense system that removes reactive oxygen 
species that may damage cells (6‑8). Previous studies have 
reported that early skin aging can be repaired using an extract 
from microalgae, which prevents wrinkle formation and has 
a tightening effect  (9); thus, such extracts have been used 
in many skin care products (10). Despite these benefits, the 
mechanisms underlying the protective effects of spirulina 
crude protein (SPCP) on skin cells are largely unknown.

The prevention of skin aging has attracted considerable 
attention, both scientifically and cosmetically. Owing to the 
disruption of its barrier function over time, the aged skin has a 
dry appearance and has an increased risk of skin disorders (11). 
Deterioration of skin elasticity and the skin extracellular 
matrix (ECM) are characteristics of the aging skin. Reduction 
of the elastic properties in dermal layers can lead to the forma-
tion of wrinkles in humans and animals (12‑14). Furthermore, 
three‑dimensional alteration of elastic fibers indicates the 
marked and continuous upregulation of an elastin‑degrading 
enzyme in the aging skin. The ECM of the dermis consists 
of collagen and is produced by fibroblasts (15). In particular, 
type I collagen is the most prevalent of the fibril‑forming 
collagens  (16,17). Matrix metalloproteinase‑8  (MMP‑8), a 
zinc‑dependent endopeptidase, is present at sites of acute 
inflammation and potently degrades type I collagen (18,19). 
Anti‑wrinkle strategies therefore include enhancing skin 
elasticity and collagen content. Additionally, the promotion of 
proliferation and differentiation of human dermal fibroblasts 
can also help delay the aging process of the skin (20‑22).

Fibroblast proliferation is regulated by many growth 
factors. Epidermal growth factor receptor (EGFR) is one of the 
most well‑known cell proliferation proteins in the body (23), 
and it has been reported that EGFR levels in dermal fibroblasts 
decline with age  (21). A previous study has demonstrated 
that EGFR inhibitors may promote human skin aging (24). 
Green et al (25), reported that EGFR expression levels are 
lower in the dorsal skin of old rats (day 23 or day 51) compared 
with younger ones (neonatal, day 1). Furthermore, EGFR 
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expression levels were lower in old human dermal fibroblasts 
(Passage 16 or greater) compared with young human fibroblasts 
(Passage 9 or less) (26). The mitogen‑activated protein kinase 
(MAPK) signaling pathway is one of the EGFR‑activated 
downstream signaling pathways and is an important regulator 
of cell proliferation (27,28). Therefore, in the present study, the 
effects of SPCP on the EGFR/MAPK signaling pathway in 
CCD‑986sk cells were investigated. These results shed light 
on the molecular mechanism for SPCP increasing the viability 
of human skin cell and provide a potential efficient cosmeceu-
tical for protecting human skin.

Materials and methods

Preparation of SPCP. Spirulina powder [40 g, New Zealand 
Nutritionals (2004) Ltd., Burnside Christchurch, New Zealand] 
was soaked in distilled water (1l) and mixed for 4 h at room 
temperature. Following centrifugation at 2,399 x g at 4˚C for 
10 min, it was incubated for 4 h with three volumes of ethanol 
at 4˚C. The solution was centrifuged at 2,399 x g at 4˚C for 
10 min. The supernatant was filtered and concentrated using 
rotary evaporation at 40˚C (29), and the concentrated solution 
was precipitated overnight with 80% saturated (NH4)2SO4 
solution at 4˚C. After standing at 4˚C for 10 min, the precipi-
tate was dissolved in and dialyzed against distilled water. The 
dialysate was concentrated (Rotary evaporator, 40˚C) and 
freeze‑dried (1000 µg/ml), and subsequently used as the SPCP 
preparation in subsequent experiments.

Assessment of the SPCP protein profile. The protein profile of 
the SPCP was analyzed by subjecting the extract to SDS‑PAGE 
and Coomassie Brilliant Blue staining. In brief, the SPCP 
were mixed with 5 x sample loading buffer [50 mM Tris‑HCl, 
2% SDS, 10% Glycerol, 0.02% Bromophenol blue (BPB), 
5% 2‑mercaptoethanol], and SPCP containing 75 µg of protein 
were separated by 15% SDS‑PAGE. The gels were stained 
with Coomassie Brilliant Blue for 1 h at room temperature and 
washed with destaining solution until the bands appeared (3). 
SPCP of 20 kDa and ~16 kDa were performed a quadrupole 
time of flight mass spectrometry (Q‑TOF MS/MS) analysis by 
Peptron, Inc. (Daejeon, Korea).

Cell culture. The CCD‑986sk human dermal fibroblast 
cell line (CRL‑1947; American Type Culture Collection, 
Manassas, VA, USA), derived from normal female skin tissue, 
was cultured in Dulbecco's Modified Eagle's Medium (Gibco; 
Thermo Fisher Scientific, Inc., Waltham, MA, USA) with 10% 
fetal bovine serum (Gibco; Thermo Fisher Scientific, Inc.) and 
1% penicillin/streptomycin at 37˚C with 5% CO2 in a saturated 
humidified incubator (30). The CCD‑986sk cells were cultured 
to 60‑80% confluency in 100‑mm diameter plates, and the 
medium was replaced every 2 days.

Cell viability assay. Cell viability was determined using 
the CellTiter 96 AQueous One Solution Reagent (Promega 
Corporation, Madison, WI, USA). CCD‑986sk cells were 
seeded in a 96‑well plate at a density of 0.5x104 cells/well. 
After 24  h of incubation, the cells were incubated with 
serum‑free medium (SFM) for 4 h at 37˚C. Serum contains 
several hormones, which are stimulatory for cell growth 

and mask the effects of SPCP. To avoid the complica-
tion, SFM was used in all of the groups tested (control 
and SPCP‑treated groups)  (31). Subsequently, various 
concentrations of SPCP (6.25, 12.5 or 25 µg/ml in SFM) or 
SFM alone (control) were used to treat the cells. The cells 
were further cultured for 24 h. Subsequently, the cells were 
exposed to the 3‑(4,5‑dimethylthiazol‑2‑yl)‑5‑(3‑caboxyme-
thoxy‑phenyl)‑2‑(4‑sulfonyl)‑2H‑tetrazolium (MTS) assay 
solution at 37˚C for 30 min, and the optical density at 490 nm 
was measured using a Synergy HTX microplate reader (BioTek 
Instruments, Inc., Winooski, VT, USA). Data are expressed as 
the percentage of viable SPCP‑treated cells compared with 
viable cells in the SFM‑treated control.

Elastase activity. Elastase activity was measured using 
N‑succinyl‑Ala‑Ala‑Ala‑p‑nitroanilide (Sigma‑Aldrich; 
Merck KGaA, Darmstadt, Germany). Cells were seeded into 
6‑well plates at a density of 5x104 cells/well. After 24 h of 
culture, the cells were incubated with SFM for an additional 
4 h at 37˚C. Various concentrations of SPCP (6.25, 12.5 or 
25  µg/ml in SFM) or SFM alone (control) were used to 
treat the cells, and they were further cultured for 24 h. The 
cells were collected in radioimmunoprecipitation assay 
buffer (iNtRON Biotechnology, Seongnam, Korea) with 
1% protease inhibitor using a cell scraper. The cell super-
natant was collected by centrifugation (1,8341  x  g; 4˚C; 
10 min). Subsequently, the supernatant (98 µl) and 25 mg/ml 
N‑succinyl‑Ala‑Ala‑Ala‑p‑nitroanilide (2 µl) were added to 
each well (32). After incubation at 37˚C for 30 min, the optical 
density at 410 nm was measured using a Synergy HTX micro-
plate reader (BioTek Instruments, Inc.). Data are expressed as 
a percentage of elastase activity in treated cells compared with 
the SFM‑treated control.

Procollagen type I C‑peptide (PIP) solid phase enzyme immu‑
noassay. The level of procollagen was measured with the 
Takara MK101 kit (Takara Bio, Inc., Otsu, Japan). Cells were 
seeded into 6‑well plates at a density of 5x104 cells/well. After 
24 h of incubation, the cells were incubated with SFM for 4 h 
at 37˚C, followed by treatment with various concentrations 
of SPCP (6.25, 12.5, or 25 µg/ml in SFM) or SFM (control) 
for an additional 24 h. The cell medium was collected and 
centrifuged (13,475 x g; 4˚C; 10 min). Subsequently, 100 µl 
of antibody‑peroxidase conjugate solution (included in the 
Takara MK101 kit) and 20 µl of supernatant were added to 
each well. After incubation for 3 h at 37˚C, each well was 
washed four times using 400 µl of PBS each time. A total 
of 100 µl of 3,3',5,5'‑tetramethylbenzidine substrate solution 
was then added to each well and incubated for 15 min at room 
temperature (32). The reaction was terminated with 100 µl 
of stop solution (1 N H2SO4). The absorbance at 450 nm was 
measured using a Synergy HTX microplate reader (BioTek 
Instruments, Inc.).

Western blotting. CCD‑986sk cells were cultured to 
50‑60% confluency and then incubated with SFM for 4 h at 
37˚C. The medium was replaced with three concentrations 
of SPCP (6.25, 12.5 or 25 µg/ml in SFM) or SFM (control). 
The cells were cultured for another 24 h and proteins were 
extracted using radioimmunoprecipitation lysis buffer 
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(iNtRON Biotechnology) with 1% protease inhibitor, followed 
by centrifugation at 18,341 x g at 4˚C for 10 min. Protein 
concentrations were determined using the Bicinchoninic 
assay. The protein samples (30  µg) were resolved by 
7.5‑12.5% SDS‑PAGE and subsequently transferred electro-
phoretically to polyvinylidene difluoride membranes. After 
washing with methanol, the membranes were blocked with 
1% bovine serum albumin (MP Biomedicals LLC, USA) in 
TBS + Tween-20 [10 mM Tris‑HCl, 150 mM NaCl (pH 7.5) and 
0.1% Tween-20] and incubated overnight at 4˚C with specific 
primary antibodies (all 1:1,000) (33). After washing twice, the 
membranes were incubated for 2 h at room temperature with 
the secondary antibodies (all 1:10,000). The second antibodies 
were horseradish peroxidase (HRP)‑conjugated anti‑rabbit 
lg G (cat. no. 7074S; Cell Signaling Technology, Inc., Beverly, 
MA, USA), donkey anti‑goat lgG (cat. no. A50‑101p; Bethyl 
Laboratories, Inc., MA, USA) and anti‑mouse lgG (cat. 
no. 7076S; Cell Signaling Technology, Inc.). The following 
primary antibodies obtained from Santa Cruz Biotechnology, 
Inc., were used: Goat anti‑phosphorylated (p)‑EGFR antibody 
(cat. no. sc‑12351), goat anti‑EGFR antibody (cat. no. sc‑03), 
mouse anti‑Shc antibody (cat. no. sc‑967), rabbit anti‑growth 
factor receptor bound protein (GRB)2 antibody (cat. no. sc‑255), 
rabbit anti‑Son of sevenless homolog (Sos) antibody (cat. 
no. sc‑259), rabbit anti‑H‑Ras antibody (cat. no. sc‑520), mouse 
anti‑p‑Mitogen‑activated protein kinase kinase (MEK)‑1/2 
antibody (cat. no. sc‑81503), mouse anti‑MEK‑1/2 antibody 
(cat. no. sc‑81504), mouse anti‑p‑extracellular signal‑regulated 
kinase (ERK) antibody (cat. no. sc‑7383), mouse anti‑ERK 1 
antibody (cat. no.  sc‑271269), rabbit anti‑ERK‑2 antibody 
(cat. no.  sc‑154), and rabbit anti‑GAPDH antibody (cat. 
no. sc‑25778). The signals were detected using an Enhanced 
Chemiluminescence western blot kit (Thermo Fisher Scientific, 
Inc.) using a bioanalytical imaging system (Azure Biosystems, 
Dublin, CA, USA). The densities of the bands which normal-
ized to GAPDH were analyzed using Multi‑Gauge software, 
v.3.0 (Fujifilm Life Science, Tokyo, Japan).

Statistical analysis. For all assays, at least three independent 
experiments were performed. The mean ± standard deviation 
of the expression values was calculated using Excel software 
v.2007 (Microsoft Corporation, Redmond, WA, USA). The 
differences among multiple groups were evaluated using 
one‑way analysis of variance followed by Bonferroni post hoc 
test using SPSS statistical software for Windows, v.20.0 (IBM 
Corp., Armonk, NY, USA).

Results

Positive effects of SPCP on human skin cell growth. SPCP 
is a complex mixture of proteins, which were separated 
by SDS‑PAGE and stained with Coomassie Brilliant Blue 
revealing ~20 and ~16 kDa bands (Fig. 1). The two bands 
were analyzed by Q‑TOF MS/MS. The results revealed that 
the 20 kDa band didn't correspond to any known protein 
while the ~16 kDa protein band was C‑phycocyanin α chain, 
which has many pharmacological benefits (34). To investigate 
the effects of SPCP on the viability of CCD‑986sk cells, an 
MTS assay on cells treated with various doses of SPCP was 
performed. The viability of cells treated with 6.25, 12.5 or 

25 µg/ml SPCP increased by 18±4.41%, 33±1.62% (P<0.01) 
and 42±2.82% (P<0.001), respectively, compared with the 
control  (Fig. 2). Together, the results indicated that SPCP 
effectively promoted the growth of CCD‑986sk cells at in a 
dose‑dependent manner.

Inhibitory effect of SPCP on elastase activity. Elastase activity 
in CCD‑986sk cells following various treatments with SPCP 
was measured. Compared with the control, SPCP treatment 
significantly decreased the elastase activity in a dose‑dependent 
manner (P<0.05 or P<0.001; Fig. 3), with a maximum decrease 
of 42±6.15% observed in cells treated with 25 µg/ml SPCP.

Effect of SPCP on PIP levels. To determine whether SPCP 
affected the secretion of PIP, secreted PIP levels were 
measured using ELISA. SPCP treatments significantly 
increased PIP levels in a dose‑dependent manner (P<0.05 
or P<0.001;  Fig.  4A). Compared with the basal level of 
77±2.78 ng/ml, PIP concentrations of 100±2.36, 121±9.45 
and 187±7.92 ng/ml were induced by 6.25, 12.5, and 25 µg/ml 
SPCP, respectively. This result indicated that SPCP promoted 
the secretion of PIP.

Western blotting was used to determine the effect of SPCP 
on MMP‑8 expression in CCD‑986sk cells. MMP‑8 protein 
expression levels were significantly decreased by SPCP treat-
ment in a dose‑dependent manner (P<0.001; Fig. 4B). These 
results suggested that SPCP promoted the synthesis of collagen 
and inhibited the expression of MMP‑8.

Activation of the EGFR signaling pathway by SPCP in 
CCD‑986sk cells. As SPCP treatment was revealed to enhance 
the viability of CCD‑986sk cells (Fig. 2), the potential regula-

Figure 1. Protein profile of SPCP. SPCP was loaded on a 15% polyacrylamide 
gel and stained with Coomassie Brilliant Blue. M, marker.
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tion of the EGFR signaling pathway by SPCP was investigated. 
The EGFR signaling pathway was assessed by analyzing the 
total and p‑EGFR protein expression levels. The expression 
levels of p‑EGFR significantly increased following treatment 
of CCD‑986sk cells with SPCP (P<0.001; Fig. 5A). SPCP treat-
ment induced the expression of essential linkers of epidermal 
growth factor receptors to MAP kinase, including the adaptor 
proteins SHC and GRB2, and the guanine nucleotide exchange 
protein, SOS (P<0.01 or P<0.001; Fig. 5B). These results indi-
cated that SPCP stimulation may activate the EGFR pathway 
in a dose‑dependent manner.

Activation of the MAPK pathway by SPCP in CCD‑986sk 
cells. To determine whether EGFR activation induced 
activation of the MAPK signaling pathway, the expression 
levels of Ras were investigated following treatment with 
various doses of SPCP for 24 h. The expression levels of Ras 
significantly increased after SPCP treatment compared with 
untreated control cells (P<0.001; Fig. 6A). Meanwhile, SPCP 
also enhanced the phosphorylation and activation of MEK 
and ERK in a dose‑dependent manner (P<0.001; Fig. 6B). 
Taken together, these results indicated that SPCP treat-
ment stimulated CCD‑986sk cell viability by activating the 
EGFR/MAPK/ERK signaling pathway.

Discussion

Microalgae proteins currently represent one of the most prom-
ising protein sources from food due to their abundant and 
balanced amino acid composition (35,36). A. platensis is an 
edible, photosynthetic, spiral‑shaped, multicellular blue‑green 
alga that possesses anti‑inflammation and antioxidant proper-
ties. In the present study, spirulina was extracted with ethanol 
and (NH4)2SO4. This extract  (SPCP) contained proteins as 
determined by Coomassie Brilliant Blue staining. Q‑TOF 
MS/MS analysis showed that the ~16 kDa protein band was 
C‑phycocyanin α  chain, which has been reported to have 
many pharmacological benefits, including anti‑inflammatory, 
antioxidant and anticancer (34,37). The MTS assay showed 
that SPCP promoted the viability of human fibroblasts in a 

dose‑dependent manner. Cell viability increased by 18±4.41%, 
33±1.62%, and 42±2.82% associated with the control after 
treatment with 6.25, 12.5 and 25 µg/ml SPCP, respectively. 
The results were confirmed by experiments performed in Hs27 
cells (data not shown). The present study results suggested that 
SPCP treatment may lead to skin cell growth by enhancing the 
activation of growth factors in normal human fibroblasts.

Dermal fibroblasts are the primary cell type responsible 
for the production, maintenance and remodeling of the ECM 
in human skin (38). Skin fibrosis and aging are caused by an 
imbalance between the generation and degradation of ECM 
proteins, which results in severe alterations in the skin connec-
tive tissue (39). Skin aging is associated with a loss of ECM 
components from the dermis, including collagen, elastin, 
fibrillin, and proteoglycan  (40). The proportion of type  I 
collagen in dermis diminishes with intrinsic and extrinsic skin 
aging. In the present study, cell collagen production induced 
by SPCP treatment was 30‑142% higher compared with the 
control group. The expression levels of the collagen‑degrading 
protein MMP‑8, which serves as a key enzyme in the degra-
dation of collagen and stimulates the degradation of other 
major dermal components (which subsequently leads to 
aging) (41), was investigated by western blot analysis. These 
were decreased significantly in a dose‑dependent manner in 
cells treated with SPCP. The increase in collagen might be due 
to a decrease in the expression of MMP‑8, but this needs to 
be investigated further. Treatment of CCD‑986sk cells with 
SPCP inhibited elastase activity and its activity was reduced 
in a dose‑dependent manner.

Recent advance in understanding the role of endogenous 
growth factors in the aging process provides opportunities to 
develop novel anti‑aging cosmeceutical products (24). Growth 
factors can have a prominent role in reversing the outcomes of 
skin aging (22). Topical application of human growth factors 
has been shown to reduce the signs and symptoms of skin 
aging, as well as increase dermal collagen synthesis, in several 
clinical studies (26). The MTS assay results obtained from 
the present study, showed that SPCP increased the viability 
of CCD‑986sk cells. In order to explore the mechanism, 
growth factor protein expression in SPCP‑treated CCD‑986sk 

Figure 2. SPCP treatment increases the viability of CCD‑986sk cells. Cell 
viability was determined by the MTS assay following treatment with various 
concentrations of SPCP for 24 h. Data are presented as the mean ± standard 
deviation of three independent experiments; **P<0.01 and ***P<0.001 vs. 
Control (0 µg/ml). SPCP, spirulina crude protein.

Figure 3. SPCP treatment reduces elastase activity in CCD‑986sk cells. 
Elastase activity was determined by ELISA following treatment with various 
concentrations of SPCP for 24 h. Data are presented as the mean ± standard 
deviation of three independent experiments; *P<0.05 and ***P<0.001 vs. 
Control (0 µg/ml). SPCP, spirulina crude protein.
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cells were investigated. It is reported that the activation of 
EGFR and insulin growth factor (IGF)‑1R serve an important 
role in cell proliferation (23). Thus, the activation of EGFR 

and IGF‑1R in CCD‑986sk cells was measured. The results 
showed that EGFR was activated by SPCP rather than IGF‑1R 
(data not shown). Furthermore, EGFR associated with skin 

Figure 4. SPCP treatment induces procollagen secretion in CCD‑986sk cells. (A) Procollagen secretion was determined using ELISA following treatment 
with various concentrations of SPCP for 24 h. (B) Changes in MMP‑8 protein expression levels were measured by western blotting. Data are presented as the 
mean ± standard deviation of three independent experiments; *P<0.05 and ***P<0.001 vs. Control (0 µg/ml). MMP, matrix metalloprotease; SPCP, spirulina 
crude protein.

Figure 5. Treatment with SPCP activates the EGFR pathway in CCD‑986sk cells. (A and B) CCD‑986sk cells were treated with SPCP after incubation with 
serum‑free medium for 4 h and expression levels of (A) total EGFR and pEGFR, and of (B) SHC, GRB2 and SOS were measured by western blotting. Data 
are presented as the mean ± standard deviation of three independent experiments; *P<0.05, **P<0.01 and ***P<0.001 vs. Control (0 µg/ml). EGFR, epidermal 
growth factor receptor; GRB2, growth factor receptor bound protein 2; p, phosphorylated; SOS, son of sevenless homolog; SPCP, spirulina crude protein.
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aging (21). Based on the present data, it was found that SPCP 
enhanced the secretion of PIP and inhibited the activity of 
elastase. These results are beneficial for delaying skin aging. 
In the present study, p‑EGFR was increased in SPCP‑treated 
cells compared with the control cells. Additionally, the essen-
tial linkers from epidermal growth factor receptors to MAP 
kinase, including the adaptor proteins GRB2, SHC and SOS, 
were induced by SPCP treatment in a dose‑dependent manner. 
These data indicated that SPCP stimulation induced EGFR 
pathway activation in a dose‑dependent manner. A previous 
study reported that one of the main activated downstream 
signaling pathways is the MEK‑ERK1/2 signaling pathway, 
which controls cell proliferation and differentiation  (42). 
There are three proteins [ERK, c‑Jun N terminal kinase (JNK) 
and p38] in MAPK signaling pathway (43). Only ERK1 and 
ERK2 are activated in response to growth factors, whereas 
JNK and p38 are more responsive to environmental stresses 
and inflammatory cytokines (44). The activation of this down-
stream signaling pathway was investigated and Ras levels were 
increased in SPCP treated cells, followed by phosphorylation 
and activation of MEK and ERK in a dose‑dependent manner. 
The phosphorylation of ERK serves an important role in regu-
lation of cell proliferation (43).

In summary, the expression levels of both MMP‑8 protein 
and elastase were decreased by SPCP, leading to increased 
collagen levels. Additionally, SPCP treatment activated the 
EGFR and MAPK/ERK signaling pathways. To demonstrate 
the reproducibility of these results, other human dermal fibro-
blasts derived from different donors, such as different age and 

gender will be used for further experiments. Based on these 
findings, it seems that the viability of human dermal fibroblasts 
was activated by SPCP. Overall, these results suggest that 
SPCP may be used as a cosmeceutical for potential applica-
tions in protecting human skin; however, further investigation 
is required. To further determine the effects of SPCP, hairless 
mice should be used to explore the change of epidermal thick-
ness and collagen fibers with the application of SPCP.
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