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Abstract

The endocytic pathway tightly regulates the activity of G protein-coupled receptors (GPCRs). 

Much of our understanding of this relationship between GPCR endocytic trafficking and signaling 

comes from studies done on catecholamine and opioid receptors. After ligand-induced 

endocytosis, a key sorting step in the endosome determines whether receptors are recycled back to 

the cell surface, leading to recovery of signaling, or are degraded in the lysosome, leading to 

desensitization. Recycling of GPCRs, unlike that of many other proteins, is an active process 

driven by specific sequences on the receptor and proteins that interact with this sequence. Recent 

data suggest that sequence-dependent recycling plays complex roles in regulating both the timing 

and location of GPCR signaling. This chapter will describe our current understanding of the 

mechanisms regulating GPCR sorting in the endosome, and discuss emerging ideas on their role in 

GPCR signaling, focusing on adrenergic and opioid receptors as prototypes.

1. Introduction: The endosome as a sorting station for internalized 

GPCRs.

Endocytic trafficking is a fundamental cellular process that regulates GPCR function. GPCR 

activation on the cell surface results in their removal from the cell surface by clathrin-

mediated endocytosis1–3. This was first recognized by studies measuring ligand-induced 

desensitization of signaling, which required receptor phosphorylation, binding of beta-

arrestins, and endocytosis. Endocytosed GPCRs are transported to the endosome, where a 

critical sorting step determines the further fate of GPCRs4–6. They may be either recycled to 

the cell surface, or be degraded in the lysosome. An established consequence of this sorting 

is that it directly controls the number of receptors on the cell surface, causing either recovery 

of sensitivity of the cell to the signal or downregulation of signaling, respectively7,8. Recent 

evidence, however, suggests that this post-endocytic sorting might have much more complex 

roles in regulating the function of many GPCRs, including the prototypic adrenergic and 

opioid receptors.

The early endosome serves as the primary sorting station for most internalized proteins 

including GPCRs. How endosomes sort receptors, considering the amount of membrane 

cargo that traffic through these dynamic organelles, is a fundamental question with many 

implications. There are four main pathways for internalized proteins out of the endosome 

(Figure 1). Proteins may be recycled by bulk membrane flow, sorted to the lysosome to be 
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degraded, recycled via a specialized regulated “sequence-dependent” recycling pathway, or 

transported to the Golgi apparatus.

Many proteins, like the transferrin receptor (TfR), are recycled back to the cell surface as 

part of bulk membrane flow, apparently without any specific requirements. This “bulk 

recycling” was first described over 20 years ago, by Maxfield and colleagues, who labeled 

and tracked the membrane and fluid phase compartments of endosomes9,10. They observed 

that the endosome extruded narrow tubules with a large surface area (i.e., membranes) but 

low volume (i.e., fluids). Continued fission and recycling of these tubules provided a 

geometric basis for how nutrient receptors could be recycled as part of bulk membrane flow, 

simply because they are membrane proteins, leaving their soluble ligands in the lumen of the 

endosome to be eventually degraded in the lysosome9–11. Several membrane-modifying 

proteins responsible for membrane tubulation have been identified. Such geometric sorting 

likely occurs extensively along the endocytic pathway, iteratively recycling receptors from 

the early, recycling, and the late endosomes.

Considering that recycling is thought to be a “default” fate for membrane proteins, it is 

interesting that GPCRs are not commonly sorted via bulk recycling. Many GPCRs, like the 

delta opioid receptor (DOR), and signaling receptors like the EGF receptor, are degraded in 

the lysosome12,13. Degradation of these proteins takes advantage of geometric sorting. These 

proteins are packaged into vesicles that bud off into the interior of the endosomes, 

essentially partitioning the protein-containing vesicles into the fluid phase of these 

endosomes, which eventually mature into or fuse with lysosomes14–16. For GPCRs that 

recycle, this is a regulated process that requires specific protein sequences and 

interactions17–30. Mutation of these sequences direct GPCRs to the lysosome, reiterating that 

their recycling is not simply a function of them being membrane proteins17,22,25. This 

chapter will discuss our current understanding of GPCR sorting between the degradative and 

recycling pathways, using adrenergic and opioid receptors as model receptors.

2. Mechanisms of sequence-dependent GPCR sorting

2.1 GPCRs are sorted into lysosomes by multiple mechanisms

The first conceptual step in GPCR sorting to the lysosome is to segregate receptors away 

from bulk recycling, by packaging them into intralumenal vesicles (ILVs). The process of 

generating vesicles that pinch off to the interior of the vesicles, called involution, is a 

topologically highly interesting process, as this involves the generation of vesicles away 

from the cytoplasm, unlike with the “classical” coat-mediated vesicle transport processes 

like endocytosis. Most of our understanding of protein sorting to lysosomes comes from 

studies done in yeast. Genetic and biochemical studies of protein sorting to the vacuole, a 

compartment homologous to the mammalian lysosome, have identified the ESCRT proteins 

as the primary protein machinery responsible for this process. The current views on the 

mechanisms of how ESCRT proteins induce negative curvature and generate ILVs are 

discussed in structural detail in several recent authoritative reviews31–34.

The main sorting signal that targets proteins to the lysosome is the addition of ubiquitin to 

cytoplasmic lysine residues of proteins. Early evidence for the importance of ubiquitination 
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in GPCR trafficking came from studies on the yeast GPCR Ste2, for which ubiquitination 

promoted transport to the vacuole. Since then, ubiquitination has been shown to promote 

lysosomal targeting of many membrane proteins in mammalian cells, including the EGF 

receptor13,35. In the case of many of these proteins, ubiquitin interacts with the ubiquitin-

interacting motif (UIM) of Hrs, an endosomal protein often termed ESCRT-0. Hrs then 

transfers these proteins to Tsg101, an ESCRT-I component that also has a UIM. This 

localizes the cargo in ESCRT domains, which allows them to be incorporated in ILVs. While 

many GPCRs are known to be ubiquitinated, the role of these interactions in its lysosomal 

targeting has been shown only for CXCR436. The role of ubiquitination in GPCR trafficking 

is discussed much more extensively elsewhere in this book.

Receptor ubiquitination or ESCRTs, however, are not required for sorting all GPCRs to 

lysosomes. A mutant of the DOR lacking all cytoplasmic lysines is endocytosed and 

trafficked to the lysosome12. This still requires Hrs and Tsg101, suggesting ubiquitin-

independent binding of GPCRs with ESCRT37. The protease activated receptor PAR1, on 

the other hand, can be sorted to the lysosome independent of both ubiquitination and 

ESCRTs38. Instead, this sorting depends on the endosomal protein sorting nexin-1 

(SNX1)39. Additionally, members of the family of GPCR-associated sorting proteins 

(GASP1 and GASP2) and Beclin-2 have been implicated in degradation of DOR40,41. While 

both SNX1 and GASP proteins interact with several GPCRs, including DOR, the exact 

mechanism by which they sort GPCRs into the lysosome is still not well understood42. Our 

current understanding is that these proteins may play a role in downregulation of receptors 

under conditions of chronic agonist stimulation.

2.2 GPCRs Contain Diverse Recycling Sequences

It has been appreciated for over 30 years that adrenergic receptors recycle to the surface, 

based on the reappearance of activity after agonist-induced desensitization2,43,44. Over the 

years, however, it has become clear that the simple model of bulk recycling cannot explain 

GPCR recycling, mostly from research on the beta adrenergic receptors. The recycling of the 

beta-2 adrenergic receptor (B2AR) depends on a specific sequence on its C-terminus that 

interacts with post-synaptic density 95/disc large/zonula occludins-1 (PDZ) -domain 

containing proteins17. Similar sequences that conform to classical type I PDZ-ligand 

sequences have been identified on several GPCRs, including the related beta-1 adrenergic 

receptor (B1AR) and the kappa opioid receptor (KOR), over the past decade19,22,29. For 

many of these receptors, these sequences are required for the recycling of these receptors, 

and are also sufficient, as transplanting these sequences onto a non-recycling receptor like 

the DOR allows the receptor to recycle45. Alpha adrenergic receptors also contain PDZ 

ligands, although they are more diverse, and their role in recycling is less well understood46. 

One critical feature of these PDZ-ligand sequences is that they need to be on the C-terminal 

tail of the receptors. The terminal peptide binds in an antiparallel fashion in a hydrophobic 

cleft formed by a beta strand, a loop, and an alpha helix in the PDZ protein, with the free 

carboxyl group occupying a hydrophobic pocket47. In addition, sequence-comparisons have 

identified many internal PDZ ligands on GPCRs that might be involved in receptor 

recycling48,49.
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How do PDZ-ligand sequences mediate adrenergic receptor recycling? For the B2AR, a 

complement of proteins that bind the PDZ ligand, including NHERF-1, NHERF-2, PDZK1, 

and MAGI-3, was identified soon after the identification of the sequence17,50. Similarly, 

several proteins, such as PIST, MAGI-2, MAGI-3, PSD-95, and SAP97 that bind the PDZ 

ligand sequence of the B1AR have also been identified19,20,29. It is interesting that these two 

related receptors bind distinct complements of PDZ proteins. SAP97 has been implicated as 

the main protein that mediates B1AR recycling, by directly interacting with the PDZ ligand 

and recruiting the A-Kinase Anchoring Protein-79 (AKAP-79) which phosphorylates the 

B1AR on a residue that contributes to recycling29. Similarly, B2AR also interacts with 

AKAP-12 (Gravin), which might recruit c-Src to this complex51.

However, while these protein interactions have been delineated, we have only recently 

started to understand how GPCRs are recycled by these interactions. Some of the key 

breakthroughs came from recent advances in live cell imaging that allow for direct 

visualization of receptor sorting and recycling in the endosome. These studies showed that 

the recycling of the B2AR is mediated by specific microdomains on the endosome, distinct 

from those that mediate bulk recycling52. These sequence-dependent recycling 

microdomains are marked by a specialized actin cytoskeleton and specific membrane 

modifying proteins such as sorting nexins and retromer53,54. This was exciting, since it 

challenged the traditional view that all recycling tubule populations at the early endosome 

have the same sorting kinetics and trafficking machinery52. A variety of proteins have been 

localized to this specific actin/sorting nexin/retromer tubular (ASRT) microdomain on the 

endosome52,54,55. A global analysis of plasma membrane proteins after depletion of SNX27 

or retromer components showed a reduction in surface levels of over a 100 proteins, 

suggesting that this is a general recycling pathway used by many proteins56.

Evidence suggests that the primary role of the PDZ interactions is to link the receptor to 

these ASRT domains. Disrupting these interactions or depleting components of the 

endosomal actin cytoskeleton, retromer complex, or SNX27 inhibited B2AR recycling, 

similar to mutating the PDZ ligand or depleting the PDZ proteins52–54. Conversely, 

replacing the PDZ domain with an actin-binding domain from ezrin was sufficient to confer 

recycling to DOR and B2AR57. The facts that actin-binding is required and sufficient for 

recycling, and that several GPCRs have the ability to bind to PDZ-domain proteins, suggests 

a conserved role of the PDZ-linked actin cytoskeleton in endosomal sorting of GPCRs.

However, why and how GPCRs are excluded from bulk recycling is still an open question. 

Current data suggest a kinetic basis for this exclusion (Figure 2). Estimation of diffusion 

rates showed that the mobility of the B2AR on endosomes was highly restricted52. This 

might make it difficult for B2AR to diffuse into and populate the bulk recycling tubules, 

which undergo fast fission. The actin cytoskeleton on the ASRT domains stabilizes these 

domains and delays fission of these tubules. This might allow enough time for the slow-

diffusing B2AR to diffuse into these tubules, where they will be concentrated by interactions 

with the ASRT proteins. Such a “kinetic sorting” mechanism in fact might provide a 

common mechanism for sorting in many different membrane compartments. Validating this 

model at a mechanistic level is an important future direction in our understanding of GPCR 

biology.
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In contrast to beta adrenergic receptors, the opioid receptor family exhibits very diverse 

trafficking characteristics. The KOR requires a PDZ domain for post-endocytic recycling, 

similar to the adrenergic receptors22. DOR, as mentioned above, does not recycle and is 

degraded in lysosomes following agonist-induced endocytosis12,58. Interestingly, the mu-

opioid receptor (MOR), recycles following agonist-induced internalization, but does not 

require a PDZ ligand sequence, like KOR and the adrenergic receptors. MOR contains a 

unique, seven amino acid recycling sequence in its C-terminal tail, LENLEAE. Mutation of 

this sequence re-routes MOR to the lysosome following endocytosis, and fusion of this 

sequence to the C-terminal tail of DOR is sufficient to promote its rapid recycling, and 

prevent lysosomal degradation of DOR25.

Although MOR’s recycling sequence was discovered a decade ago, the exact mechanism of 

how this sequence promotes MOR sorting and recycling remains unknown. However, a 

number of MOR binding partners that regulate MOR trafficking have been found. The actin-

binding protein, filamin A, has been shown to interact with the C-terminal tail of MOR, and 

this interaction is thought to reduce MOR agonist-induced internalization59. Additionally, 

the dendritic spine protein, spinophilin, interacts with MOR in the striatum, and 

interestingly, knockout of spinophilin reduces sensitivity to morphine-induced analgesia60. 

Further, agonist-induced internalization of MOR is significantly reduced in spinophilin 

knockout cells60. Interestingly, spinophilin interacts with DOR, as well as MOR, and this 

interaction requires the third intracellular loop, the G protein coupling domain of GPCRs, as 

well as the first eighteen amino acids of the C-terminal tail, conserved between the two 

opioid receptors61. Additionally, this interaction seems to enhance ERK signaling through 

DOR, but not MOR, suggesting that the interaction with spinophilin may modulate 

sensitivity of MOR and DOR differentially61. Moreover, single nucleotide polymorphisms 

within the G protein-coupling domain of the third extracellular loop of MOR are also 

associated with calmodulin binding and an increase in basal MOR activity62. Interestingly, 

spinophilin also interacts with alpha-2 adrenergic receptors and D2 dopamine receptors, also 

through the third intracellular loop of these receptors63,64, suggesting that spinophilin may 

regulate several GPCRs, potentially through G protein coupling. The additional requirement 

of a conserved region of MOR and DOR C-terminal tails for spinophilin binding suggests a 

potential role in membrane trafficking, while the exact mechanism remains unknown.

Even though GPCR recycling uses diverse sequences and proteins, it is likely that there is a 

common mechanism that mediates the recycling of most GPCRs, which can be accessed by 

specific “recycling adaptors” that link receptors to this machinery. In support of this, 

disruption of Hrs inhibits the recycling of most GPCRs that recycle in a sequence-dependent 

manner. This role of Hrs seems to be independent of its role in ESCRT-mediated degradation 

of proteins, as the other components of the ESCRT machinery such as Tsg101 do not 

produce this phenotype65. Further, Hrs mediates its effect on B2AR recycling via its Vps27-

Hrs-STAM (VHS) domain, which does not play an active role in lysosomal sorting65. 

Additional support for this idea comes from the identification of mutations on the B2AR that 

converts the receptor into a bulk recycling protein. A sequence on the proximal part of the 

C-terminal tail on B2AR (EKENKLL) that resembles, but is distinct from, an acidic 

dileucine sequence, was required for Hrs-dependence and sequence-dependence of B2AR 

recycling66. Similarly, mutating a phosphorylation site on B2AR, adjacent to the EKENKLL 
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sequence, that is phosphorylated by Protein Kinase A (PKA), converts B2AR recycling to be 

independent of actin and the PDZ ligand sequence67,68. Identification of these specific 

sequences indicates that there is a specific machinery that retains B2AR on the endosome 

(which might constitute step 1 in the hierarchical sorting model , actively excluding it from 

bulk recycling. As of now, there are no known interacting partners to either of these sites. 

Once future studies identify candidates, we will be able to dissect out the mechanisms and 

function of this hierarchical sorting of GPCRs.

Another argument for common machineries mediating GPCR recycling is the involvement 

of general vesicle trafficking machineries in this process. For example, Rab GTPases 

regulate many steps in vesicle trafficking of GPCRs, such as vesicle budding, tethering, and 

docking69. Rab5 is a marker for the early endosome to which many GPCRs, such as the 

B2AR, endothelin A and B receptors, and the thyrotropin-releasing hormone receptor, 

localizes following agonist-induced endocytosis70–73. Overexpression of dominant negative 

Rab5 mutants interferes with endocytic trafficking of B2AR, the D2 dopamine receptor, 

neurokinin-1 receptor (NK1R), CXC chemokine receptor 2, lysophosphatidic acid-coupled/

EDG-2 receptor, and the cannabinoid receptor 272,74–78. Rab5 may be involved in 

resensitization of B2AR and NK1R72,75. Further, Rab4 is thought to control rapid recycling 

from Rab5/Rab4 early endosomes to the plasma membrane, while Rab11 mediates a slower 

recycling pathway79. Both these have been implicated in the recycling of GPCRs as well as 

a variety of non-GPCR cargo, including TfR. For example, a dominant negative Rab4 or 

depletion of Rab4 by RNA interference inhibits rapid B2AR recycling following agonist-

induced endocytosis72,67. MOR is also thought to recycle in a Rab4 dependent manner, but 

also recycles through a slower Rab11-mediated pathway80. Other GPCRs are thought to 

traffic through the slow, Rab11-dependent pathway, such as the cannabinoid receptor 2, 

angiotensin II type I receptor, and the M4 muscarinic acetylcholine receptor78,81,82. 

Together, this suggests that, in addition to regulation of GPCR recycling by C-terminal 

recycling sequences and their respective binding partners, GPCR post-endocytic trafficking 

is also subject to regulation by Rab GTPase activity at different endosomal compartments.

3. Regulation of sequence-dependent recycling by modifying steps in 

hierarchical sorting

Recent evidence suggests that intracellular signaling cascades can control endosomal sorting 

of GPCRs. This provides new explanations for how cells might coordinate the diverse 

cellular responses mediated by different GPCRs at physiological time scales. B2AR 

recycling is regulated by protein kinase A (PKA), a signaling kinase downstream of B2AR 

activation67,68. Further, B2AR signaling can homologously regulate its recycling through 

PKA phosphorylation of the C-terminal tail of B2AR. These two PKA sites on the C-

terminal tail of B2AR regulate a switch in the type of recycling tubules that B2AR is sorted 

into at the early endosome. Increased PKA phosphorylation of B2AR, following sustained 

adrenergic signaling, restricts B2AR to the ASRT domain on the endosome. Conversely, 

non-phosphorylated B2AR can enter the non-ASRT, or bulk recycling tubules, traversed by 

nutrient receptors, like the transferrin receptor (TfR)68. This suggests a hierarchical sorting 

mechanism that allows a cell to fine-tune its responses to extracellular signals (Figure 3A). 
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For example, in the case of sustained adrenergic signaling, restriction of B2AR to the 

sequence-dependent pathway by PKA phosphorylation allows a cell to quickly slow down 

B2AR resensitization by decreasing recycling from the endosome. It is possible that a 

similar mechanism exists for B1AR, considering the described role of PKA phosphorylation 

in B1AR recycling and resensitization29,51, but the exact mechanisms have not been 

addressed in detail.

Considering that the ASRT domains contain a variety of protein complexes whose functions 

are highly regulated, these potentially provide additional control points for regulating GPCR 

recycling even beyond a simple switch between bulk and ASRT-dependent recycling. For 

example, cortactin, one of the key components of the actin cytoskeleton in ASRT domains, 

is regulated by c-Src phosphorylation83. This phosphorylation increases the rate of vesicle 

scission from these domains84. Because modifying vesicle scission affects the surface 

delivery of all cargo proteins that use this pathway56, it is possible that this provides a 

general mechanism for controlling recycling of all these proteins. Such hierarchical steps of 

recycling provide a number of checkpoints for signaling receptors. They can first be sorted 

at the early endosome according to the recycling sequence on their C-terminal, then 

phosphorylation of GPCRs themselves at their C-terminal tails, or components of the ASRT 

domains, by kinases allows the cell to alter recycling kinetics in response to diverse 

physiological situations (Figure 3B).

Recent work suggests that MOR recycling can also be regulated by phosphorylation by 

kinases downstream of GPCR activation. Much like B2AR, MOR recycling in striatal 

neurons is decreased by forskolin, which activated cAMP, although PKA was not directly 

tested in these neurons85. MOR recycling is also regulated through a heterologous pain 

signaling pathway in sensory neurons. Pain signaling, through activation of the neurokinin-1 

receptor (NK1R) by substance P, increases MOR recycling in sensory neurons through PKC 

phosphorylation of two residues on the C-terminal tail of MOR, serine 363 (S363) and 

threonine 370 (T370)86. This is consistent with physiological and pharmacological data that 

PKC inhibition reduces MOR resensitization, and that PKC modulation can change 

behavioral correlates of opioid tolerance87,88. Interestingly, the phosphorylation state at 

these sites can be differentially regulated by diverse opioid agonists. S363 is constitutively 

phosphorylated, whether or not the receptor is bound to an opioid drug. T370, on the other 

hand is phosphorylated when the receptor is activated by high-efficacy opioids, like [D-

Ala2, N-Me-Phe4, Gly5-ol]-Enkephalin (DAMGO) and fentanyl, but not morphine89. 

Further, substance P has also been shown to induce phosphorylation at MOR T37090. This 

heterologous regulation of MOR recycling further suggests the possibility that hierarchical 

sorting of GPCRs, through signaling regulation, allows the cell to control GPCR 

resensitization by regulating recycling kinetics in response to different physiological stimuli.

4. Relevance of sequence-dependent GPCR recycling in the endosome

The exact role of endocytic trafficking in GPCR function has been often highly debated in 

the past. After activation, receptors are desensitized by phosphorylation, and need to be 

dephosphorylated to be resensitized and made competent for ligand binding and signaling. 

Evidence suggests that both phosphorylation and dephosphorylation can occur at the cell 
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surface. Endocytic trafficking might play roles in modifying the kinetics of this process, 

although the direction in which endocytosis drives resensitization might vary depending on 

the receptor and conditions6,30. Nevertheless, the long-standing model for GPCR function 

was that they signal primarily at the cell membrane through their heterotrimeric G proteins, 

after which they are desensitized. Based on this, a straightforward role for endosomal GPCR 

sorting, that sorting of receptors into the sequence-dependent pathway caused rapid 

recycling and delivery of receptors to the cell surface and led to recovery of cellular 

responsiveness to the same signal, has been appreciated for a while91.

Recent evidence suggests, however, that sequence-dependent recycling plays more complex 

roles in tuning both spatial and temporal characteristics of GPCR signaling. GPCRs can 

signal through several non-G protein signaling pathways - for example through the GPCR 

adaptor, beta arrestin92. Some GPCRs recruit and signal through arrestin at the endosome. 

Sustained signaling through G proteins at the endosome following GPCR endocytosis has 

also been demonstrated for some GPCRs93–95. The parathyroid hormone receptor (PTHR) 

continues to signal after receptor endocytosis, and different agonists differ in their ability to 

induce this type of signaling. Interestingly, PTHRs signaling at the endosome were also 

shown to associate with Gαs, challenging the traditional view that G protein coupling and 

signaling occurs primarily at the cell surface93,96. Further, internalized thyroid stimulating 

hormone receptors (TSHR) exhibit coupling to Gs and cyclic AMP (cAMP) production 

following internalization94.

For “conventional” GPCRs like the B2AR, however, G protein signaling at endosomes has 

remained controversial, in part because the signaling profiles of B2AR are much faster 

compared to receptors like the PTHR, and because traditional signaling readouts could not 

discriminate between the cell surface and subcellular compartments as signaling sources. 

Recent breakthroughs have generated a GFP-tagged nanobody biosensor that specifically 

recognizes the activated form of the Gα stimulatory protein (Gαs). This sensor, which 

provides spatial resolution, showed that B2AR can activate Gαs at early endosomes97. This 

presents the first clear demonstration that even conventional GPCRs, where the focus has 

largely been on signaling from the cell surface, can induce G protein signaling cascades 

from endosomal compartments. Following up on this work, the von Zastrow group has also 

shown that cell surface and endosomal G protein signaling activated distinct transcriptional 

profiles98, suggesting that spatial encoding of where the cAMP signaling was generated 

could produce diverse cellular responses. While still early, this emerging body of work 

provides a new perspective on the role of endocytic trafficking in GPCR function. Direct 

visualization of active conformations of B2AR and Gs proteins on the endosome suggests a 

transformative idea that endocytosis and subsequent endosomal sorting of GPCRs, in 

addition to deciding whether GPCRs are degraded at the lysosome or recycled to the cell 

surface, could also regulate diverse intracellular signaling cascades at the early endosome 

following agonist activation.

5. Summary and perspectives

The post-endocytic sorting of internalized adrenergic and opioid receptors between the 

recycling and degradative pathways determines whether receptors are delivered back to the 
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cell surface or degraded in the lysosome. GPCR recycling is an active process that requires 

specific sequences on the receptor tails. Several proteins that interact with these sequences 

and drive receptors into the sequence-dependent recycling pathway have been identified. 

Considering that many membrane proteins can recycle as part of bulk membrane flow, how 

and why GPCRs are excluded from bulk recycling is a clear area that needs further 

investigation.

A well-appreciated role for post-endocytic sorting is that it controls receptor signaling by 

determining the number of signaling receptors that are recycled to the cell surface. 

Accumulating data in the recent years, however, suggest that post-endocytic sorting plays 

more complex roles in regulating receptor function. Recycling of GPCRs is mediated by 

specific microdomains on the endosome that are physically separate from domains that 

mediate bulk membrane recycling. GPCR recycling domains also serve as organizing centers 

for specific signaling complexes. Importantly, signals originating from the surface and 

endosomes induce distinct downstream responses, suggesting that GPCR signaling is 

spatially encoded. The cytoplasmic interactions of GPCRs, by determining receptor 

localization in these microdomains, might directly determine this spatial encoding, and 

therefore might provide control points for the cell to precisely modulate both the spatial and 

temporal characteristics of signaling. We have only recently begun to identify signaling 

pathways that modify these interactions and regulate receptor signaling. As future studies 

identify more examples of signaling-mediated regulation of these machineries, especially in 

physiologically relevant systems, we will be able to build a better picture of how cross-talk 

between multiple signaling pathways allow cells to generate an integrated response in 

complex signaling environments.
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Figure 1. 
Potential pathways for endocytosed GPCRs from the endosome. Sequence-dependent 

recycling is the physiological scenario for recovery of signaling, while sorting to the 

lysosome leads to degradation and downregulation. Bulk recycling pathway, taken normally 

by nutrient receptors but not GPCRs, potentially leads to unregulated signaling for GPCRs. 

While some proteins can travel to the Golgi apparatus, this is not established as a common 

route for GPCRs.
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Figure 2. 
A kinetic model for sorting in the endosome. The mobility of sequence-dependent recycling 

proteins or degraded proteins on the endosome are constrained by an unknown mechanism. 

This slow mobility reduces their entry into bulk recycling tubules which form and undergo 

scission rapidly. Bulk recycling proteins have unconstrained mobility on the endosome, 

which allows them to enter the short-lived bulk recycling tubules. ASRT domains are 

stabilized by the actin cytoskeleton, which provides sequence-dependent recycling proteins 

enough time to diffuse into these tubules. Degraded proteins are captured by the ESCRT 

machinery and packaged into intralumenal vesicles.
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Figure 3. 
A hierarchical model for GPCR sorting in the endosome. A) The first step in sorting is an 

unknown mechanism that tethers GPCRs on the body of the endosome, excluding them from 

entering bulk recycling tubules. This could be a consequence of decreased mobility, as in the 

kinetic sorting model described in Figure 2. Bulk recycling proteins are not tethered by this 

mechanism, allowing them to recycle by geometric sorting. Tethered proteins are either 

recycled, if they have a recycling sequence, or degraded, if they contain one of multiple 

signals including ubiquitination. B) The proposed protein complexes on the endosome that 

mediate these hierarchical steps in sorting are shown.
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