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Summary

Biomarkers are playing an increasingly important role in disease screening, early detection, and 

risk prediction. The two-phase case-control sampling study design is widely used for the 

evaluation of candidate biomarkers. The sampling probabilities for cases and controls in the 

second phase can often depend on other covariates (sampling strata). This biased sampling can 

lead to invalid inference on a biomarker’s classification accuracy if not properly accounted for. In 

this papeqer, we adopt the idea of inverse probability weighting (IPW) and develop IPW-based 

estimators for various measures of a biomarker’s classification performance, including the points 

on the receiver operating characteristics (ROC) curve, the area under the ROC curve (AUC), and 

the partial AUC. In particular, we consider classification accuracy estimators using sampling 

weights estimated conditionally on sampling strata and further improve their efficiency through 

the use of estimated weights that additionally take into account the auxiliary variables available 

from the phase-one cohort. We develop asymptotic properties of the proposed estimators and 

provide analytical variance for making inference. Extensive simulation studies demonstrate 

excellent performance of the proposed weighted estimators, while the traditional empirical 

estimator can be severely biased. We also investigate the advantages in efficiency gain for 

estimating various classification accuracy estimators through the use of auxiliary variables in 

addition to sampling strata and apply the proposed method to examples from a renal artery 

stenosis study and a prostate cancer study.
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1 ∣ INTRODUCTION

Biomarkers are playing an increasingly important role in disease screening, early detection, 

and risk prediction. A variety of statistical tools have been developed for characterizing the 

classification performance of biomarkers. The most commonly used tool for quantifying and 

visualizing a biomarker’s classification accuracy for a binary disease outcome is the receiver 

operating characteristic (ROC) curve [1,2]. The area under the ROC curve (AUC) is a widely 

used summary measure for biomarker classification performance. This value corresponds to 

the probability that a randomly selected individual with the target disease has a marker value 

greater than a randomly selected individual free of the disease. In practice, a specific region 

under the ROC curve is often of greater interest than the entire region under the curve. For 

example, high sensitivity is desired for biomarkers used for disease diagnosis, while high 

specificity is essential for biomarkers used for screening purposes. The partial area under the 

ROC curve [3,4] has been proposed to characterize classification performance of biomarkers 

over a clinically relevant region.

In this paper, we evaluate biomarkers with respect to the points on the ROC curve, the AUC, 

and the partial AUC using data from two-phase sampling designs. In the first phase of these 

designs, a large cohort is randomly selected from the target population. For all subjects in 

the phase-one cohort, information is collected on the disease outcome of interest and on 

easily measured covariates. In the second phase, a subsample of subjects is drawn from the 

phase-one cohort without replacement and the biomarker is measured in this subsample. 

Here, we are particularly interested in case-control sampling scenarios in which cases and 

controls are separately drawn in the second phase, which has become a pervasive practice in 

biomarker studies [5].

Oftentimes in the second phase, cases and/or controls are not obtained by simple random 

sampling. For example, in some studies, cases and controls are randomly selected within 

pre-determined covariate strata; in others, a random sample of cases is obtained and then 

controls are selected to be frequency-matched to cases within covariate strata. These biased 

sampling schemes may impact biomarker evaluation if not properly accounted for. [6] 

demonstrated that when controls that are frequency-matched to cases on risk factors for the 

disease outcome are selected, estimates of biomarker performance can be seriously biased 

and lead to invalid inference. To overcome the problem that sampling probability for cases 

and/or controls varies across sampling strata, [7] adopted the idea of inverse probability 

weighting (IPW) and proposed IPW estimators for characterizing and comparing biomarker 

performance based on the AUC, where sampling weights were estimated conditional on the 

sampling strata. The proposed IPW AUC estimator was shown to be unbiased and the 

corresponding confidence interval based on analytically estimated variance had good 

coverage. Using analytical and numerical studies, [7] also demonstrated the efficiency 

advantage in the AUC estimator using an estimated sampling weight conditional on 

sampling strata even when the true sampling weight is known. In this paper, we extend the 

work of [7] and develop IPW estimators for the other two important measures of 

classification accuracy: the points on the ROC curve and the partial AUC. More importantly, 

to further improve the efficiency of IPW estimators, we consider the use of auxiliary 

variables correlated with the biomarker in estimation of sampling weights, in addition to the 
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use of sampling strata. In particular, we adjust the sampling weights via estimated weights 

conditional on sampling strata and additional auxiliary variables [8]. Estimated weights have 

been previously shown to improve the efficiency of weighted likelihood estimators in 

etiological studies [9,10]. We develop the asymptotic properties of the various IPW 

estimators for the points on the ROC curve, the AUC, and the partial AUC, and provide 

analytical variance formulas for making inference.

Two types of sampling designs, Bernoulli sampling [11] and finite-population stratified 

sampling [12], are considered in the second phase of the two-phase studies. In Bernoulli 

sampling, each subject has a pre-specified sampling probability and is drawn independently 

from the others in the second phase. In contrast, finite-population stratified sampling does 

not require pre-specified sampling probability of each subject in phase two, but the number 

of subjects sampled from each stratum is fixed. We demonstrate the connection in theoretical 

results of the proposed estimators between these two sampling designs.

This paper is organized as follows. In Section 2, we first propose the IPW estimators of the 

points on the ROC curve, the AUC, and the partial AUC in the Bernoulli sampling setting. 

We also establish the asymptotic properties of the proposed estimators. Then we consider the 

estimation in finite-population stratified sampling setting and describe the relationship 

between the asymptotic results of the proposed estimators in these two sampling designs. In 

Section 3, we conduct extensive simulation studies to evaluate the performance of the 

proposed estimators and assess the efficiency using different weight choices. In Section 4, 

we apply our proposed method to two clinical examples. Finally, we make concluding 

remarks in Section 5.

2 ∣ METHODOLOGY AND THEORY

We consider a binary disease outcome D, with values 1 and 0 standing for diseased and non-

diseased, respectively. Let X indicate a biomarker measured on a continuous scale. We 

consider a two-phase sampling setting for evaluating the classification performance of the 

biomarker. In the first phase of the two-phase sampling design, suppose there are N subjects 

randomly sampled from the target population, from whom the disease status D and a vector 

of easy-to-measure covariates Z are measured. The list of covariates Z measured in the first 

phase can include continuous variables that are discretized to form sampling strata for the 

second phase sampling, as well as additional auxiliary variables. Let ND and ND̄ denote the 

numbers of cases and controls in the first phase, respectively (N = ND + ND̄). Suppose that 

cases and controls among phase-one samples are classified into KD and KD̄ sampling strata, 

with NDkD and ND̄kD̄ samples in each stratum, respectively. In this case, ND = ND1 + ND2 + 

⋯ + NDKD and ND̄ = ND̄1 + ND̄2 + ⋯ + ND̄KD̄. In the second phase, subsamples of cases and 

controls are randomly drawn from the phase-one cohort within each sampling stratum and 

the continuous biomarker X is measured.

Next we propose estimators for (1) the points on the ROC curve, (2) the AUC, and (3) the 

partial AUC for biomarker X in two-phase case-control sampling studies. Each of these 

measures can be interpreted as a specific instance of the integrated ROC curve as pointed out 

by [13]. We start with the Bernoulli sampling design.
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2.1 ∣ Bernoulli Sampling

In Bernoulli sampling, subjects are selected at the second phase independently of one 

another, with a pre-specified sampling probability that is constant within each sampling 

stratum. Let δDi be the indicator of being sampled in phase-two for the ith case and pDi be 

the corresponding sampling probability. Similarly, let δDj and pDj be the indicators of being 

sampled in the second phase for the jth control and the corresponding sampling probability, 

respectively. We next consider the estimation of various classification performance measures 

with data collected from a Bernoulli sampling design.

2.1.1 ∣ Estimation of points on the ROC Curve—First, we consider the estimation 

of points on the ROC curve. Let the cumulative distribution functions (CDFs) of the 

biomarker X among the cases and controls be FD and FD̄, respectively. Suppose a binary test 

is constructed based on the biomarker with a threshold c such that individuals whose X value 

is greater than c are classified as diseased and all individuals whose X value is equal to or 

less than c are classified as non-diseased. The sensitivity of the test is defined as the 

probability of correctly classifying a diseased individual, i.e., SEN (c) = 1 – FD (c). The 

specificity of the test is defined as SPE (c) = FD̄ (c), i.e., the probability of correctly 

classifying a non-diseased individual. The ROC curve is created by plotting SEN (c) against 

1 – SPE (c) as the threshold c varies from −∞ to +∞. Consequently, the points on the ROC 

curve are ROC(t) = 1 − FD FD‒
−1(1 − t) , with t ∈ [0, 1].

Based on the phase-two case/control sample, an empirical estimator of ROC (t) can be 

constructed as ROCem(t) = 1 − FD, em FD‒, em
−1 (1 − t) , where 

FD‒, em
−1 (1 − t) = inf x:FD‒, em(x) ≥ 1 − t } is the empirical estimator of FD‒

−1(1 − t), 

FD, em(x) = ∑i = 1
ND δDiI(XDi ≤ x) ∑i = 1

ND δDi  and 

FD‒, em(x) = ∑ j = 1
ND‒ δD‒ jI XD‒ j ≤ x ∑ j = 1

ND‒ δD‒ j  are the empirical estimators of FD and FD̄, 

respectively. When case and/or control samples in the second phase are not representative of 

the corresponding case or control distributions in the population, the empirical estimator 

ROCem(t) could be seriously biased. To overcome this problem, we propose the following 

weighted estimator of ROC (t) adopting the idea of inverse probability weighting (IPW) 

[14],

ROCIPW(t) = 1 − FD, IPW FD‒, IPW
−1 (1 − t) , (1)

Where FD, IPW(x) = ∑i = 1
ND δDi

pDi
I(XDi ≤ x) ∑i = 1

ND δDi
pDi

 and 

FD‒, IPW(x) = ∑i = 1
ND‒ δD‒ j

pD‒ j
I(XD‒ j ≤ x) ∑ j = 1

ND‒ δD‒ j
pD‒ j

 are the IPW estimators of FD and FD̄, 
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respectively, in which pDi and pD‒ j are the estimated sampling prabaoilities of case i and 

control j, respectively.

Note that in Bernoulli sampling design, pDi and pD̄j, the sampling probabilities for cases and 

controls, are pre-specified and could be used for generating the weights in the weighted 

ROC estimator. However, using estimated sampling probability has been recommended as a 

way to improve estimation efficiency in many other settings such as weighted likelihood 

estimators [8, 9]. Moreover, in the paradigm of biomarker evaluation, estimating AUC using 

an estimated weight conditional on sampling stratum was demonstrated to improve 

efficiency [7]. Therefore, we focus on estimated sampling weights throughout this paper and 

propose different procedures to estimate the sampling weights below.

We consider two types of estimated sampling probabilities: i) the estimate conditional on the 

sampling stratum only, and ii) the estimate based on a model conditional on the whole list of 

covariates including sampling stratum and additional auxiliary variables available in the first 

phase. These two types of sampling probability estimators for cases/controls are denoted by 

pD
Str pD‒

Str and pD
Aux pD‒

Aux, respectively. The estimated sampling weights are the inverse 

values of the corresponding estimated probabilities. We denote the corresponding IPW 

estimators of ROC (t) as ROCIPW
Str (t) and ROCIPW

Aux (t).

First, since the sampling probability in phase two varies within some pre-specified strata, a 

natural estimator for the sampling probability of a case or control is the proportion of the 

phase-one cases or controls sampled in the second phase within the corresponding sampling 

stratum. For case i in stratum kD, an empirical estimation of sampling probability within the 

stratum is pDi
Str = nDkD

NDkD
, where nDkD is the number of cases selected in the second 

phase within stratum kD. Similarly, for control j in stratum kD̄, we have pD‒ j
Str = nD‒kD‒

ND‒kD‒
, 

where nD̄kD̄ is the number of controls drawn in phase-two within stratum kD̄. This estimator 

of sampling weight was also adopted in [7] for constructing weighted AUC estimators.

More generally, we may have more information from phase one beyond the discrete 

sampling strata. Thus we endeavored to further improve the efficiency of the weighted 

estimator ROCIPW(t) by incorporating auxiliary variable information. The second type of 

sampling probability estimates we adopt are based on models of sampling probability 

conditional on sampling strata and available auxiliary variables in phase-one. Let VD and VD̄ 

be the vectors of dummy variables indicating sampling strata with lengths KD – 1 and KD̄ – 

1, respectively. Let ZD and ZD̄ be the vectors of additional auxiliary variables for the cases 

and controls, respectively. Recall that ZD and ZD̄ could include continuous variables 

(denoted as VD
∗  and VD‒

∗ ) that are discretized to form the sampling strata VD and VD̄, as well 

as additional covariates measured in phase one. For example, in the Renal Artery Stenosis 

Study example presented later in Section 4, VD
∗  and VD‒

∗  are ages of cases and controls 

measured on a continuous scale in phase one, VD and VD̄ are discretized age subgroups 

serving as sampling strata for phase-two sampling, and W are additional covariates 
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measured in phase one including sex, smoking history etc. We can model the probability of 

sampling cases/controls in phase two as a function of all available phase-one variables 

VD/VD̄ and ZD/ZD̄ using a generalized linear model (GLM), such as the logistic regression 

model [8]. That is, we model pD = g(θD, VD, ZD) and pD̄ = g(θD̄, VD̄, ZD̄) for some pre-

specific function g, where θD and θD̄ are finite-dimensional parameters. For example, we 

can fit a logistic regression model for the sampling probabilities for cases/controls as

log
pD

1 − pD
= θD0 + θD1

T VD + θD2
T ZD,

log
pD‒

1 − pD‒
= θD‒0 + θD‒1

T VD‒ + θD‒2
T ZD‒,

(2)

and obtain pD
Aux and pD‒

Aux as the maximum likelihood estimators of pD and pD̄ based on 

MLEs of θD and θD̄, respectively. Note that when the auxiliary variables ZD and ZD̄ are not 

included in model (2) and the model is based on sampling strata VD and VD̄ alone, the 

resulting estimates pD
Aux pD‒

Aux turn into pD
Str pD‒

Str. That is, the true model of sampling 

probability where sampling probability depends on sampling strata alone is nested within the 

more complicated model that includes additional covariates Z. Both models give consistent 

estimates of sampling probability.

In general, suppose we model the sampling probabilities for cases and controls with finite-

dimensional parameters θD and θD̄, respectively. Let θD and θD‒ be the maximum likelihood 

estimators and pD and pD‒ be the corresponding sampling probabilities estimators. The 

corresponding IPW estimator of the points on the ROC curve (1) is asymptotically normally 

distributed, as stated below in Theorem 1.

Theorem 1. Assume 0 < pD, pD̄ ≤ 1 and ND/N → λ ∈ (0, 1) as the sample size N → ∞. 

Then as N → ∞, N ROCIPW
Aux (t) − ROC(t)  converges to a normal random variable with 

mean 0 and variance

σROC(t), IPW
2 = 1

λ σD, IPW
2 (c) + 1

1 − λ

f D
2 (c)

f D‒
2 (c)

σD‒, IPW
2 (c),

where

σd, IPW
2 (c) = Var(Hd(c)) + E pd

−1 − 1 Hd(c) − SSd(c) E pd
−1 − 1 Hd(c) + Cov pd

−1 − 1, Hd(c)

−[SSd(c) × ad − bd(c)]TId
−1[SSd(c) × ad − bd(c)], for d = D, D‒
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in which c = FD‒
−1(1 − t), HD (c) = I(XD > c), HD̄ (c) = I(XD̄ < c), SSD (c) = SEN (c), SSD̄ (c) 

= SPE (c), ad = E[(1 pd)(∂ pd ∂θd)], bd(c) = E[Hd(1 pd)(∂ pd ∂θd)], 

Id = E 1
pd

+ 1
1 − pd

∂ pd
∂θd

∂ pd
∂θd

 is the information matrix of θd, for d = D, D̄.

Proof of Theorem 1 is provided in supplementary material Appendix A. We note that σD, IPW
2

and σD‒, IPW
2  given in Theorem 1 are variance components due to variability of cases and 

controls, respectively. In fact, σD, IPW
2  and σD‒, IPW

2  equal the asymptotic variances of the IPW 

sensitivity and specificity estimators at threshold c, respectively. The corresponding result is 

illustrated in supplementary material Appendix A Lemma A.1. In further check of 

decomposition of σd, IPW
2 , we observe that all parts except V (Hd) are attributed to either the 

variability of sampling probability across strata or the estimation of sampling probability. In 

a special case with pD = pD̄ = 1, i.e.,for unbiased empirical ROC(t) estimator, σd, IPW
2  is 

reduced to be Var (Hd) for d = D, D̄, and the corresponding σROC(t), IPW
2  is equivalent to the 

asymptotic variance of the empirical ROC (t) estimator derived from Theorem 2.2 in [15]. 

The component E pd
−1 − 1 Hd(c) − SSd(c) E pd

−1 − 1 Hd(c) + Cov pd
−1 − 1, Hd(c)  is 

attributed to the variability of sampling probability across strata. The term 

[SSd(c) × ad − bd(c)]TId
−1[SSd(c) × ad − bd(c)] corresponds to the reduction in the asymptotic 

variance attributed to the estimation of sampling probability. Therefore, using estimated 

sampling weight can lead to improvement in efficiency even if the true sampling probability 

is known.

Furthermore, based on Theorem 1, we can show the asymptotic variance of the IPW ROC(t) 
estimator is monotonic decreasing when we add more variables to the model of sampling 

probabilities in addition to sampling stratum. Therefore, we can further improve asymptotic 

efficiency of the IPW estimator by adding auxiliary variables as in model (2) after 

accounting for the information of sampling strata. The proof is provided in supplementary 

material Appendix B.

In practice, the asymptotic variance σROC(t), IPW
2  can be estimated by substituting each 

component in the analytical variance with its IPW estimate. For example, 

SSD(c) = SEN(c) = ∑i = 1
ND δDi

pDi
I(XDi > c) ∑i = 1

ND δDi
pDi

, where pDi
 is the corresponding 

estimated sampling probability of case i. Other components can be estimated in a similar 

manner. Using the asymptotic result in Theorem 1, we can make inference about ROC (t) 

based on the IPW estimator ROCIPW
Aux (t) and its asymptotic variance.

2.1.2 ∣ Estimation of AUC—We next consider the estimation of the area under the ROC 

curve (AUC) for the biomarker X: AUC = P(XD > XD̄) under a Bernoulli sampling design. 

The empirical estimator of AUC is 
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AUCem = ∑i = 1
ND ∑ j = 1

ND‒ δDiδD‒ jI XDi > XD‒ j ∑i = 1
ND ∑ j = 1

ND‒ δDiδD‒ j , which can be severely 

biased in the presence of biased sampling [7]. To correct for the bias of the empirical 

estimator AUCem under the biased sampling of cases and/or controls, [7] proposed an IPW 

version estimator

AUCIPW = ∑
i = 1

ND
∑
j = 1

ND‒ δDi
pDi

δD‒ j
pD‒ j

I XDi > XD‒ j ∑
i = 1

ND
∑
j = 1

ND‒ δDi
pDi

δD‒ j
pD‒ j

, (3)

that adopt pDi = pDi
Str and pD‒ j = pD‒ j

Str, the empirically estimated sampling probabilities of the 

case i and control j, respectively, conditional on their sampling stratum, which we denote 

here as AUCIPW
Str . AUCIPW

Str  has been proven to be asymptotically unbiased and normally 

distributed.

Similar to our approach for estimating the points on the ROC curve, we consider further 

improving the efficiency of the IPW AUC estimator by incorporating additional auxiliary 

variables into the estimation of sampling weights. First, we consider estimating sampling 

probabilities for cases and controls based on a GLM model conditional on sampling stratum 

and auxiliary variables as described in Section 2.1.1, i.e., pDi = pDi
Aux and pD‒ j = pD‒ j

Aux. 

Entering pDi
Aux and pD‒ j

Aux into (3) leads to the IPW AUC estimator AUCIPW
Aux .

The asymptotic normality of the IPW AUC estimator developed in [7] holds in general for 

estimated sampling probabilities based on the GLM model (2) and applies to AUCIPW
Aux  here. 

The corresponding results are presented in Theorem 2.

Theorem 2. Assume 0 < pD, pD̄ Ȧ 1 and ND/N → λ ∈ (0, 1) as the sample size N → ∞. 

Then as N → ∞, N AUCIPW
Aux − AUC  converges to a normal random variable with mean 0 

and variance

σAUC, IPW
2 = 1

λ ΣD, IPW + 1
1 − λΣD‒, IPW

where

Σd, IPW = Var(Gd) + E pd
−1 − 1 Gd

2 − AUC E pd
−1 − 1 Gd + Cov pd

−1 − 1, Gd

−(AUC × ad − ld)TId
−1(AUC × ad − ld), for d = D, D‒

in which GD = FD̄ (XD), GD̄ = 1 – FD (XD̄), ld = E [I (XD > XD̄) (1/pd) (∂pd=∂θd)], ad, Id are 
defined in Theorem 1 for d = D, D̄.
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Again, we observe that σAUC, IPW
2  consists of two parts, ΣD,IPW and ΣD̄,IPW, which are 

variance components due to variability of cases and controls, respectively. Additionally, 

notice that the expression Σd,IPW here has similar structure as the expression σd, IPW
2

presented in Theorem 1; both include components for empirical estimator, components due 

to variability of sampling probability across strata, and components due to estimation of the 

sampling probability. The difference between Σd,IPW and σd, IPW
2  lies in the components 

related to the classification accuracy measure, e.g., SSd (c) = SEN (c) or SPE (c) in σd, IPW
2  is 

replaced with AUC in Σd,IPW, etc. Similarly, one can show that using estimated sampling 

probability instead of true probability can result in reduction of 

∑d ∈ {D, D‒} [λ + (1 − 2λ)I(d = D‒)]−1(AUC × ad − ld)TId
−1(AUC × ad − ld) in asymptotic variance 

of N AUCIPW
Aux − AUC . We also show that adding auxiliary variables in addition to sampling 

stratum in modeling the sampling probability can lead to more efficient AUC estimators 

(proof is given in supplementary material Appendix B).

2.1.3 ∣ Estimation of Partial AUC—In addition to the points on the ROC curve and the 

AUC, the partial AUC is also an important measure of diagnostic test accuracy when a 

restricted region under the ROC curve is of interest. For example, in diagnostic testing, it is 

essential to obtain high sensitivity, i.e. a high true positive rate, to adequately detect 

individuals with disease. In cancer screening, high specificity, i.e. a low false positive rate, is 

considered more important. Here, we consider the area under the ROC curve with the 

restriction that the false positive rate is within a specific range. Such a partial AUC is 

defined as pAUC(t0, t1) = ∫ t0

t1ROC(t)dt, where the false positive rates fall into the interval (t0, 

t1). Furthermore, we observe that

pAUC(t0, t1) = ∫
t0

t1
ROC(t)dt = ∫

t0

t1
1 − FD FD‒

−1(1 − t) dt

= ∫
q1

q0
[1 − FD(u)] f D‒(u)d(u) = P(XD > XD‒, XD‒ ∈ (q1, q0)),

Where q0 = FD‒
−1(1 − t0) and q1 = FD‒

−1(1 − t1). [16] proposed a nonparametric partial AUC 

estimator

pAUCem(t0, t1) = ∑
i = 1

ND
∑

j = 1

ND‒
δDiδD‒ jI XDi > XD‒ j, XD‒ j ∈ (q1, q0) ∑

i = 1

ND
∑

j = 1

ND‒
δDiδD‒ j .

In some circumstances, the quantiles q0 and q1 are known. When they are unknown, the 

empirical quantile estimates are recommended as substitutes. We note that pAUCem(0, 1) is 
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equivalent to the empirical AUC estimator AUCem and expect that the empirical estimator 

pAUCem(t0, t1) can again be seriously biased under a biased sampling scheme for cases 

and/or controls. Here, we adopt an idea similar to that used for estimating the points on the 

ROC curve and the AUC and propose the IPW estimator of the partial AUC with different 

estimated sampling weights:

pAUCIPW(t0, t1) = ∑
i = 1

ND
∑
j = 1

ND‒ δDi
pDi

δD‒ j
pD‒ j

I XDi > XD‒ j, XD‒ j ∈ (q1, q0) ∑
i = 1

ND
∑
j = 1

ND‒ δDi
pDi

δD‒ j
pD‒ j

.

(4)

In practice, it is most likely that q0 and q1 are unknown. Here, we propose to use the IPW 

estimators q0 = FD‒, IPW
−1 (1 − t0) and q1 = FD‒, IPW

−1 (1 − t1), where FD‒, IPW(x) is defined in 

Section 2.1.1. Again, we can use pDi
Str pD‒ j

Str or pDi
Aux pD‒ j

Aux as the estimated sampling 

probability for cases/controls in the IPW partial AUC estimator (4) and the IPW CDF 

estimator FD‒, IPW(x). We denote the corresponding partial AUC estimators as pAUCIPW
Str  and 

pAUCIPW
Aux . The asymptotic normality of the proposed partial AUC estimators based on the 

GLM model for sampling probabilities is presented in Theorem 3.

Theorem 3. Assume 0 pD, pD̄ as the sample size N → ∞. Then as N → ∞, 

N pAUCIPW
Aux (t0, t1) − pAUC(t0, t1)  converges to a normal random variable with mean 0 and 

variance

σpAUC, IPW
2 = σ pAUC, IPW

2 + 1
1 − λ ∑

k = 0

1
[1 − FD(qk)]2σD‒, IPW

2 (qk) + 2[Q(q1) − Q(q0) − R(q0, q1)]

where

σ pAUC, IPW
2 = 1

λ ΣD, IPW
∗ + 1

1 − λΣD‒, IPW
∗ ,

Q(qk) = [1 − FD(qk)] × {Cov[(pD‒
−1 − 1)JD‒, HD‒(qk)]

+Cov[JD‒, HD‒(qk)] − pAUC(t0, t1) × Cov pD‒
−1 − 1 , HD‒(qk)

− [pAUC(t0, t1) × aD‒ − sD‒]TID‒
−1[(1 − tk) × aD‒ − bD‒(qk)] , for k = 0, 1,
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R(q0, q1) = [1 − FD(q0)][1 − FD(q1)] × {Cov[(pD‒
−1 − 1)HD‒(q1), HD‒(q0)]

+Cov[HD‒(q1), HD‒(q0)] − (1 − t1) × Cov[pD‒
−1 − 1, HD‒(q0)]

−[(1 − t0) × aD‒ − bD‒(q0)]TID‒
−1[(1 − t1) × aD‒ − bD‒(q1)] ,

in which JD̄ = P (XD̄ < XD, XD̄ ∈ (q1, q0)), sd = E [I (XD > XD̄, XD̄ ∈ (q1, q0)) (1/pd) (∂pd/

∂θd)], Σd, IPW
∗ = Var(Jd) + E pd

−1 − 1 Jd
2 − pAUC E pd

−1 − 1 Jd + Cov pd
−1 − 1, Jd

− (pAUC × ad − sd)TId
−1(pAUC × ad − sd)

, Hd (·), 

ad, bd (·), Id are defined in Theorem 1, for d = D, D̄.

Proof of Theorem 3 is presented in supplementary material Appendix C. Note that when t0 = 

0 and t1 = 1, pAUCIPW
Aux (t0, t1) corresponds to AUCIPW

Aux , and corresponding σpAUC, IPW
2  equals 

σAUC, IPW
2 . In the expression of σpAUC, IPW

2  above, the term [1 − FD(qk)]2σD‒, IPW
2 (qk) is caused 

by the estimation of qk, the term Q (qk) is cause by the joint estimation of qk and the 

sampling probability, and the term R (q0, q1) is caused by the joint estimation of q0 and q1. 

Therefore, when q0 and q1 are known, those terms varnish and thus σpAUC, IPW
2  is reduced to 

σ pAUC, IPW
2 . In addition, comparing the expression σ pAUC, IPW

2  above with σAUC, IPW
2

provided in Theorem 2, we notice that the composition of Σd, IPW
∗  has similar structure as 

that of Σd,IPW. Both of them include components for empirical estimator, components due to 

variability of sampling probability across strata, and components due to estimation of the 

sampling probability. The difference between Σd, IPW
∗  and Σd, IPW lies in the components 

related to the classification accuracy measure, i.e., Gd, AUC and ld in Σd,IPW are replaced by 

Jd,pAUC, sd in Σd, IPW
∗  respectively, for d = D, D̄.

2.2 ∣ Finite-population Stratified Sampling

In this section, we consider estimating the points on the ROC curve, the AUC, and the partial 

AUC when the finite-population stratified sampling is used in the second phase. In this type 

of design, fixed numbers of subjects in each stratum are randomly selected in phase two. 

Suppose that cases and controls among phase-one samples are stratified into KD and KD̄ 

strata, with NDkD and ND̄kD̄ samples in each stratum, respectively, where kD = 1,2, ⋯, KD 

and kD̄ = 1, 2, ⋯, KD̄. In each stratum fixed numbers of nDkD cases and nD̄kD̄ controls are 

randomly sampled, with all subjects in the same stratum having the same sampling 

probability. An example of the finite-population stratified sampling design was given in [17] 

named the “balanced sampling”, where with equal number of samples were acquired across 

case/control status and covariate-strata.

Let πDkD and πD̄kD̄ be the sampling probabilities of the cases in the stratum kD and the 

controls in the stratum kD̄, respectively. The sampling probabilities within each case/control 

sampling stratum can be empirically estimated as πDkD
= nDkD

NDkD
 and 
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πD‒kD‒
= nD‒kD‒

ND‒kD‒
. That is, for a case in stratum kD, the estimated sampling probability 

conditional on sampling strata is pD
Str = πDkD

; similarly, for a control in stratum kD̄, the 

estimated sampling probability conditional on sampling strata is pD‒
Str = πD‒kD‒

. Let δDkD,i and 

δD̄kD̄,j be the indicators of being sampled in phase two for case i in stratum kD and control j 
in stratum kD̄, respectively. The IPWAUC estimator (3) with the estimated sampling 

probability conditional on sampling strata, i.e., pD
Str pD‒

Str, can be rewritten as

AUCIPW
Str =

∑kD = 1
KD ∑kD‒ = 1

KD‒ ∑i = 1

NDkD ∑ j = 1

ND‒kD‒
δDkD, i

πDkD

δD‒kD‒, j

πD‒kD‒
I XDkD, i > XD‒kD‒, j

∑kD = 1
KD ∑kD‒ = 1

KD‒ ∑i = 1

NDkD ∑ j = 1

ND‒kD‒
δDkD, i

πDkD

δD‒kD‒, j

πD‒kD‒

, (5)

which was studied in [7]. When there are additional auxiliary variables available from phase-

one samples, we can again use them to further improve efficiency in the estimation of 

sampling probabilities and compute pD
Aux pD‒

Aux as in Section 2.1.1. The corresponding IPW 

AUC estimator AUCIPW
Aux  can be generated by replacing πDkD

 and πD‒kD‒
 in (5) with with 

pDkD, i
Aux  and pD‒kD‒, j

Aux . The proposed IPW ROC (t) estimators (1) and partial AUC estimators (4) 

for the Bernoulli sampling design can be similarly constructed here for finite-population 

stratified sampling.

Consider a Bernoulli sampling design in which cases in stratum kD and controls in stratum 

kD̄ are independently sampled with probability πDkD and πD̄kD̄, respectively, [7] proved that 

the asymptotic variance of the IPW AUC estimator AUCIPW
Str  in the finite-population 

stratified sampling design is equivalent to that in the Bernoulli sampling design if 

πDkD
πDkD

 and πD‒kD‒
πD‒kD‒

. Similar arguments can be used to show the equivalence of 

asymptotic variance for AUCIPW
Aux  between these two sampling designs. For the proposed 

IPW estimators of ROC(t) and partial AUC, the equivalence in asymptotic variance between 

these two sampling designs can be similarly derived.

R code for estimating various classification accuracy measures under two-phase sampling 

and for estimating their asymptotic variances can be found in https://research.fhcrc.org/

huang/en/software.html.
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3 ∣ SIMULATION STUDY

In this section, we conduct simulation studies to evaluate the performance of the proposed 

IPW estimators for the points on the ROC curve, the AUC, and the partial AUC. Both 

Bernoulli sampling and finite-population stratified sampling settings are considered.

Let D be a binary disease outcome and set disease prevalence P (D = 1) = λ = 0.1. We 

consider one biomarker X and a vector of variables Z = (V*, W)T that includes two auxiliary 

variables V* and W. X, V*,and W are jointly normally distributed among the cases and 

controls. Among the controls, X, V* and W are each normally distributed with mean 0 and 

variance 1. Among the cases, the auxiliary variables V* and W each follow the normal 

distribution N (0.5,1) and the biomarker X follows the normal distribution N (1, 1). In other 

words, the marginal distribution of (X, V*, W) in the population is a mixture of multivariate 

normal distributions, with weight λ for corresponding multivariate normal distribution 

among cases and weight 1 – λ for corresponding multivariate normal distribution among 

controls. The correlations between X and V*, X and W, W and V* are denoted by ρXV*, 

ρXW and ρWV* respectively. Thus, the distribution of (X, V*, W) in the population is a 

mixture multivariate normal distribution, i.e., (X, V*, W)T ~ λMVN (μD, Σ) + (1 – λ) MVN 

(μD̄, Σ), where μD = (1, 0.5, 0.5)T, μD̄ = (0, 0, 0)T, and Σ =

1 ρ
XV∗ ρXW

ρ
XV∗ 1 ρ

WV∗

ρXW ρ
WV∗ 1

. The odds 

ratio for biomarker X is 2.7. Subjects are stratified into two strata based on the value of V*. 

Let V be the discrete stratum variable: V = 1 if V* < Φ−1 (0.5), and V = 2 if V* ≥ Φ−1 (0.5), 

where Φ is the CDF of the standard normal distribution.

In the first phase, N = 2000, 5000, or 10000 subjects are randomly selected from the 

population with the disease indicator D and auxiliary variables V* and W are measured. In 

the second phase, subsamples are drawn from the phase-one cohort and the biomarker X is 

measured. In the Bernoulli sampling design, we randomly sample cases with the sampling 

probability pD = 0.5. For a control, its sampling probability in the stratum V = v is set to be 

pD̄ = pD × P(V = v, D = 1)/P(V = v, D = 0). Therefore, in each stratum, we obtain equal 

numbers of the cases and controls in the second phase on average. In the finite-population 

stratified sampling design, nD = λpDN cases are randomly sampled without replacement. 

Then, equal numbers of controls as cases in each stratum are randomly selected without 

replacement. With the phase-one sample size N = 2000, 5000, and 10000, the expected 

numbers of cases and controls sampled in phase-two for Bernoulli sampling and the exact 

numbers of cases and controls sampled in finite-population stratified sampling are nD = nD̄
 = 

100,250, and 500, respectively.

For each set of generated data, we estimate the points on the ROC curve, the AUC, and the 

partial AUC using the empirical method and our proposed IPW method with two different 

types of estimated sampling probabilities for cases/controls: pD
Str pD‒

Str (conditional on V 

only), and pD
Aux pD‒

Aux (based on a linear logistic regression of sampling probability 

conditional on both V and Z). To evaluate the performance of these estimation methods, we 
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examine the averaged estimate, bias, sample variance, the median of estimated analytical 

variance and coverage of 95% confidence interval based on 5000 Monte-Carlo simulations. 

Let yk be an estimator of the corresponding measure in the k-th replication and y be the true 

value. The averaged estimate, bias, and sample variance are defined as y‒ = 1
r ∑k = 1

r yk, ȳ – y, 

and 1
r − 1 ∑k = 1

r (yk − y‒)2, respectively. We also estimate variance based on our developed 

analytical variance formulas and compute its median across Monte-Carlo simulations. 

Furthermore, 1 the estimated analytical variances are adopted to construct the 95% Wald 

confidence interval of each estimate assuming approximate normality of the estimator after 

logit-transformation. We report the percent of times such confidence intervals contain the 

true value.

The simulation results with ρXV* = 0.5, ρXW = 0.5, and ρWV* = 0.1 are presented in Tables 1 

-2 for finite-population stratified sampling and in supplementary material Appendix D 

Tables 1-2 for Bernoulli sampling design. We can see that for both sampling designs, the 

IPW estimators outperform the empirical estimators. The empirical estimators are generally 

biased and the corresponding CIs have lower coverage compared to the nominal level. In 

contrast, the IPW methods are asymptotically unbiased and the coverage of the 95% CIs is 

very close to the nominal level. We also observe that medians of the estimated analytical 

variances of each classification accuracy measure are very close to their sample variances. 

Moreover, when comparing across the two IPW methods with different types of estimated 

weights, the IPW estimators for ROC(t), AUC, and pAUC (t0, t1) with pD
Aux pD‒

Aux have 

smaller variances than the corresponding estimators with pD
Str pD‒

Str. These findings 

demonstrate that efficiency in estimating biomarker classification accuracy is improved 

when auxiliary variables in phase one are utilized in estimating the sampling probability 

through the generalized linear model.

To further compare the efficiencies of the two IPW estimators with different types of 

estimated weights, we compute the efficiency of the IPW estimator with pD
Aux pD‒

Aux relative 

to the estimator with pD
Str pD‒

Str, for scenarios with varying degrees of correlation between X 

and W: ρXW = 0.1, 0.3, 0.5 and 0.7. Here, the efficiency of one estimator relative to another 

is defined as the ratio of the variance of the latter relative to the variance of the former. The 

simulation results with N = 5000, ρXV* = 0.3, ρWV* = 0 for both Bernoulli sampling and 

finite-population stratified sampling are shown in Table 3. For each value of ρXW in {0.1, 

0.3, 0.5, 0.7}, we observe higher efficiency in the IPW estimator with pD
Aux pD‒

Aux compared 

to the one with pD
Str pD‒

Str. Furthermore, higher correlation between the biomarker X and the 

auxiliary variable W is associated with a higher efficiency of the IPW estimator with 

pD
Aux pD‒

Aux. For example, in finite-population stratified sampling, the efficiency gain in 

estimating AUC by using pD
Aux pD‒

Aux improves from 3.6% for ρXW = 0.1 to 49.5% for ρXW 

= 0.7. For various points on the ROC curve and for pAUC, we can also see appreciable 

efficiency gains when ρXW is not very small. This suggests that considerable improvements 
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in the precision of classification performance estimators could be achieved via the use of 

auxiliary variables in estimating sampling weights when the auxiliary variables have good 

correlations with the biomarker. Note that in our simulation settings, even when X and W 
have minimal correlation there is no loss of efficiency when incorporating auxiliary 

variables in estimating sampling weights, although the efficiency gain can be minor in such 

scenarios.

Finally, to investigate how estimation efficiency gain with auxiliary variables changes with 

the classification performance of the biomarker X, we repeat the above simulation with 

varying means of X among cases, i.e μXD = 0, 0.6 or 1.5, corresponding to an odds ratio of 

1, 1.8, and 4.5, and an AUC of 0.5, 0.66, and 0.86 respectively. We compare the efficiencies 

across the three IPW methods. The simulation results are summarized in supplementary 

material Appendix D Table 3. We observe a very similar pattern of efficiency gain with the 

use of auxiliary variable as the scenario with μXD = 1. Thus, the efficiency gain is quite 

robust to classification performance of X.

4 ∣ EXAMPLE

4.1 ∣ Renal Artery Stenosis Study Example

We now apply the proposed estimators for classification accuracy to evaluate serum 

creatinine as a classification biomarker for renal artery stenosis in patients with therapy-

resistant hypertension, using data from a prospective renal artery stenosis study conducted at 

26 departments of internal medicine throughout the Netherlands [18]. The original study by 

[18] included 477 patients with hypertension. In our analysis, we include 426 patients with 

complete covariate information, including age (Z1), sex (Z2), smoking history (Z3), body 

mass index (Z4), recent onset of hypertension (Z5), abdominal bruit (Z6), atherosclerotic 

vascular disease indicator (Z7), and hypercholesterolemia (Z8). The prevalence of renal 

artery stenosis (D) was 23.0%. The biomarker of interest, log-transformed serum creatinine 

concentration (X), was also measured in this cohort.

To demonstrate the application of our proposed methods, we conduct a finite-population 

stratified case-control sampling from the study cohort based on three age strata generated by 

the first three quantiles of age distribution among controls, i.e., ≤ 45,46 - 56, ≥ 57 years. In 

the phase-one study cohort, among each age stratum, there are 16, 28, and 54 cases and 

112,112, and 104 controls respectively. The phase-two case-control sample includes all 98 

cases in the cohort. Equal numbers of controls as cases within each stratum are randomly 

sampled. To estimate the points on the ROC curve, the AUC, and the partial AUC of 

creatinine, we compute the empirical estimators and our proposed IPW estimators with the 

two choices of estimated sampling weights described in Section 2. For the IPW method with 

pD
Aux pD‒

Aux, we include Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8 and Z2 × Z3 as the auxiliary variables, 

all of which are considered to be risk factors for hypertension [18]. Among these risk 

factors, their correlation with log(creatinine) ranges from −0.001 (recent onset of 

hypertension) to 0.41 (sex).
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We summarize the classification performance estimates, estimated variances based on the 

analytical formula, 95% confidence intervals, and their lengths in Table 4. We observe an 

obvious difference in the estimates between the empirical and IPW methods, suggesting the 

bias of the empirical estimates. The empirical estimates based on this stratified case-control 

sample tend to under-estimate classification performance of creatinine. Furthermore, when 

comparing across the IPW methods with two different types of estimated sampling weights, 

the results demonstrate an apparent improvement in estimation precision when we apply 

estimated weights incorporating auxiliary variable information. In this example, the IPW 

estimator with pD
Aux pD‒

Aux shows the best efficiency regarding the estimation of ROC (t), 

AUC and pAUC (t0, t1).

4.2 ∣ Prostate Cancer Study Example

In the second data example, we apply our methodology to assess a urine biomarker, Prostate 

Cancer Antigen 3 (PCA3), for early detection of prostate cancer. The study cohort comes 

from a prospective study conducted by the Early Detection Research Network. The original 

cohort involved 570 men, with a prostate cancer (D) prevalence of 36.6% [19]. Here, we 

include 532 men with complete covariate information, including patient age, suspicious 

digital rectal exam (DRE), prostate gland volume, serum prostate-specific agent (PSA), 

family history of prostate cancer and whether or not the patient had a prior negative prostate 

biopsy as our phase-one study cohort.

To illustrate the application of our methodology, we adopt a finite-population stratified case-

control sampling design from the phase-one cohort based on three age strata generated by 

the first three quantiles of age distribution among controls. In the phase-one cohort, among 

each age stratum, there are 48, 54, and 84 cases and 116, 115, and 115 controls, respectively. 

In the second phase, 120 cases are randomly sampled, resulting in 30, 38, and 52 cases in 

each age stratum. Then equal numbers of controls as cases within each age stratum are 

randomly drawn. We estimate the points on the ROC curve, AUC, and partial AUC based on 

PCA3 using the empirical method and our proposed IPW methods with two different types 

of estimated sampling weights. For the IPW method with pD
Aux pD‒

Aux, we include all 

covariates mentioned above as the auxiliary variables. Among those variables, the highest 

correlation is observed between age and log(PCA3) (0.38), while other variables have 

correlation with log(PCA3) smaller than 0.1.

The results are reported in supplementary material Appendix E Table 4. In this example, the 

empirical estimators again appear to under-estimate the biomarker’s performance compared 

to the IPW methods. The two IPW estimators, on the other hand, are close to each other. A 

small efficiency gain is observed when the estimated weights using auxiliary variables are 

applied to the IPW estimators.

5 ∣ CONCLUDING REMARKS

In this paper, we developed an IPW-based method for evaluating a biomarker’s classification 

accuracy with respect to the points on the ROC curve, the AUC, and the partial AUC in two-

phase case-control sampling designs. We investigated two-phase sampling designs where the 
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phase-one sample is a simple random sample from the target population and in the second 

phase cases and control are sampled with probabilities depending on covariate strata [20]. 

When cases and controls in the second phase are not simply randomly sampled from their 

corresponding populations, we showed that traditional empirical classification accuracy 

estimators can be seriously biased, leading to invalid inference regarding the biomarker’s 

performance. While the importance of accounting for biased sampling in biomarker 

evaluation is well recognized, systematic research regarding how to best adjust for biased 

sampling for various classification performance measures and their asymptotic properties 

has been lacking. Recently, the idea of inverse probability weighting was adopted to develop 

an unbiased estimator of AUC, which utilizes sampling probability estimates conditional on 

the sampling strata alone [7]. While being an extension of the work described by [7], the 

current paper covers much broader ground. In particular, we proposed IPW estimators for 

characterizing a biomarker’s performance over a full list of commonly used classification 

measures, including the points on the ROC curve, the AUC, and the partial AUC. More 

importantly, we further improved the efficiency of the IPW estimator by estimating sampling 

weights via the use of auxiliary variables available in phase one in addition to the use of 

sampling stratum. The more complicated model we adopt for modeling sampling probability 

includes sampling strata as part of the covariates set. As a result, the true sampling 

probability model that depends on sampling strata only is nested within the more 

complicated model. Both models lead to consistent estimates of sampling weights, which are 

required for valid performance of the IPW estimators. We developed analytical variance 

formulas for the proposed IPW-based estimators that are applicable to both Bernoulli 

sampling designs and finite-population stratified sampling designs, which are useful for 

making inference about classification accuracy. In addition, these estimators can be valuable 

in guiding biomarker study design, e.g., by suggesting auxiliary covariates to collect in the 

first phase for potential help with estimation efficiency. Through extensive numerical 

studies, we showed that appreciable efficiency gain can be achieved by using auxiliary 

variables in modeling sampling probability in a generalized linear model, especially when 

there is a strong correlation between the auxiliary variables and the biomarker of interest. 

These results are currently lacking in applied biomarker research and we anticipate this 

paper could serve as a useful reference and guideline for improving the practice of 

biomarker evaluation.

In practice, we recommend incorporating auxiliary variables to estimate weights for the IPW 

estimators when there exist easy-to-collect auxiliary variables with some correlation with the 

biomarker of interest. On the one hand, appreciable efficiency gain can be achieved when 

correlation between the biomarker and auxiliary variable is not too small (e.g. a correlation 

of a level ~ 0.3); on the other hand, even when correlation is minimal, incorporating 

auxiliary variables would not hurt efficiency and might still lead to some minor efficiency 

gain in finite samples. In practice, it might happen that a few irrelevant auxiliary variables 

are also included when estimating the sampling weights. For practical sample size like 100 

cases and 100 controls, the sampling weight estimated including these auxiliary variables 

can still lead to better efficiency compared to using the discrete sampling strata alone for 

weights estimation, as illustrated by the numerical results presented in Supplementary 

Appendix F. We found it particularly desirable to estimate weight by modeling the sampling 
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probabilities for cases/controls because of the simplicity in implementing the procedure 

using standard statistical software and the fact that the asymptotic variance of the IPW 

estimator is monotonic decreasing with the addition of more variables. Validity of the IPW 

estimator relies on correct specification of the model for sampling weight. In the problem 

settings we consider in this paper, the true sampling strata are known and our sampling 

model including the sampling strata in addition to auxiliary variables is guaranteed to be 

correctly specified. In general, if the model for sampling weight is misspecified, the 

resulting classification performance estimator can be biased with undercoverage problem in 

corresponding confidence interval, as demonstrated in numerical studies presented in 

Supplementary Appendix G. Interestingly, where sampling strata are derived from a 

continuous auxiliary variable, including the continuous auxiliary variable alone but not the 

sampling strata when estimating sampling weight might still lead to biased estimate in some 

settings. This highlights the importance of having correctly specified sampling model, which 

is achieved in our proposed estimator by always including the known sampling strata as a 

part of the sampling weight model in addition to auxiliary variables.

The current paper focuses on the two-phase sampling design where a simple random sample 

representing the target population is obtained in the first phase for measuring disease status 

and easily-collected covariates, a type of design frequently seen in biomarker research, with 

the IPW method taking into account biased sampling of biomarker in the second phase. The 

proposed IPW estimator for classification performance would also work in two-phase 

designs where cases and controls are randomly sampled from their corresponding 

populations in the first phase, as considered in [21], given the fact that classification 

performance is defined based on the comparison between case and control distributions. [22] 

considered the estimation of sensitivity and specificity under a two-phase sampling design 

for a different problem setting of verification bias correction. In their problems, a simple 

random sample or stratified sample is performed in the first phase to measure a standard test, 

in the second-phase all test-positive and a fraction of test-negative individuals have their 

disease status verified as well as the biomarker of interest measured. They assumed known 

population proportion of diseased/non-diseased individuals in each stratum and the 

proportion of sampled test-negative individuals, and proposed IPW estimators based on the 

known weights. While our current paper addressed the biased sampling design also using 

IPW-type estimators, we focused on using estimated weights to achieve a better estimation 

efficiency. It can be seen from the theoretical results that asymptotic variances of our 

proposed IPW estimators for various classification accuracy measures can be reduced by 

using estimated weights and that auxiliary variables not affecting the true sampling 

probability can be included in the modeling to further improve efficiency.

Finally, it is worth mentioning that the IPW methods we developed in this paper have 

general applications in biomarker research. While our current work focuses on estimation of 

various classification measures of a single marker and the usefulness of auxiliary variables 

in estimating the weights, the same IPW weights can be adopted to make inference about the 

comparison between two biomarkers with respect to the points on the ROC curve and the 

(partial) AUC. More generally, the asymptotic normality of the IPW estimators of marker 

performance allows testing the equivalence of diagnostic accuracy among multiple 

biomarkers using e.g. a Hotelling’s t-squared statistics [23]. Our paper focuses on estimation 

Wang and Huang Page 18

Stat Med. Author manuscript; available in PMC 2020 January 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of marker distributions among cases and controls nonparametrically in constructing an ROC 

curve, but the IPW weights developed in this paper can be similarly applied when a smooth 

ROC curve estimator is desired in two-phase sampling designs. One way to derive a 

smoothed ROC curve is to assume a parametric model on the marker distributions among 

cases and controls, and the IPW weights can be applied to cases and controls separately for 

estimating corresponding parametric marker distributions. IPW weights can also be applied 

to account for biased sampling in semi-parametric ROC modeling approaches that assume a 

parametric form on the ROC curve itself but not on the marker distributions. For example, 

recognizing the equivalence between the ROC curve and the cumulative distribution function 

of a case placement value UD = 1 – FD̄ (XD), i.e. P(UD ≤ u) = ROC(u), [24] proposed a 

pseudo-likelihood procedure that estimates the placement value for each case 

UD = 1 − FD‒(XD) first, and then estimates the ROC curve by maximizing a pseudo-

likelihood of observed placement values. In two-phase sampling design, this can be extended 

by first applying IPW weights for controls in estimating FD̄ and subsequently placement 

values for all cases, and then maximizing an inverse-probability weighted pseudo-likelihood 

based on case placement value estimates.
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Refer to Web version on PubMed Central for supplementary material.
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TABLE 1

Estimate, bias, variance, median of estimated variance (Med(Var)), and coverage of 95% confidence interval 

(CI) of ROC (t) estimator using the empirical method, IPW method with the estimated sampling probabilities 

pStr and pAux, for scenarios where ρXV* = 0.5, ρXW = 0.5, ρWV* =0.1, μXD̄ = 0, and μXD = 1 in finite-

population stratified sampling.

Method nD = nD̄ Estimate Bias × 100 Var × N Med(Var) × N Coverage of 95% CI

ROC(0.1) = 0.3891

ROCem 100 0.3406 −4.8593 11.046 11.766 94.2%

250 0.3390 −5.0140 11.312 11.856 85.2%

500 0.3379 −5.1204 11.449 12.000 71.8%

ROCIPW
Str

100 0.3894 0.0270 11.918 11.236 95.3%

250 0.3881 −0.1045 11.862 11.750 95.6%

500 0.3878 −0.1364 12.223 11.848 94.8%

ROCIPW
Aux

100 0.3885 −0.0606 10.775 9.834 94.5%

250 0.3883 −0.0857 10.540 10.291 95.4%

500 0.3876 −0.1524 10.666 10.390 94.9%

ROC(0.2)= 0.5629

ROCem 100 0.5058 −5.7108 10.247 11.178 90.0%

250 0.5052 −5.7711 10.244 11.267 78.1%

500 0.5042 −5.8691 10.484 11.243 59.6%

ROCIPW
Str

100 0.5613 −0.1617 10.654 10.274 95.5%

250 0.5612 −0.1676 10.402 10.469 95.6%

500 0.5606 −0.2350 10.773 10.530 94.9%

ROCIPW
Aux

100 0.5607 −0.2252 9.123 8.771 95.0%

250 0.5614 −0.1501 9.009 8.946 95.5%

500 0.5604 −0.2512 9.193 8.997 94.5%

ROC(0.5)= 0.8413

ROCem 100 0.7990 −4.2309 5.166 5.691 86.0%

250 0.7988 −4.2505 5.286 5.688 73.0%

500 0.7984 −4.2945 5.271 5.721 52.2%

ROCIPW
Str

100 0.8387 −0.2684 4.749 4.520 96.0%

250 0.8396 −0.1737 4.690 4.594 95.2%

500 0.8399 −0.1401 4.632 4.620 94.6%

ROCIPW
Aux

100 0.8385 −0.2860 4.170 3.967 95.9%

250 0.8398 −0.1578 4.251 4.016 94.6%

500 0.8399 −0.1489 4.078 4.030 95.0%
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TABLE 2

Estimate, bias, variance, median of estimated variance (Med(Var)) and coverage of 95% confidence interval 

(CI) of AUC and pAUC (t0, t1) estimators using the empirical method, IPW method with the estimated 

sampling probabilities pStr and pAux, for scenarios where ρXV* = 0.5, ρXW = 0.5, ρWV* = 0.1, μXD̄ = 0, and 

μXD = 1 in finite-population stratified sampling.

Method nD = nD̄ Estimate Bias × 100 Var × N Med(Var) × N Coverage of 95% CI

AUC = 0.7602

AUCem 100 0.7258 −3.4428 2.1767 2.4639 83.7%

250 0.7265 −3.3782 2.1105 2.4791 65.8%

500 0.7264 −3.3857 2.2695 2.4807 38.7%

AUCIPW
Str

100 0.7597 −0.0564 2.0841 2.1019 95.1%

250 0.7604 0.0105 2.0643 2.0993 95.5%

500 0.7603 0.0057 2.2095 2.1025 94.3%

AUCIPW
Aux

100 0.7600 −0.0244 1.6382 1.6100 95.0%

250 0.7605 0.0223 1.6015 1.6149 94.9%

500 0.7603 0.0014 1.7089 1.6146 94.5%

pAUC(0,0.1) = 0.0244

pAUCem 100 0.0198 −0.4535 0.0632 0.0685 95.0%

250 0.0203 −0.4043 0.0663 0.0695 87.8%

500 0.0204 −0.4002 0.0654 0.0701 75.5%

pAUCIPW
Str

100 0.0230 −0.1351 0.0688 0.0642 94.9%

250 0.0236 −0.0721 0.0716 0.0681 94.8%

500 0.0238 −0.0566 0.0711 0.0695 94.7%

pAUCIPW
Aux

100 0.0229 −0.1464 0.0629 0.0613 95.4%

250 0.0236 −0.0713 0.0630 0.0641 95.5%

500 0.0238 −0.0591 0.0618 0.0656 95.5%

pAUC(0,0.2) = 0.0726

pAUCem 100 0.0619 −1.0735 0.2692 0.2975 92.6%

250 0.0625 −1.0053 0.2787 0.2990 81.2%

500 0.0626 −0.9949 0.2785 0.3016 62.8%

pAUCIPW
Str

100 0.0698 −0.2757 0.2874 0.2728 94.5%

250 0.0711 −0.1515 0.2899 0.2809 95.0%

500 0.0714 −0.1212 0.2965 0.2841 94.6%

pAUCIPW
Aux

100 0.0696 −0.2949 0.2489 0.2544 95.9%

250 0.0711 −0.1496 0.2478 0.2615 95.8%

500 0.0713 −0.1253 0.2459 0.2634 95.5%
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TABLE 3

Efficiency comparison of the IPW ROC(t), AUC and pAUC(t0, t1) estimators with two different types of 

estimated sampling weights, for scenarios where nD = nD̄ = 500, ρXV* =0.3, ρWV* = 0, μXD̄ = 0, and μXD = 1.

Parameter
True
performance

Bernoulli Sampling Finite-population stratified sampling

ρXW ρXW

0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

pAuxvs . pStr ROC(0.1) 0.3891 1.003 1.037 1.103 1.192 1.008 1.034 1.105 1.186

ROC(0.2) 0.5629 1.018 1.065 1.132 1.261 1.018 1.067 1.133 1.268

AUC 0.7602 1.033 1.102 1.231 1.477 1.036 1.099 1.223 1.496

pAUC(0, 0.1) 0.0244 1.005 1.042 1.106 1.175 1.021 1.029 1.113 1.183

pAUC(0, 0.2) 0.0726 1.027 1.063 1.138 1.275 1.034 1.044 1.137 1.270
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TABLE 4

Renal artery stenosis study example: Estimate, variance, 95% confidence interval (CI) and corresponding 

length of 95% CI for ROC(t), AUC and pAUC(t0, t1) estimators using the empirical method and IPW methods 

with the estimated sampling probabilities pStr and pAux.

Method Est Var×N 95% CI Length of 95% CI

ROC (0.1) Empirical 0.296 4.632 (0.092, 0.500) 0.409

IPW with pStr 0.367 3.336 (0.194, 0.541) 0.347

IPW with pAux 0.388 2.081 (0.251, 0.525) 0.274

ROC (0.2) Empirical 0.449 2.263 (0.306, 0.592) 0.286

IPW with pStr 0.480 2.189 (0.339, 0.620) 0.281

IPW with pAux 0.500 1.805 (0.372, 0.628) 0.255

AUC Empirical 0.665 0.619 (0.590, 0.740) 0.149

IPW with pStr 0.682 0.677 (0.604, 0.760) 0.156

IPW with pAux 0.709 0.565 (0.638, 0.781) 0.143

pAUC(0, 0.1) Empirical 0.014 0.012 (0.003, 0.024) 0.021

IPW with pStr 0.017 0.028 (0.001, 0.033) 0.032

IPW with pAux 0.018 0.024 (0.004, 0.033) 0.029

pAUC(0, 0.2) Empirical 0.053 0.063 (0.029, 0.077) 0.048

IPW with pStr 0.068 0.070 (0.043, 0.093) 0.050

IPW with pAux 0.069 0.057 (0.047, 0.092) 0.045
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