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Abstract

The three-dimensional organization of genes inside the cell nucleus affects their functions 

including DNA transcription, replication, and repair. A major goal in the field of nuclear 

architecture is to determine what cellular factors establish and maintain the position of individual 

genes. Here, we describe HIPMap, a high-throughput imaging and analysis pipeline for the 

mapping of endogenous gene loci within the 3D space of the nucleus. HIPMap can be used for a 

variety of applications including screening, mapping translocations, validating chromosome 

conformation capture data, probing DNA-protein interactions, and interrogation of the relationship 

of gene expression with localization.

A fundamental property of genomes is their complex higher-order organization (Misteli 

2007). Genomes across species and phyla are arranged at multiple, hierarchical levels. The 

DNA, wrapped around proteinaceous nucleosomes, forms a chromatin fiber which in turn is 

locally compacted into topologically associated domains (Dixon et al. 2012; Sexton et al. 

2012). These domains aggregate to give rise to chromosome subdomains and ultimately 

chromosome territories (Cavalli and Misteli 2013). The individual chromosomes, and 

consequently the genes they carry, are positioned in 3D space of the nucleus in a nonrandom 

fashion creating distinct spatial genome neighborhoods. The higher-order organization of the 

genome at all levels, including the spatial position in the nucleus, has been implicated in 

most genome functions and cellular processes (Misteli 2013). Although lower-level 

organization determines local regulatory effects such as nucleosome density, many gene 

regulatory functions appear to emerge from short-range chromatin interactions such as 

enhancer-promoter loops and longer- range effects such as clustering of multiple gene loci in 

3D space (Dekker and Misteli 2015). The mechanisms that determine the higher-order 

spatial organization of genomes are largely unknown.

Although much of what we know about the lower-level organization of the genome at the 

scale of nucleosomes comes from traditional biochemical methods, insight into higher-order 

organization has come from two major approaches: imaging, mostly using fluorescence in 

situ hybridization (FISH) (Cremer and Cremer 2010), and cross-linking mapping, mostly 

using chromosome conformation capture (3C) methods (Dekker et al. 2013). Both 

approaches have advantages and limitations. The major strength of imaging methods is their 

ability to probe the location and physical proximity of multiple genome regions at the single-

Correspondence: mistelit@mail.nih.gov. 

HHS Public Access
Author manuscript
Cold Spring Harb Symp Quant Biol. Author manuscript; available in PMC 2019 January 03.

Published in final edited form as:
Cold Spring Harb Symp Quant Biol. 2015 ; 80: 73–81. doi:10.1101/sqb.2015.80.027417.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell level and to derive spatial distance measurements, within the limits of the optical 

resolution of the microscope. A shortcoming of imaging is its very low throughput, which 

typically allows only probing of a handful of genes or samples in a single experiment, thus 

precluding systematic genome-wide analysis. This limitation is powerfully overcome by 3C 

methods, which rely on chemical cross-linking of interactions throughout the genome, 

allowing systematic, genome-wide mapping of chromatin interactions in a single experiment 

(de Wit and de Laat 2012). However, 3C-based methods are restricted to determining 

pairwise interactions and do not allow direct distance measurements or analysis of multiple, 

simultaneous interactions, such as gene clusters. In addition, their population-based nature, 

which uses data from millions of cells in aggregate, makes it a priori impossible to 

determine in how many cells in the population a particular interaction occurs or whether 

combinations of interactions occur simultaneously in an individual cell (Williamson et al. 

2014). Early single-cell 3C methods are beginning to address some of these issues, albeit at 

the cost of reduced resolution (Nagano et al. 2013). A significant weakness shared by both 

imaging-based and 3C genome mapping methods is their unsuitability foruse in unbiased, 

large-scale screens due to the low throughput in the case of imaging and the technical 

complexity of 3C approaches, thus limiting their usefulness in unbiased discovery 

approaches.

An approach that overcomes some of the limitations of traditional imaging and 3C methods 

and bridges the gap between conventional imaging and C-technology is high- throughput 

imaging (HTI) (Roukos et al. 2010). This strategy consists of highly parallel processing and 

automated imaging of thousands of samples, automated image analysis, and statistical 

evaluation of localization patterns. HTI allows the analysis of a large number of cells in 

thousands of samples and combines the ability of imaging to generate single-cell data with 

the capacity of 3C methods to interrogate genome organization patterns at a large scale. In 

addition, the large-scale nature of HTI enables unbiased screening approaches (Conrad and 

Gerlich 2010).

We have recently developed an HTI-based pipeline for the mapping of genome locations and 

distances in 3D space (Burman et al. 2015a,b; Shachar et al. 2015). HTI positioning 

mapping (HIPMap) is a robust and versatile method to probe gene location and genome 

organization and we have shown its suitability in RNAi-based screens (Shachar et al. 2015). 

We describe here technical details and potential applications of HIPMap.

HIPMap

HIPMap was developed for the purpose of studying the position of a gene in the 3D space of 

the nucleus in a robust, quantitative, and high-throughput manner (Shachar et al. 2015). 

HIPMap consists of an optimized pipeline that includes high-throughput FISH (hiFISH), 

automated image analysis, and subsequent statistical data analysis (Fig. 1).

hiFISH

The first step in the HIPMap protocol is hiFISH performed in 96- or 384-well plates using a 

fully automated liquid handling system. Fibroblasts are plated in 384-well imaging plates at 
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~80% confluence and are grown for at least 12 h to adhere. For cells in suspension, wells are 

precoated with poly-L-lysine before plating. Cells are then transfected with siRNAs or 

expression constructs or treated with compounds depending on the desired experiment. A 

key feature for successful FISH on a large scale is to streamline the FISH protocol by 

reducing the number of steps. HiFISHprobes are generated from bacterial artificial 

chromosomes (BACs) using a standard nick translation protocol with fluorescent 

nucleotides, thereby eliminating subsequent antibody detection steps as would be needed for 

biotin-labeled probes or alike. The protocol is also optimized to minimize the number of 

wash steps to avoid detachment of cells from the plate (Shachar et al. 2015).

Automated Imaging

In the next step, an automated confocal microscope is used to acquire images. In a standard 

application, samples are imaged in four channels (three probe channels plus DAPI) typically 

using the 405-, 488-, 561-, and 640-nm laserlineswitha40× waterobjectiveand2× pixel 

binning. Typically, 60 fields are randomly sampled in a well and six z planes (1-μm 

intervals) are acquired yielding 1000 to 3000 cells per well, depending on cell size and 

plating density. The average exposure and imaging time per well using these conditions is 

~20 min and the pixel size is 320 nm. Exposure time varies according to cell type and 

density.

Image Analysis

Images are analyzed in a fully automated fashion to detect cell nuclei and FISH signals. The 

nucleus border is segmented based on the DAPI staining with high accuracy. FISH spots in 

all three channels are identified based on detection of local signal maxima in each probe 

channel. Radial distances from the nuclear edge are measured for every individual FISH 

signal in a nucleus. Each nucleus undergoes a radial distance transformation in which the 

border of the nucleus is set as 0 and the center of the nucleus is set as 1. FISH signals are 

superimposed onto the distance transformation image and their radial coordinates within 

each nucleus measured (Fig. 1). HIPMap can also measure spot-to-spot Euclidian distances 

by using the image x andy coordinates of each FISH spot. Spot-to-spot distances can be used 

to measure distances between alleles or genes or to nuclear landmarks. A detailed 

description of all image analysis steps is described in Roukos et al. (2013), Burman et al. 

(2015a), and Shachar et al. (2015).

Data Analysis

To determine the spatial position of a gene inside the nucleus, its distance from the border of 

the nucleus is measured in hundreds of cells in a population. Individual allele position 

measurements are combined and plotted as a radial position distribution (Fig. 1). This 

distribution provides a representation of the overall position of a gene.

For comparison of two distributions, data sets are transformed into cumulative distribution 

functions (Meaburn and Misteli 2008; Meaburn et al. 2009) and the Kolmo gorov-Smirnov 

(KS) test (Perlman et al. 2004; Mitchi- son 2005; Smellie et al. 2006) is applied to determine 
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whether the two distributions are different. The KS test is used because it is a nonparametric 

statistical test that is sensitive to local changes in the shape of the distributions rather than 

just variations in the mean or median.

To simplify the image analysis, all z-stacks are projected to generate 2D images, and spot 

coordinates and distances to the nucleus border are measured using only the x andy 
dimensions. To verify that such an analysis approximates the actual 3D distances and is 

reliable, we compared spot-to-spot distances in 3D with that in 2D for the same data set. We 

analyzed human skin fibroblasts and examined the distance between two endogenous loci 

that reside on two different chromosomes and are not known to interact (LADF and 

COL1A1; Shachar et al. 2015). Minimal distances between each pair of spots per cell were 

calculated in projected images or in 3D using six zplanes 1 mm apart (Fig. 2A). The tested 

cells were treated with a nontargeting siRNA (small interfering RNA) or with an siRNA 

directed toward LaminA/C and LaminBl that was previously shown to change the radial 

distribution of LADF and COL1A1 (Shachar et al. 2015). The analysis shows that the 

distribution of distances between LADF and COL1A1 is similar when analyzed in 2D versus 

3D (Fig. 2A). Moreover, when the distance between each pair of spots in 2D was compared 

with the distance between the same pair in 3D the correlation was very high (Spearman’s p = 

0.998) over 7000 measured distances (Fig. 2B). We conclude that spot-to-spot distance 2D 

analysis of projections is equivalent to 3D analysis.

Versatility

To date, HIPMap has been successfully applied to a variety of loci and cell types such as 

IMR90, MRC5, PC3, and HeLa, as well as lymphocytic cell lines such as ALCL (anaplastic 

large cell lymphoma) and Jurkat, and to hESCs (human embryonic stem cells). Adherent 

cells produce better results as a larger number of wash steps during the hiFISH protocol can 

be applied with minimal loss of cells. The endogenous loci that have been detected by 

HIPMap include active genes as well as highly repetitive gene deserts (see Fig. 5; Shachar et 

al. 2015). FISH probe design is limited only by the sequence covered by the specific BAC.

QUALITY CONTROL PARAMETERS FOR HIPMap

HIPMap is a robust and highly reproducible method as judged by several quality-control 

parameters.

False FISH Signal Detection Rate

Because all image analysis steps are fully automated, accurate detection of FISH signals is 

imperative. To determine the false detection rates of FISH signals, 15 image fields from five 

hiFISH experiments each containing approximately 300 cells were randomly chosen and the 

FISH spots identified either visually or by automated image analysis. Comparison of the 

data sets showed that the false-negative and -positive rates ranged between 0% and 9% for 

the three channels (Fig. 3A). False signal detection was due to real FISH signals not being 

detected by the software and fluorescent noise that is identified as signals. Additionally, 

when the number of FISH spots per cell was analyzed, at least 70% of cells contained two 
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FISH spots as expected for the diploid CRL-1474 human skin fibroblasts used in the 

analysis (Fig. 3B).

Determination of Minimal Sample Size

HIPMap relies on the statistical analysis of a large number of data points per sample. 

Although HTI is capable of acquiring a very large number of cells, imaging time becomes a 

rate-limiting step in large-scale applications. The minimal number of FISH spots required to 

ensure high statistical fidelity was determined to be approximately 600 FISH spots using a 

computational simulation (Shachar et al. 2015). Briefly, 9000 FISH spots from nine different 

wells were pooled and two groups of equal numbers of spots were randomly chosen from 

this pool. Each two groups of spots were compared to one another using the KS test, and the 

simulation was repeated 10,000 times for varying spot numbers ranging from 100 to 2000 

spots. Using a similar simulation, it is evident that distance distributions of 400 FISH spots 

or less do not faithfully capture the actual distribution of the population (Fig. 4A; P > 0.05). 

Distributions generated from less than 400 FISH spots are generally noisy and could be 

misleading when compared with other distributions generated from low cell numbers.

Robustness of HIPMap Measurements

Robustness of a method is defined as the degree of similarity among results generated from 

distinct subpopulations of a data set. HIPMap is highly robust as indicated by the fact that 

distributions generated from distinct groups of FISH signals randomly sampled from the 

same well were statistically indistinguishable (P > 0.1) (Fig. 4B). In addition, well-to-well 

and plate-to-plate variability is minimal (P > 0.1) (Fig. 4B).

MAPPING OF SPATIAL GENE POSITIONS BY HIPMap

Determination of Gene Positions

Representative data sets of HIPMap analysis of five diverse loci in hTERT (human 

telomerase reverse tran scriptase)-immortalized CRL-1474 human skin fibroblasts are shown 

in Figure 5. The five loci differ in their chromatin environment, expression levels, and 

chromosomal location. LADF is a heterochromatic, nonexpressed gene desert located on 

chromosome 5 previously shown to associate with the nuclear lamina; ACTB and COL1A1 
represent active, euchromatic genes and reside on chromosomes 7 and 17, respectively. 

MMP9 and VEGF are both expressed at low levels in these cells and reside on chromosomes 

20 and 6, respectively (Fig. 5). Mapping by HIPMap of these loci identified their distinct 

radial positions. As expected, most LADF signals are very close to the nuclear periphery 

with a median radial position of 0.2 (Fig. 5). COL1A1, on the other hand, has a much more 

internal distribution with a median radial position of 0.53.

Detection of Changes in Gene Positions

A major question in the field concerns the mechanisms that determine the spatial location of 

gene loci in 3D space. Disruption of candidate mechanisms using RNAi is a possible 

approach to identify positioning mechanisms. To test whether HIPMap is sensitive enough to 

detect a change in the position of a gene, the effect of siRNA against LaminA/C and 

LaminB1, the major components of the nuclear lamina, on the location of the peripheral 
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LADF locus was tested. Simultaneous knock-down of these genes by >90% of their mRNA 

levels caused a detectable shift in the distribution of LADF (Fig. 6). The median distance 

from the periphery for the LADF locus changed from 0.2 in cells treated with a non-

targeting siRNA to 0.29 in knockdown cells (P < 1 × 10−16). Similar effects of lamin loss 

were found for three other genes in these cells (Shachar et al. 2015).

APPLICATIONS OF HIPMap

HIPMap is a versatile assay that can be used to answer several basic biological questions 

relevant to chromatin organization as well as more translational questions.

Scaling-Up of HIPMap

A major potential application is the combination of HIPMap with in silico design and 

synthetic synthesis of FISH oligo probes enabling the scaling-up of gene mapping and 

screens to probe the location of large sets of genomic targets in a single experiment 

(Beliveau et al. 2012; Joyce et al. 2012). Large-scale probe design methods, such as 

Oligopaints, are now available and can be combined with HIPMap. In Oligopaints and its 

variants (Beliveau et al. 2012,2014,2015), large libraries of DNA oligos tiling genomic 

regions of interest are designed in silico and chemically synthetized. These libraries of DNA 

oligos can be either directly labeled with fluoro-phores or designed to include de novo DNA 

barcodes that can be used as hybridization platforms for fluorescent signal amplification or 

for multiplexing the number of nucleic acid targets detected in a single sample with imaging 

approaches (Beliveau et al. 2015; Chen et al. 2015). An obvious obstacle to large-scale FISH 

experiments is the resulting long imaging times. For example, screening of an siRNA library 

of 700 candidate genes testing three target loci required a total of 650 imaging hours 

(Shachar et al. 2015). New generations of high-throughput microscopes with larger camera 

chips enabling the acquisition of a larger number of cells per field of view and more 

powerful light sources allowing shorter exposure times will likely overcome this issue in the 

near future.

RNAi and Small Molecule Screens

We have recently used HIPMap to carry out an siRNA screen to discover factors that 

contribute to determining the position of four functionally diverse genes in human skin 

fibroblasts (Fig. 7; Shachar et al. 2015). Using an siRNA library targeting approximately 

700 genes encoding nuclear proteins, 2036 wells were imaged and more than three million 

data points analyzed. The screen identified 50 positioning factors representing a first 

compendium of cellular proteins that determine the spatial location of human genes 

(Shachar et al. 2015).

Similar screens can be envisioned in any desired adherent cell type and using diverse set of 

libraries. For example, it would be interesting to explore the effect of interference with 

cellular signaling pathways on gene positioning. HIP- Map is potentially equally suited for 

screening of small molecule libraries. Finally, it is foreseeable to apply HIP-Map in 

combination with CRISPR-based approaches to either knockout or overexpress genes on a 

large scale.
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Systematic Mapping of 3D Distances

HIPMap is ideally suited to measure distances between gene loci. The ability to generate 

large probe sets targeting custom-defined regions of the genome opens the door to the 

systematic mapping of locus-to-locus 3D distances between thousands of genomic loci in 

different biological conditions or in different genetic backgrounds (Fig. 7). The capacity to 

systematically triangulate the distances of large sets of genome loci has the potential to 

generate low-resolution 3D genome maps.

Validation of Chromosome Conformation Capture Data Sets

HIPMap is envisioned to become a valuable orthogonal tool to validate chromosome 

conformation capture (3C) interaction data (Williamson et al. 2014). In one possible 

scenario, HIPMap could be used to measure 3D distance distributions between a constant 

genomic locus and a set of tiled FISH probes designed to hybridize at loci positioned at 

increasing distances away from the bait locus. In addition, Hi-C interactors of similar signal 

strength, but varying genomic distances, should be systematically analyzed to determine 

how signal strength and interaction frequencies are related. Alternatively, a large number of 

loops predicted by high-resolution HiC mapping could be analyzed to determine the 

percentage of cells that show contacts between genomic regions at the base of the loop. 

Similarly, interchromosomal interactions can be systematically tested for their prevalence in 

the cell population.

Determination of Chromosome Breaks and Translocations

Given its capability to measure relational spatial distances of up to three independently 

labeled genomicloci, HIPMap provides an opportunity to systematically detect rare 

chromosomal breakage and translocation frequencies in a cell population. An example of 

such an application has recently been described (Burman et al. 2015a,b) and has led to the 

finding of an association of increased breakage and translocation frequencies with the 

presence of specific histone modifications (Burman et al. 2015b). This application of 

HIPMap could be used to screen for cellular factors involved in the formation of 

translocations by reverse genetic screens or by using one constant gene as “bait” and by 

probing hundreds of different “prey” regions representing putative translocation partners 

(Fig. 7).

HIPMap Combined with Immunofluorescence

HIPMap can also be combined with indirect immunofluorescence (IF) allowing proximity 

measurements of genomic loci to nuclear bodies and other nuclear landmarks such as the 

lamina. This allows testing of whether particular nuclear bodies promote the clustering of 

gene loci and how gene activity is linked to association/dissociation of loci from nuclear 

bodies. In addition, and more importantly, implementation of combined HIPMap with IF 

will allow the detection of rare changes in gene repositioning and interactions in sub-

populations of cells of interest defined by specific protein biomarkers.
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HIPMap-RNA FISH

Finally, coupling HIPMap with RNA FISH provides a single-allele, high-throughput view of 

the relationships between genome positioning and transcriptional activity. This approach 

will be particularly important to test on a large scale whether known changes in gene 

expression associated with physiological changes are accompanied by changes in radial 

position of the corresponding genomic locus (Therizols et al. 2014).

CONCLUSION

The HIPMap pipeline is an optimized tool to map the spatial positions of genes in the intact 

cell nucleus. The availability of a method that combines the power of direct visualization of 

gene loci and single-cell imaging with the ability to interrogate genomes at a large-scale 

overcomes some of the limitations inherent to the two major methods, microscopy and 3C 

technology, that have been used to probe higher-order genome organization. HIPMap is a 

highly modular technology, and combination of HIPMap with the development of more 

complex probe libraries, with other detection methods, and with the use of genetic tools will 

furtherenhance the impact ofthe method. Regardless of the nature of future applications, 

HIPMap has the potential to contribute significantly to the elucidation of genome structure 

and function.
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Figure 1. 
Outline of HIPMap pipeline. Cell plating and FISH (fluorescence in situ hybridization) 

protocol are performed in a 384-well format in a fully automated manner using fluorescently 

labeled FISH probes. Representative maximally projected images of z-stacks are analyzed to 

identify nuclei and detect FISH signals inside each nucleus. The normalized radial distance 

of each FISH spot from the nucleus border is measured and all distance measurements are 

combined and plotted as histograms or estimated density curves.
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Figure 2. 
Distance measurement in 2D versus 3D. (A) Comparison of 2D with 3D analysis. Spot-to-

spot distance distributions are similar between 2D and 3D analyses. Density curves of 

spotto-spot distances of LADF and COL1A1 in cells treated with nontargeting siRNA or 

knocked-down for LaminA/C and LaminB1 are measured in 2D in maximally projected 

images or using 3D coordinates. Three replicates are shown; each density curve represents at 

least 1000 distances. (B) Spearman’s correlation between the same minimal spot-to-spot 

distance measured in 2D versus 3D.
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Figure 3. 
Accuracy of HIPMap image analysis. (A) Representative images of maximally projected z-

stacks. The false FISH spot detection ratewas determined by cross comparison of 

automatically determined spots to manual detection for more than 300 cells in 15 randomly 

sampled fields. (B) Number of FISH spots detected by image analysis software per cell, 

calculated for at least 700 cells perwell. Replicate wells are shown for green (488-nm) and 

red (561-nm) channels
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Figure 4. 
Robustness and reproducibility of HIPMap. (A) Subsampling of data sets demonstrates that 

radial distance distributions generated from less than 400 FISH spots do not faithfully 

represent real distribution. Density curves are generated from the indicated number of FISH 

spots randomly extracted from a pool of 9000 spots from nine replicate wells. (B) Estimated 

density curves of radial distances generated from more than 600 FISH spots per replicate 

from the same well, replicate wells on the same plate, or wells in different plates.
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Figure 5. 
Distributions of endogenous loci. Radial distance distributions (bars) and estimated density 

curves (lines) of the indicated gene locus. Distributions are generated from more than 600 

FISH spots per locus.
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Figure 6. 
HIPMap detects changes in positioning. (A) Radial distance distributions following siRNA 

transfection for the indicated gene of the LADF locus. (B) Boxplot of radial distances of the 

LADF locus to the nucleus border in cells treated with the indicated siRNA for 72 h. Boxes 

are 25th, 50th (median), and 75 th percentile of the distributions and whiskers extend up to 

1.5 interquantile range; outliers are shown as dots.
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Figure 7. 
Applications of HIPMap.
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