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Abstract

Advances in single-cell biology have enabled measurements of >40 protein features on millions of 

immune cells within clinical samples. However, the data analysis steps following cell population 

identification are susceptible to bias, time-consuming, and challenging to compare across studies. 

Here, an ensemble of unsupervised tools was developed to evaluate four essential types of immune 

cell information, incorporate changes over time, and address diverse immune monitoring 

challenges. The four complementary properties characterized were: 1) systemic plasticity, 2) 

change in population abundance, 3) change in signature population features, and 4) novelty of 

cellular phenotype. Three systems immune monitoring studies were selected to challenge this 

ensemble approach. In serial biopsies of melanoma tumors undergoing targeted therapy, the 

ensemble approach revealed enrichment of double-negative (DN) T cells. Melanoma tumor 
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resident DN T cells were abnormal and phenotypically distinct from those found in non-malignant 

lymphoid tissues, but similar to those found in glioblastoma and renal cell carcinoma. Overall, 

ensemble systems immune monitoring provided a robust, quantitative view of changes in both the 

system and cell subsets, allowed for transparent review by human experts, and revealed abnormal 

immune cells present across multiple human tumor types.
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INTRODUCTION

The immune system is a complex network of cells and tissue types, and it is increasingly 

important to simultaneously track cell subsets and understand the system as a whole. 

Longitudinal monitoring of changes in the immune system has provided insight into drug 

response and disease progression (1–3). Differences in response to perturbation can stratify 

clinical outcome (4, 5) and indicate mechanism of action (6). Challenges to the immune 

system, such as vaccination, infection, surgical intervention, or the emergence of a 

malignancy, can elicit detectable changes above the relatively stable basal state of each 

individual (7, 8). Cytomic approaches that can characterize all the cells in a system, like 

high-dimensional flow and mass cytometry, are an area of active development in 

immunology (9). A common framework for data analysis will allow researchers using these 

cytomic approaches to compare and contrast immune systems from diverse research areas, 

including tumor immunology and treatment response (4, 10, 11), blood cancer (12, 13), bone 

marrow failure (14, 15), and human immune variation and autoimmunity (3, 7, 16).

Systematically monitoring the cells of the immune system and their features is especially 

powered when serial samples from an individual can be used as comparison points. 

However, this approach generates vast amounts of data. Simultaneously tracking entire 

systems and the parts that comprise them can become overwhelming in the context of 

clinical research, where cells of interest can be rare (4, 10), and the entire system can change 

quickly in unanticipated ways (15). Thus, in cytomic, system-level studies, the data analysis 

strategy is as important as the experiment design (4, 17, 18), and it is vital to track known 

reference populations and place new observations in the context of prior knowledge (19, 20). 

Tools exist for visualizing and gating (21–24), supervised population and biomarker analysis 

(25, 26), and describing cell population identity (19) within high-dimensional data sets. In 

contrast, a great need exists for automated analysis for the steps immediately after 

population identification (gating). Tools for cellular clustering are especially numerous, 

specific for each data type, and have been extensively addressed in prior work (27). This 

ensemble aims to quantify changes in the whole system, prior to cellular clustering, and to 

characterize how cellular populations change after the appropriate clustering tool has been 

applied to the system.

The growth and success of high-dimensional single-cell technologies relies on the ongoing 

development of data analysis tools needed to parse large amounts of data and place results 
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into context (18–20). It remains relatively rare for researchers to choose data analysis 

approaches that explicitly incorporate time or other changes. Across longitudinal studies, 

four dynamic elements stand out as key features of cellular systems: 1) plasticity or stability 

of the system as a whole, 2) changes in abundance of cell subsets, 3) emergence of 

unexpected features on cell subsets, and 4) emergence of novel or unexpected cell types. The 

central goal here was to simultaneously employ distinct tools focused on these different data 

types as an ensemble and to organize this copious information into an automated “first pass” 

analysis that could be easily interpretable by an immunologist and that would highlight cell 

subsets for in-depth review. The components selected for the ensemble toolkit here included 

the Earth Mover’s Distance algorithm (28), t-distributed stochastic neighbor embedding (t-

SNE) (21), and Marker Enrichment Modeling (MEM) (19).

To validate and challenge computational analysis tools, it is valuable to explore immunology 

problems representing differing levels of prior knowledge, amounts of change, and 

abundances of target cell types. Here, the first challenge (Dataset 1) comprised data from 

melanoma patients undergoing anti–PD-1 therapy with pembrolizumab. Dataset 1 was 

chosen for the relevance of this therapeutic strategy and because the dataset includes an 

unusual case from a patient with a distinct, unexpected immune system trajectory (15). This 

example was chosen to include an outlier case, which is unusual enough that training 

datasets would not normally include an example of it. Dataset 2 comprised of a previously 

published data set of peripheral blood from acute myeloid leukemia (AML) patients 

undergoing chemotherapy (12). Dataset 2 was chosen as an example of dynamic cellular 

populations shifting dramatically over therapy. This dataset was also included to represent 

the challenge of tracking and characterizing treatment-refractory leukemic blasts, which did 

not converge on a single phenotype and instead, shifted into different phenotypic 

compartments, none of which matched the phenotype of healthy cells (12). Dataset 3 

included serial melanoma tumor biopsies from patients treated with dabrafenib, a BRAFV600 

inhibitor (BRAFi), and trametinib, a MEK inhibitor (MEKi). A challenge of Dataset 3 was 

to apply multiple tools in a system that was relatively less well-studied and included a 

diverse set of individuals and mass cytometry panels. By providing both high-level and 

detailed views of cellular systems changing over time in human patients, the ensemble 

approach revealed knowledge about immune system interactions in these three study types 

with contrasting changes and challenges.

MATERIALS AND METHODS

Study Design

Dataset 1: In the case of peripheral blood collected from melanoma patients receiving 

pembrolizumab, the purpose of the study was to identify biological characteristics of 

melanoma occurring prior to treatment and at different time points following therapy for 

patients being treated with immune-based therapies. Each patient gave consent to an 

Institutional Review Board (IRB)- approved research protocol. To be included in this study, 

patients met the following inclusion criteria: 1) pathologically proven diagnosis of 

melanoma, 2) 18 years of age or older, 3) treated with immune-based therapies, and 4) 

willing to have several serial blood draws. Patients not receiving immune-based therapy or 
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unwilling or unable to provide consent were not included. There was no blinding or 

randomization process in this study. Blood specimens were obtained from patients during 

the time of scheduled phlebotomy for routine clinical laboratory analysis. Peripheral blood 

draws were done on the day of therapy start and 21 days (± 10 days), 84 days (± 21 days), 

and 180 days (± 21 days) following initiation of therapy.

Cohort 2: This cohort has been previously published and includes peripheral blood from 

acute myeloid leukemia (AML) patients undergoing chemotherapy (12). Briefly, patients 

consented to a blood draw through an IRB-approved research protocol. Peripheral blood was 

drawn pre-treatment at the time of diagnosis, every 2–3 days within the first two weeks after 

the start of chemotherapy, at the two-week time point, and at the time of recovery, if 

applicable.

Dataset 3: In the case of tumors sampled sequentially from melanoma patients treated with 

targeted therapy, the objective was to identify biomarkers of response and resistance to B-

RAF and MEK targeted therapy in melanoma. Patients with advanced, operable BRAF 

mutation-positive melanoma will received GSK-2118436 (BRAF inhibitor) for two weeks, 

followed by the combination of GSK-2118436 and GSK-1120212 (MEK inhibitor) for two 

weeks, followed by surgical resection of the disease. Tumor biopsies were obtained prior to 

start of therapy and 2 weeks after combined GSK-2118436 and GSK-1120212 (29). To be 

included in this study, patients met the following inclusion criteria: 1) signed written, 

informed consent, 2) between the ages of 18 and 90, 3) patients with locally or regionally 

advanced melanoma being considered for resection of the lesion(s) for local-regional control 

and potential cure, 4) BRAF V-600 mutation-positive by snapshot molecular analysis, 5) 

measurable disease, 6) all prior treatment related toxicities CTCAE ≤ Grade 1 at the time of 

enrollment, 6) adequate baseline organ function, 8) women of childbearing potential with a 

negative serum pregnancy test within 14 days of first dose of study or men with female 

partner of childbearing potential must have had either had a prior vasectomy or agree to use 

effective contraception, and 9) able to swallow and retain oral medication. There was no 

blinding or randomization process in this study.

Human Tissue Sample Collection and Preservation

All human samples were obtained in accordance with the Declaration of Helsinki following 

protocols approved by Vanderbilt University Medical Center IRB. The patient information 

for unpublished samples can be found in Supplementary Table S1. Healthy donor tonsil, 

adenoid, and blood were collected as “non-human subjects”, without gender or age 

information. Upon single-cell isolation, all cells were cryopreserved in 88% fetal calf serum 

plus 12% DMSO. Cells from human samples were collected and isolated as follows:

Peripheral Blood—Peripheral blood mononuclear cells (PBMCs) were collected, isolated, 

and cryopreserved from approximately 20 mL of freshly drawn blood as previously 

described (15). Briefly, peripheral blood was drawn into sodium heparin anticoagulant, and 

PBMCs were isolated by centrifugation after layering on top of a Ficoll-Paque PLUS (GE 

Healthcare Bio-Sciences) gradient.
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Solid Tissue—Melanoma tumors, glioblastoma tumors, and non-malignant human 

adenoid and tonsil tissue were resected from patients with consent and in accordance with 

the Declaration of Helsinki. All solid tissue samples were dissociated into live, single-cell 

suspensions, and samples were cryopreserved using a previously documented protocol (30, 

31). Solid tissue samples were first manually dissociated using a scalpel. The minced tissue 

was then incubated in RPMI 1640 (Corning/Mediatech, Corning, NY) plus 10% FBS, 

collagenase II (1 mg/mL; Sigma Aldrich; Darmstadt, Germany), and DNase (0.25 mg/mL; 

Sigma Aldrich) for 1 hour in a 37° C incubator with 5% CO2. Cells were then strained 

through a 70 μm and 40 μm filter prior to cryopreservation.

Renal cell carcinoma samples were processed and stored as described by Siska et al (32). 

Briefly, malignant tissue was removed from patients and processed by mechanical 

dissociation and enzymatic digestion. Single cell suspensions were achieved by passing 

dissociated tissue through a 70 μm strainer. Finally, red blood cells were lysed, and the 

single cell suspension was cryopreserved.

Human Induced Pluripotent Stem Cells (iPSCs)—Reprogramming of human 

neonatal foreskin fibroblast cells (strain BJ; ATCC no. CRL2522) was induced by 

transduction with CytoTune Sendai virus (Life Technologies). All experiments were 

performed under the supervision of the Vanderbilt Institutional Human Pluripotent Cell 

Research Oversight (VIHPCRO) Committee. Induced pluripotent stem cells were grown in 

feeder-free conditions in plates coated with Matrigel (BD Biosciences) and maintained in 

mTESR1 media (Stem Cell Technologies) at 37°C with 5% CO2. iPSCs were generated in 

the lab of Vivian Gama, Ph.D. and were passaged 30–35 times prior to staining by mass 

cytometry. The iPSCs were first characterized by live staining with Tra1–60 or Tra1–81 

antibodies that recognize undifferentiated iPSCs. Every 30 passages, iPSCs were 

characterized by gene expression analysis using the TaqMan hPSC score card panel (Life 

Technologies) and karyotyping. Cells were checked daily for differentiation and were 

passaged every 3–4 days using Gentle dissociation solution (Stem Cell Technologies). iPSCs 

were treated with 0.5% EDTA prior to staining with mass cytometry antibody panel 

described below. iPSCs used in this study were mycoplasma negative.

Mass Cytometry

Thawed samples were first incubated with cisplatin (25 μmol/L, Enzo Life Sciences). After 

incubation with cisplatin, cells were washed in PBS containing 1% BSA. Staining occurred 

in 50 μL PBS/1% BSA for 30 minutes at room temperature using the antibodies listed in 

Supplementary Table S2. Cells were then washed twice with PBS/1% BSA and fixed with a 

final concentration of 1.6% paraformaldehyde (PFA, Electron Microscopy Sciences). Cells 

were washed again, using PBS, and then resuspended in iced cold methanol to permeabilize. 

Cells were incubated at −20° C overnight before being washed twice in PBS and stained 

with iridium DNA intercalator (Fluidigm Sciences). Purified, carrier free antibodies were 

purchased from the listed provider and labeled with the listed metal using the protocol 

provided by Fluidigm. Stained samples were collected at Vanderbilt University Flow 

Cytometry Shared Resource on a CyTOF 1.0 mass cytometer (Fluidigm Sciences). All 

events were normalized prior to analysis using Fluidigm normalization beads.
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CyTOF data preprocessing

Data (FCS files) were collected and stored in the online, analysis platform Cytobank. Data 

analysis was performed in Cytobank and statistical programming environment R (version 

3.4.0) via R Studio.

Earth Mover’s Distance

The Earth Mover’s Distance (EMD) was calculated between each pair of populations using 

the “transport” library for R (28, 33) (https://cran.r-project.org/web/packages/transport/

citation.html). The parent population (e.g. live CD45+ events) were gated in Cytobank, 

followed by the creation of a viSNE map in Cytobank. A viSNE analysis with two output 

dimensions was performed, equally sampling 5000 events per file, with 1000 iterations, 

perplexity equal to 30, and theta equal to 0.5. The events with their viSNE axes were then 

downloaded from Cytobank, and the Earth Mover’s Distance (EMD) was calculated 

between each pair of files using the “transport” library for R. The “wpp” object was used to 

represent each set of points in the two viSNE axes, and the “wasserstein” function was 

called on each pair of point sets to produce a distance matrix. Each point was assigned unit 

weight.

Because calculating a matrix with the EMD between each set of 5000 events from the 

viSNE analysis is computationally expensive, four optimizations were performed. (1) Each 

file was further down-sampled to 1000 out of the original 5000 events per file in the viSNE 

analysis. Each event was still assigned unit weight, and each point set, therefore, still had an 

equal total mass of 1000. (2) The “shortsimplex” method was used for the “wasserstein” 

function in the “transport” library, which accepted no other parameters besides the pair of 

weighted point sets (34). (3) Each population was automatically assigned a zero EMD 

compared to itself, and EMD scores already computed across the diagonal were simply 

copied because EMD is a metric. (4) The “parallel” library was used to parallelize the 

computation of each row of the matrix, in addition to the above, using the number of cores 

detected from the “detectCores” function in the “parallel” library. EMD values computed by 

‘emdist’ were compiled in a CSV file and used to create a heatmap, in R, for visualization. 

Statistical comparisons of EMD values between groups were done in Excel using a 

Student’s t- test. CSV file and heatmap are each produced as an output.

Change in population equation

The frequency of immune populations was determined in Cytobank and exported into CSV 

files prior to re-organization. For Cohorts 1 and 3, populations were identified by traditional 

biaxial gating. For Dataset 2, populations were identified by first running a viSNE on 

nucleic acid expressing events from all patients at all time points and then running a SPADE 

on the t-SNE axes. Fifteen nodes (15) were identified with 5% down sampling. The 

following equation was used to determine the change in frequency for all data sets where 

FREQt is equal to the frequency of a population at a given time point and FREQpre is the 

frequency of that same population prior to the start of therapy. The addition of 0.01 to both 

the numerator and the denominator is to account for the appearance of new populations over 

the course of therapy.
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Change in frequency = ln((FREQt + 0.01)/( FREQpre + 0.01))

R was used to conduct a paired Student t test to compare samples from the same patient at 

different time points of treatment. R script provided by Carr, et al. was used to create 

boxplots in R (7). In the case of Dataset 1, a Bonferroni correction was used for multiple 

hypothesis testing.

MEM

MEM creates a quantitative label of cell identity for given populations (19), and the MEM 

equation is implemented in R. MEM labels were either created for the indicated populations 

using the bulk, non-population as the reference, except, where indicated, when iPSCs or 

hematopoietic stem cells were stained and run on mass cytometry as a respective common 

reference (19). Median MEM labels were created by taking the median MEM score of each 

marker for each population. Standard deviation is shown. ΔMEM scores are calculated by 

subtracting the MEM score of the pre-therapy sample from the MEM score of the indicated 

time point.

Similarity of MEM labels

Root mean square deviation (RMSD) and hierarchical clustering were used to compare 

MEM labels, as previously described (19). The MEM vectors for each non-reference 

population were calculated over phenotype channels which were shared across all non-

reference populations and the single reference population. Each MEM vector contained the 

population’s MEM score, calculated for each of the common phenotype channels, in 

reference to the single reference population. The MEM RMSD between pairs of non-

reference populations was then calculated using the Euclidean distance between these MEM 

vectors.

Heatmaps representing population similarity were generated from each distance matrix 

using the “heatmap.2” function of the “gplots” library for R. The distance matrix was 

normalized by the maximum non-normalized distance d_max between any pair of 

populations, then multiplied by 100, then subtracted from 100. The result was that zero 

entries in the original distance matrix would receive a similarity score of 100, whereas the 

pair of populations with greatest distance in the original distance matrix would receive a 

similarity score of 0. Thus, two populations with the exact same enrichment score would 

have 100% similarity (19). To compare populations, median RMSD scores were compared 

using a two-tailed, Student t test.

Code availability

Original data sets were provided as FCS files in Flow Repository. Software for calculating 

EMD and displaying it as a heat map is available as Supplementary Software. Software for 

generating MEM scores is available in the Supplementary Software of Diggins et al. (19) 

(http://mem.vueinnovations.com/ ).
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Data availability

Dataset 1—Peripheral blood from melanoma patients treated with anti–PD-1 and healthy 

peripheral blood controls is available as FCS files in Flow Repository. SNaPshot genotyping 

was done in the clinic on tumors resected from each patient. Forty-eight mutations in NRAS, 

BRAF, KIT, CTNNB1, and GNAQ were monitored (35).

Dataset 2—Peripheral blood from AML patients treated with chemotherapy was generated 

by CyTOF analysis as described by Ferrell et al. (12) and is available as FCS files in Flow 

Repository (http://flowrepository.org/id/FR-FCM-ZZMC). Patient characteristics and 

treatment details are available in Ferrell et al.

Dataset 3—Serially biopsied melanoma tumors from patients treated with BRAFi and 

MEKi were generated in separate mass cytometry experiments. Patients MP-034, MP-029, 

MP-031, MP-032, MP-055, and MP-059 were stained with the mass cytometry panel 

described in Supplementary Table S2. Patients MP-019, MP-023, MP-054, MP-052, and 

MP-062 were stained with the panel described by Doxie et al. (36). FCS files are available in 

Flow Repository. SNaPshot genotyping was done as described above.

Additional Data

Data for comparison across cancer types were generated by us in separate mass cytometry 

studies characterizing untreated melanoma tumors, glioblastoma tumors, and non-malignant 

tonsil and adenoid. FCS files are available in Flow Repository. Renal cell carcinoma tumors 

RC-29, RC-37, and RC-52 were published by Siska et al. (32), and Staphylococcal 

enterotoxin B (SEB)-stimulated PBMCs were published by Nicholas et al. (37). Briefly, 

PBMCs were stimulated with SEB (final concentration 1 μg/mL in in 200 μL) at a cell 

concentration of 10 × 106 cells/mL. Cells were incubated at 37° C for 16 hours before being 

washed twice with PBS and stained for mass cytometry.

Data sets used in the RMSD heatmap are described by Diggins et al. (19).

RESULTS

Application of Earth Mover’s Distance to characterize the peripheral immune system 
during therapy

We sought to investigate how the overall composition of circulating immune populations 

changes over the course of anti–PD-1 therapy. To do this we generated viSNE maps, which 

reduce the dimensionality of the data by plotting cells in two dimensions on the basis of 

their high-dimensional similarity. Changes in the distribution, or topography, of these maps, 

are indicative of changes in the abundance or profile of individual cell populations. 

Quantifying changes that exist between viSNE maps relies on either deconstructing the 

system into populations or qualitative assessment of the overall “shape” of the map. 

Approaches for quantifying differences in multidimensional cytometry distributions include 

Quadratic Form (38) and Earth Mover’s Distance (EMD) (28). Here, we used EMD to 

quantify the similarity of two viSNE maps, where differences were quantified as the amount 

of work required to make the images like another. In this instance, “work” was defined as the 
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number of units, or cells, times the distance moved. To quantify differences in viSNE maps, 

all samples must be run together on the same axes. It is imperative that measures be taken to 

reduce batch effects, like the use of normalization beads here.

Blood was drawn from melanoma patients immediately prior to therapy, and 3 weeks, 12 

weeks, and 6 months after the start of anti–PD-1 therapy (Dataset 1). Mass cytometry was 

used to characterize PBMCs from each patient at each time point (Supplementary Table S1 

and Supplementary Table S2). To monitor and quantify the phenotypic plasticity of the 

peripheral immune system as a whole, the EMD algorithm was used to quantify differences 

between viSNE maps as described above (21, 28, 33). One viSNE map was created for eight 

patients analyzed at four clinical timepoints and eight healthy controls (Fig. 1A, 

Supplementary Table S1). EMD was then used to quantify the differences between each 

viSNE map, and the numerical results were displayed in a heat map (Fig. 1B). Low EMD 

scores indicated that the maps were similar, whereas larger EMD scores indicated divergent 

maps. To determine whether the peripheral immune systems of each patient remained stable 

or had increased phenotypic plasticity over the course of anti-PD-1 therapy, intra-patient 

EMD values, those generated by comparing viSNE maps within a single patient over 

therapy, were compared to inter-patient EMD values, those generated by comparing viSNE 

maps across patients. In 7 out of 8 melanoma patients receiving anti–PD-1 therapy, the intra-

patient EMD score was lower than the inter-patient EMD score, indicating that each 

patient’s peripheral blood immune system was more similar to itself than to that of any of 

any other patient, regardless of any ongoing therapy response (Fig. 1C). The exceptional 

patient, MB-009, did not conform to this pattern (median intra-patient EMD value±standard 

deviation: 4.22±2.69, versus median inter-patient EMD value: 3.99±2.48). This patient was 

diagnosed with myeloid dysplastic syndrome 8 months after starting anti–PD-1 therapy and 

was known to have an expansion of mature and blasting myeloid cells and a decrease in all 

other major cell types in the periphery (15). Thus, combining EMD and viSNE allowed for 

an automated approach to quantify stability and plasticity of a system over the course of 

therapy.

Ensemble analysis revealed decreases in PD-1+ T cells during anti–PD-1 therapy

Although viSNE and EMD provided a quantitative, first-glance at system stability, it is 

possible that shifts in abundance or phenotype of small, biologically relevant populations 

may be overlooked when using a single summary statistic. To avoid missing small but 

crucial cell subsets, cells should be broken into smaller populations manually or 

computationally and compared. The cells were next manually split into classical immune 

populations using traditional, biaxial gating (Supplementary Fig. S1). Although biaxial gates 

were used for cell population identification, it is possible to integrate other automated 

clustering tools, like Phenograph (23), VorteX (39), and FlowSOM (40) into the ensemble at 

this step. The change in frequency of these populations was calculated as a fold-change over 

pre-therapy, allowing for visualization of all patients and populations on one graph.

Twenty-eight cell populations were identified, and the change in frequency of those 

populations compared to the pre-therapy time point was calculated (Fig. 2A-B, 

Supplementary Fig. S2). Two populations showed significant changes in frequency. 
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CD4+PD-1+ and CD8+PD-1+ T cells had a significant change in frequency [N=10; p<0.0001 

(pre- vs. 3 weeks) and p=0.0011 (pre- vs. 12 weeks) for CD4+PD-1+ T cells, and p=0.00057 

(pre- vs. 12 weeks) for CD8+PD-1+ T cells] over the course of therapy, in which both 

decreased (Fig. 2A-C). PD-1 gates were drawn with non-malignant tonsil as a reference and 

considerations discussed and explored by Nicholas et al. (37). This decrease in relative 

frequency is most likely the result of receptor occupancy by pembrolizumab, as opposed to a 

biological decrease in these cell populations (41, 42).

Marker Enrichment Modeling identified signature features of PD-1+ T cells in tumor and 
blood

The next step in the ensemble systems immune analysis pipeline was to automatically 

quantify enrichment of measured parameters and determine how those enriched parameters 

changed during treatment. MEM was used to identify signature features of each population 

at each time point following established methods (19). MEM scores can range from +10 

(maximum enrichment) through 0 (no enrichment) to −10 (maximum lack) and here, are 

reported as the median±standard deviation in MEM value for the cell population. 

Enrichment quantifications for each population are a vector to be used for additional 

computational analysis. In this ensemble workflow, vectors describing the high-dimensional 

phenotype of populations are compared using root-mean-square deviation (RMSD) (19).

PD-1+ CD8+ and CD4+ T cells from pre-therapy samples were enriched for canonical 

identity makers CD3, and CD8 and CD4, respectively (Fig. 3A-B, top). To indicate changes 

in enrichment patterns, changes in MEM score (ΔMEM) were calculated by subtracting the 

median MEM score for each parameter at the pre-therapy time point from the indicated time 

point after the start of therapy. After 3 weeks and 6 months of anti–PD-1 therapy, 

PD-1+CD8+ T cells lost enrichment, but not expression, for CD3 (ΔMEM of –5; median

±standard deviation, CD3 MMI 40.9±11 (3 weeks) and 48.3±14.1 (6 months)) (Fig. 3A, 

bottom; Fig. 3C). This was not the case for PD-1+CD4+ T cells (Fig. 3B, bottom). Given a 

loss of enrichment of the TCR CD3 subunit on these peripheral blood PD-1+CD8+ T cells, it 

was informative to determine their novelty by comparing them to other subsets, including 

PD-1+CD8+ T cells from tumors or healthy donors. To assess this population, MEM labels 

were created for PD-1+CD4+ and PD-1+CD8+ T cells gated from (1) blood from melanoma 

patients during anti–PD-1 therapy, (2) human melanoma tumors, (3) blood from healthy 

donors, and (4) tonsil or adenoid tissue from healthy donors. IPSCs, analyzed by mass 

cytometry, were used as a control cell reference for MEM calculations. Similarity in MEM 

labels was then compared using RMSD (Fig. 4A-B). B cells gated from healthy donor blood 

and tonsils were also included for contrast because of their distinctly different enrichment 

profiles. As expected, B cells clustered separately from the T-cell populations. PD-1+CD4+ 

T cells from the blood of healthy donors and melanoma patients receiving anti–PD-1 therapy 

clustered together, whereas PD-1+CD4+ T cells from melanoma tumors and healthy donor 

tonsils formed a different cluster (Fig. 4A). Similarly, PD-1+CD8+ T cells from melanoma 

tumors clustered with those from healthy donor tonsils, whereas PD-1+CD8 T cells from 

healthy donor blood and melanoma blood formed two, intermixed clusters. These results 

indicated PD-1+ T cells found in the blood were distinct from those found in the tumor or 

healthy tonsil.
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Median MEM labels, which display enrichment scores for each measured feature, are shown 

for each tissue’s PD-1+ T-cell populations (Fig. 4B). PD-1+CD8+ T cells from the blood of 

melanoma patients were enriched for CD43 protein expression and trafficking markers, like 

CCR4 and CXCR3, and specifically lacked activation markers CD38 and CD69 compared to 

PD-1+CD8+ T cells in melanoma tumors (Fig. 4C, left). PD-1+CD4+ T cells were enriched 

for CD4 (+3) compared to their melanoma tumor counterparts. No difference in enrichment 

between PD-1+CD4+ T cells in the peripheral blood of melanoma patients and healthy 

donors (Fig. 4C, right). PD-1+ T cells from the blood of melanoma patients and healthy 

donors were, therefore, phenotypically similar. Thus, MEM, as part of this ensemble, 

automated quantitative comparisons of high-dimensional data from different tumor and 

donor types.

Increased CD4+ T-cell frequency following chemotherapy in AML patients

The ensemble systems immune monitoring pipeline was applied to a previously published 

dataset of peripheral blood from acute myeloid leukemia (AML) patients undergoing 

chemotherapy (Dataset 2, (12)) in order to describe and dissect system wide changes. Five 

AML patients were consented for peripheral blood draws over the course of chemotherapy, 

which were then characterized by mass cytometry. All PBMCs, including blasts and non-

blasts, were identified using the gating scheme published by Ferrell et al. (12). EMD on t-

SNE revealed lack of intra-patient stability in 3 of 5 patients, indicated by no significant 

difference between intra- and inter-patient EMD values (Fig. 5A, Supplementary Fig. S3). 

The remaining two patients showed intra-patient stability, most likely due to the presence of 

leukemic blasts throughout treatment. Unlike in Dataset 1, where cellular populations were 

identified by traditional biaxial gates, fifteen populations were defined automatically using 

the SPADE algorithm to cluster on t-SNE axes (Fig. 5B), as previously described (17, 24). 

These populations were then fed into the remaining three steps of the ensemble analysis 

pipeline.

Of the fifteen populations identified, seven showed significant changes at some point during 

chemotherapy (Fig. 5C, Supplementary Fig. S4). MEM was used to label the automatically 

characterized signature features on each population (Fig. 5D, Supplementary Fig. S4). Two 

populations of blasts were defined by HLA-DR enrichment and were observed to decrease 

over the course of chemotherapy. In contrast, CD4– T cells and two subsets of CD4+ T cells 

were observed to expand, relative to other populations, following chemotherapy. Population 

13 was enriched for CD4 (+5), CD7 (+4), and CD45 (+2), while specifically lacking 

expression of HLA-DR (–3) and CD123 (–2). Combined with the expression of CD3 

(Supplementary Fig. S5), population 13 is likely a population of T cells. Next, the similarity 

of population 13 to CD4+ T cells from healthy donors was assessed. To do this, a common 

reference population of hematopoietic stem cells was used to create MEM labels for 

population 13 and for previously published healthy donor CD4+ T cells and B cells (19). 

RMSD was used to compare MEM labels and determine whether population 13 shared a 

phenotype similar to that of previously characterized CD4+ T cells. Population 13 clustered 

with CD4+ T cells from healthy donors, suggesting that they are phenotypically similar (Fig. 

5E). Taken together, these results represent an automated way to dissect immune responses 
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to therapy and suggest that chemotherapy resulted in a relative increase of a non-malignant 

population of CD4+ T cells.

Loss of activated T cells and expansion of CD4–CD8– T cells in melanoma tumors with 
MEKi and BRAFi

Samples from a cohort of melanoma patients with BRAFV600E mutations treated with 

targeted therapies dabrafenib and trametinib (n=11; Dataset 3) were characterized by mass 

cytometry, and the data were analyzed by the ensemble systems immune monitoring 

pipeline. Combining EMD and viSNE to quantify stability of the immune compartment 

showed that each patient remained more similar to itself than to other melanoma tumors or 

healthy tonsils over the course of therapy. However, EMD run on t-SNE axes created from 

analysis of T cells revealed that the T-cell compartment did not have lower intra-patient 

EMD values compared to inter-patient EMD values (Fig. 6A). Thus, significant immune 

plasticity followed therapy. Immune populations were defined using traditional biaxial gates, 

and the change in frequency for those populations was calculated. After 4 weeks of 

treatment, a statistically significant change in frequency of 5 immune populations was 

observed. One population of interest included double-negative (DN) T cells lacking 

expression of CD4 or CD8 (DN T cells) that comprised 7.23±17.18% in pre-therapy tumors, 

26.27±16.36% in tumors 4 weeks post-therapy, and 3.57±1.52% of a healthy lymph node 

(median±standard deviation, Fig. 6B, Supplementary Fig. S6–7). Pre-therapy MEM labels 

showed that DN T cells were enriched for CD3 (+2), CD45 (+2), CD45RO (+1), CD4 (+1), 

and CD28 (+1) but specifically lacked CD8 (–3) and CD45RA (–2) when compared to all 

cells found within the melanoma tumors. ΔMEM scores indicated that, over the course of 

therapy, DN T cells became more enriched for CD45RO (+1) and CD44 (+1) but lost 

enrichment of CD69 (–1), CD43 (–1), CD27 (–1), and HLA-DR (–1) (Fig. 6C).

Given that T cells can downregulate expression of CD4 or CD8 if activated (43), DN T cells 

from melanoma tumors were compared to acutely activated peripheral blood T cells 

stimulated through the TCR by Staphylococcal enterotoxin B (SEB) (37). Additionally, we 

sought to understand whether similar T cells were found in other cancers, such as 

glioblastoma (GBM) and renal cell carcinoma (RCC) (Figure 6D). SEB-stimulated T cells 

formed their own cluster, apart from all other DN T cells, and shared 87.2% (±2.88%, n=78 

comparisons) similarity with DN T cells from melanoma tumors. In contrast, DN T cells 

from melanoma, GBM, and RCC clustered together, with a similarity score of 93.6% 

(±1.06%, n=78 comparisons). Of the T cells activated by SEB, close to half were 

CD69+ (41.26±7.41%), and most retained CD4 or CD8 co-receptor expression (Fig. 6E). In 

contrast, DN T cells from post-treatment melanoma tumors contained fewer CD69+ cells 

(22.45±8.76%) (Fig. 6F). Thus, DN T cells from melanoma, GBM, and RCC consisted of a 

phenotypically distinct population of DN T cells not observed in resting non-diseased blood 

and tonsils or acutely stimulated blood. Taken together, these data suggest that an unusual 

population of T cells emerged in tumors from melanoma patients treated with BRAFi and 

MEKi and that this DN T-cell population occurs in multiple types of tumors.
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DISCUSSION

The manuscript describes an analysis suite designed to be a common starting point for 

immunologists tracking cells over time, provides three reference datasets for testing tools 

designed to discover and characterize cell subsets, and reveals unexpected cells in the 

context of cancer therapies. This ensemble data analysis strategy was designed specifically 

for systems immune monitoring in longitudinal, clinical studies, but it could be applied for 

any system with changes. We envision adapting it to study experimental perturbations to 

map signaling networks and drug responses (44). Although we expect the algorithms in the 

ensemble will change and improve over time, the four cellular properties identified should 

be considered essential features for immune monitoring with any single-cell platform. 

Cancer immune monitoring strategies must expect the unexpected and be prepared for novel 

phenotypes (9, 45, 46). The first property, systems plasticity, automatically quantifies the 

state of a system compared to baseline. In the cohort described here, the peripheral blood of 

melanoma patients remained stable over the course of therapy. By monitoring systems 

plasticity with EMD and t-SNE, a patient who experienced bone marrow failure (15) was 

identified without gating or clustering. In this case, quantifying systems plasticity allowed 

for the unbiased identification of a patient experiencing large, biologically relevant changes 

during therapy. Caveats exist for using EMD to quantify differences between viSNE maps. 

All samples must be embedded on the same viSNE map in order to be appropriately 

compared, and precautions, like barcoding and bead normalization, must be taken to ensure 

that differences in viSNE maps are attributed to biological differences and not batch effects. 

In addition to EMD, the quadratic form (38) could be used to quantify differences in t-SNE 

axes. Looking forward, we envision automating a process in which t-SNE and a plasticity 

test like EMD are first run on the system as a whole, as described here, and then run 

iteratively on increasingly refined populations in order to pinpoint the populations 

undergoing the greatest change or stability.

The remaining components of the ensemble work together to describe changes or stability 

revealed in the first step, systems plasticity. To accomplish this, the system is divided into 

subpopulations and the frequency, signature features, and novelty of each subpopulation are 

quantified. Identification of cells into groups can be accomplished in whichever way is most 

appropriate, or in multiple ways, prior to ensemble analysis (22–24, 27). For example, 

FlowSOM (40) could be used to identify cellular populations, and those populations could 

be fed into the remaining parts of the ensemble. Because this ensemble toolkit does not rely 

on known populations, it remains independent from methods of automated population 

identification (17, 27) and can be used to compare and communicate analysis results from 

teams relying on computational approaches, immunologists, and bioinformatics experts. The 

ensemble approach was especially adept at capturing shifts over time and was able to 

identify a shift in relative abundance of a subset of T lymphocytes, their phenotype and 

intra-patient recovery of these phenotypes, all of which could have substantial implications 

for maintenance of remission and clinical outcomes (47, 48). A human immune monitoring 

strategy using this ensemble toolkit might provide new insight into the immune system’s 

interaction with leukemia remission and relapse.
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This ensemble approach was robust across multiple, contrasting studies in quantifying 

changes and stability in immune system cells. This approach also provided a detailed 

analysis of the abundance and tractable quantitative phenotype of populations that comprised 

each system. We found a population of CD4–CD8– DN T cells observed to have a common 

phenotype in three human tumor types, melanoma, renal cell carcinoma, and glioblastoma 

that had a phenotype distinct from that of resting CD4–CD8– DN and SEB-activated T cells 

from healthy individuals. This result is consistent with reports characterizing the phenotypic 

similarity of T cells infiltrating melanoma and colon cancer mouse tumor models (49) and 

provides evidence that common changes to immune cell mechanisms are shared across 

human tumor types and play a role in response to targeted therapy.

The ensemble toolkit detected known biological occurrences, as well as identified potential 

mechanisms for further study. The ensemble toolkit detected an overall loss of PD-1+ T cells 

in the peripheral blood over the course of therapy. This has previously been described and 

attributed to receptor occupancy by the drug itself (41, 50). Previous work revealed an 

expanded population of Ki67+ T cells in the peripheral blood during immunotherapy (10, 

51). Although our comparable study did not measure Ki67 in the blood and, thus, could not 

be compared directly, we did observe a trend towards increased activated CD4+ and CD8+ T 

cells, defined by expression of HLA-DR, at 3 weeks after the start of therapy, and CD4+ 

effector memory T (TEM) cells at all time points after the start of therapy. In addition to 

capturing known clinical events, the ensemble tool kit identified a novel population of DN T 

cells present in unexpectedly high frequencies in melanoma tumors before and after 

treatment with BRAFi and MEKi compared to healthy lymphoid tissue. Expanded DN T cell 

populations have previously been reported in metastatic lymph nodes of melanoma patients 

(52). However, their deep phenotype or frequency in response to inhibitor therapy has not 

yet been described. Previous work has described the expansion of a regulatory CD3+ T-cell 

population lacking both CD4 and CD8 after TCR and cytokine stimulation (53–55). MEK 

inhibitors can support antitumor T-cell function by blunting TCR-induced apoptosis (56). 

Therefore, it is possible that high frequencies of DN T cells after treatment with MEKi and 

BRAFi indicate an accumulation of T cells derived from tumor resident T cells, although 

additional mechanistic studies are required.

Overall, the melanoma tumor dataset (Dataset 3) highlights the complexity of tumor-

associated T cells in human malignancies and provides further evidence that phenotypically 

diverse populations of tumor resident T cells can be found across multiple, distinct tumor 

types (49). The data presented here will join a common immunology reference set (19, 57, 

58) that can be mined further to characterize and understand changes in immune and cancer 

cell populations in diverse disease settings and build a reference of cellular identity.
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Figure 1. EMD quantifies phenotypic plasticity of the system over therapy and identifies an 
outlier patient.
Peripheral blood mononuclear cells (PBMCs) from melanoma patients undergoing anti–

PD-1 therapy and healthy donors were characterized by mass cytometry. Equal numbers of 

live events from each sample were run together on a viSNE map. (A) Representative live 

leukocyte viSNE plots are shown for three patients at all collection points during therapy. 

(B) EMD was calculated, pairwise, for all samples. Heat indicates magnitude of EMD value. 

(C) Median EMD was calculated for each patient from pairwise EMD between samples 

from that same patient (light grey), between that patient and all other pembrolizumab 

samples (white), and between that patient and all healthy donors (dark grey). N=6, 104, and 

32 respectively (with exception of MB-007 where N=1, 52, and 16, respectively). *p<0.001, 

**p<0.0001. The whiskers of the boxplot extend to the most extreme data point which is no 

more than 1.5x the interquartile range from the box. See also Supplementary Tables S1 and 

S2.
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Figure 2. Frequency tracking of populations identifies a loss of detectable PD-1+ T cells.
Established immune populations were manually gated and population frequencies were 

determined over the course of anti–PD-1 therapy. (A) Population frequencies at 3 weeks, 12 

weeks, and 6 months post start of anti–PD-1 therapy were normalized to the pre-therapy 

frequency. Each line represents a change in frequency for one population. Significantly 

changing populations, compared to pre-therapy, are shown in red. (B) Change in population 

frequency is shown for individual patients for each population median shown in (A). Each 

time point after the start of therapy was compared to the pre-therapy time point using a two 

tailed, paired t test. With a Bonferroni correction, significantly different populations had a p 

value<0.0018. P values are indicated for populations with significant changes. (C) Boxplots 

of population frequency are shown for each significantly changing population (top) and for 

two populations that did not significantly change (bottom). P values were derived from an 

uncorrected, two tailed, paired t-test. *p<0.05, **p<0.01. See also Supplementary Figures 

S1 and S2 and Supplementary Tables S1 and S2.
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Figure 3. Marker enrichment modeling identifies signature features of populations over the 
course of therapy.
Tissue-specific MEM labels were created for each cell population, from each patient, at each 

time point. (A) Median MEM labels are shown for PD-1+CD8+ T cells at each time point 

during therapy (top). ΔMEM labels were calculated by subtracting the median pre-therapy 

MEM scores from the median MEM scores at each time point. ΔMEM labels indicate the 

change in MEM value compared to pre-therapy (bottom). (B) Median MEM labels are 

shown for PD-1+CD4+ T cells at each time point during therapy (top). ΔMEM labels are 

shown for PD-1+CD4+ T cells from each time point during therapy (bottom). MEM values 

are represented as the median MEM value±standard deviation. (C) Biaxial plots of CD3 and 

CD8 are shown for PD-1+CD8+ T cells from representative melanoma patients (MB-004) 

undergoing anti–PD-1 therapy (left). Density: PD-1+CD8+ T cells, Contour: live CD45+ 

cells. Transformed (arcsinh5) CD3 median metal intensity (MMI) is shown for PD-1+CD8+ 

T cells at each time point during therapy [pre-therapy (0), n=10; 3 weeks (3w), n=10; 12 

weeks (12w), n=7; 6 month (6m), n=8; healthy, n=8]. Healthy PBMC donor CD8+ T and B 

cells are shown for reference. See also Supplementary TablesS1 and S2.
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Figure 4. MEM reveals that PD-1+ T cells from blood differ from those in the tumor.
(A) MEM labels were compared for each of the 112 populations (PD-1+ CD4+ and CD8+ T 

cells and B cells) from three human tissues. Populations were defined using traditional 

biaxial gates as in Supplementary Fig. S1. Tissue type and source are indicated in the bottom 

left. (B) Median MEM labels are shown for PD-1+ CD4+ and CD8+ T cells from each tissue 

type. MEM values are shown±standard deviation. (C) ΔMEM scores show the difference in 

median MEM scores between PD-1+CD8+ T cells (left) or PD-1+CD4+ T cells (right) in the 

peripheral blood and those found in the tumor or blood of healthy donors. See 

alsoSupplementary TablesS1 and S2.
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Figure 5. Ensemble immune analysis and automated gating identifies loss of peripheral blasts 
and increase in non-malignant immune cells in AML patients undergoing chemotherapy.
PBMCs from AML patients undergoing chemotherapy were characterized by mass 

cytometry. Equal numbers of live events from each sample were run together on a viSNE 

map. (A) EMD was calculated, pairwise, for all samples. Heat indicates magnitude of EMD 

value. (B) Populations were identified (right) by SPADE of cell density on t-SNE axes (left). 

(C) Frequency of populations identified in (B) was normalized to the pre-therapy frequency 

and compared using a paired t test. Populations with time points that significantly change 

from pre-therapy are shown in red. (D) Boxplots are shown for each significantly changing 

Greenplate et al. Page 23

Cancer Immunol Res. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



populations. Each population is labeled with a MEM label and an expert given name derived 

from the MEM label. (E) MEM labels from Population 13 were compared with the 80 

populations (CD4+ T cells and B cells) using RMSD (36). See also Supplementary Fig. S3 

and S4.
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Figure 6. Ensemble immune analysis identifies expansion of CD8 and CD4 double-negative T 
cells in tumors from patients treated with BRAF and MEK inhibitors.
Single-cell suspensions of melanoma tumor biopsies from before and after treatment with 

BRAF and MEK inhibitors were characterized by mass cytometry. (A) Equal numbers of 

live events (left) or T cells (right) from each sample were run together on a viSNE map. 

EMD was calculated, pairwise, for all samples. Boxplots show median, pairwise EMD 

values for listed comparisons. Unpaired student t test. *p<0.05. **p<0.01, ***p<0.001. (B) 

Changes in population frequency is shown for individual patients for each significantly 

changing population. Each time point after the start of therapy was compared to the pre-

therapy time point using a two-tailed, paired t test. *p<0.05. **p<0.01. (C) Median MEM 

labels are shown for double-negative (DN) pre-therapy and 4 weeks after therapy. A ΔMEM 

score shows the difference in median MEM scores DN T cells before and after the start of 

therapy. (D) MEM labels from tumor resident DN T cells were compared with SEB-

stimulated T cells from peripheral blood using RMSD. Median MEM scores for each tissue 
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are shown on the right. (E) Biaxial plots of all T cells from SEB-stimulated PBMCs (left) 

and activated T cells (CD69+, plots on right). (F) Biaxial plots of DN T cells from tumors of 

patients treated for 4 weeks with BRAFi and MEKi (left) and all T cells from (right). See 

also Supplementary Fig. S6 and S7, Supplementary Tables S1 and S2.
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