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Abstract

The inherent heterogeneity of tumor tissue presents a major challenge to nanoparticle-mediated 

drug delivery. This heterogeneity spans from the molecular (genomic, proteomic, metabolomic) to 

the cellular (cell types, adhesion, migration) and to the tissue (vasculature, extra-cellular matrix) 

scales. In particular, tumor vasculature forms abnormally, inducing proliferative, hypoxic, and 

necrotic tumor tissue regions. As the vasculature is the main conduit for nanotherapy transport into 

tumors, vasculature-induced tissue heterogeneity can cause local inadequate delivery and 

concentration, leading to subpar response. Further, hypoxic tissue, although viable, would be 

immune to the effects of cell-cycle specific drugs. In order to enable a more systematic evaluation 

of such effects, here we employ computational modeling to study the therapeutic response as a 

function of vasculature-induced tumor tissue heterogeneity. Using data with three-layered gold 

nanoparticles loaded with cisplatin, nanotherapy is simulated interacting with different levels of 

tissue heterogeneity, and the treatment response is measured in terms of tumor regression. The 

results quantify the influence that varying levels of tumor vascular density coupled with the drug 

strength have on nanoparticle uptake and washout, and the associated tissue response. The drug 

strength affects the proportion of proliferating, hypoxic, and necrotic tissue fractions, which in 

turn dynamically affect and are affected by the vascular density. Higher drug strengths may be able 

to achieve stronger tumor regression but only if the intra-tumoral vascular density is above a 

certain threshold that affords sufficient transport. This study establishes an initial step towards a 

more systematic methodology to assess the effect of vasculature-induced tumor tissue 

heterogeneity on the response to nanotherapy.
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INTRODUCTION

Although nanoparticle-mediated drug delivery offers the promise of more targeted and 

effective treatment of cancer, few of the myriad of formulations evaluated in the laboratory 

have reached clinical application. Major hurdles have included concerns about toxicity, 

lower than expected efficacy, and off-target effects 36. In particular, the tumor 

microenvironment can present a formidable barrier that not only hinders the transport of 

drug molecules but also that of nano-sized vehicles 20, 39, 45. In order to be effective, 

nanoparticle-mediated drug delivery needs to avoid uptake by the reticulo-endothelial 

system (RES), utilize the vascular network to preferentially reach the tumor site and 

penetrate into cancerous tissue, diffuse through the extra-cellular matrix (ECM) mesh of 

proteins, remain close or be uptaken by the cancer cells, and efficiently release the payload 

of drug molecules to achieve cytotoxicity. To address these requirements and increase the 

efficacy of chemotherapy, nanoparticles can be functionalized in various ways to help reduce 

systemic distribution and avoid intrinsic cellular resistance mechanisms 1, 25. Yet 

uncoordinated angiogenic stimuli by cancer and stromal cells in the tumor 

microenvironment induce a heterogeneous vascular response, characterized by tortuous 

vessels with abnormal structure and irregular flow 22, 37. The inadequacy of the vascular 

network promotes intra-tumoral tissue regions with heterogeneous proliferative, hypoxic, 

and apoptotic states, while severely impairing the transport of and the response to 

systematically-administered drugs and nanoparticles.

The efficacy of nanoparticles in cancer treatment is typically evaluated with in vitro and in 
vivo experimental models, indispensable for pre-clinical evaluation. However, in vitro 
models lack key features of cancerous tissue found in vivo, including a vascular network, 

while in vivo models present challenges due to systemic interactions that may be difficult to 

tease apart. As a complement to these experimental approaches, computational simulation of 

cancer nanotherapy has aimed to provide the capability for system-level analysis 
9, 16, 18, 19, 24, 27–30, 43, 44, 46. In particular, we have recently studied via mathematical 

modeling the extravasation, uptake, and distribution of nanoparticles subject to 

heterogeneous tumor tissue and vascular conditions 5, 6, 40.

The distribution and penetration of 2- and 3-layered gold nanoparticles were recently 

evaluated in vitro 14 and in vivo 12. The purpose of these nanoparticles was to increase 

chemotherapy efficacy 10, 13 via enhanced distribution and penetration into heterogeneous 

tumor tissue. The 3-layer gold nanoparticles were functionalized with phosphatidylcholine, 

hexadecanethiol and high-density lipoprotein 14. Computational modeling was employed 5 

to simulate the performance of these nanoparticles in vivo given measurements in vitro, with 

the goal to begin bridging the gap from the pre-clinical to the clinical setting. The model 

parameters were set from experimental measurements with 2D and 3D cultures of A549, 

H358, and PC9 Non-Small Cell Lung Cancer (NSCLC) cells 13, 14.

In this study, computational simulation is employed to evaluate the role of vascular density-

induced heterogeneity on the distribution of 3-layered gold nanoparticles in tumor tissue and 

the associated drug release. Small metastatic lesions are simulated in a well vascularized 

organ, such as the lung, and cisplatin is chosen as the model drug. The nanoparticle 
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effectiveness is evaluated for tumors of various blood vessel densities after bolus 

administration of the drug loaded nanoparticles. The fractions of control are defined to be 

the smallest tumor size after nanoparticles are introduced into the system divided by the 

tumor size immediately before the start of treatment. Tumor therapy is simulated with 

various drug inhibitory concentrations calibrated to achieve a 50% reduction in tumor size 

(IC50) at four timepoints (24hr, 48hr, 72hr, 96hr) post treatment initiation, thus respectively 

defining four levels of decreasing drug strength. This work represents a first step towards 

quantifying tumor response to drug-loaded nanoparticles based on vascular-network induced 

tissue heterogeneity.

MATERIALS AND METHODS

Nanoparticle Synthesis and Characterization

Three-layered nanoparticles were previously created in 14. Briefly, citrate-stabilized gold 

nanoparticles were synthesized by reducing chloroauric acid with trisodium citrate 15. The 

first layer applied was 1-Hexadecanethiol (TL), followed by phosphatidylcholine (PC), and 

then HDL. Nanoparticles were characterized via extinction spectra using ultraviolet-visible 

(UV-Vis) spectrometry, zeta potential measurements, DLS (dynamic light scattering) to 

determine hydrodynamic size (intensity distribution) in solution, determination of shape and 

size with scanning electron microscopy (SEM), and confirmation of presence of lipids on the 

particle cores using a Fourier transform infrared (FTIR) instrument. Cisplatin (7.5 mg) was 

then added to the nanoparticles in solution and allowed to react for 2 h 14.

Experimental Nanoparticle Data

The 3-layer gold nanoparticles were previously characterized as having a maximum 

wavelength of 5.35 nm, a hydrodynamic diameter of 80.2 ± 12.4 nm, and a zeta potential of 

−6 mV 5. Cisplatin loading efficiency was 78.9 ± 0.7% 5. The nanoparticles released 59.1 

± 2.0% of drug within the first 3 hours, 76.7 ± 1.84% within 48 h, and 78.9 ± 2.1% by 96 h 
13.

Experimental Cytotoxicity Data

As described in 14, A-549 cells were maintained in standard culture conditions, and used to 

form 3D tumor spheroids. Cytotoxicity was first measured in 3D cell culture with free drug 

at varying concentrations (1024, 256, 64, 16, 4, 1, 0.25, 0.0625 µM) for 48 h. The spheroids 

were exposed to varying concentrations of drug-loaded nanoparticles calculated by 

considering two parameters: (1) the loading efficiency from HPLC data showing the exact 

concentration of drug encapsulated onto the nanoparticles 13 and (2) the percent of drug 

released over the 48-hour period.

Computational Modeling

1. Tumor Growth—The tumor growth component is based on 34, 47, for which tumor 

tissue is divided into three regions: a proliferating region where cells have sufficient oxygen 

and nutrients to proliferate, a hypoxic region where cells have sufficient oxygen and 

nutrients to survive but insufficient for proliferation, and a necrotic region where cells lack 
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sufficient oxygen and nutrients for survival. The tumor growth velocity vc follows a 

generalized Darcy’s Law 34:

vc = − μ∇P + χE ∇E, [Equation 1]

where μ is cell-mobility, P is oncotic pressure, χE is haptotaxis, and E is the density of the 

extracellular matrix (ECM). Refer to 34 for a more detailed description of E and χE. The 

overall tumor growth can be associated with the rate of volume change by assuming that the 

cell density within the proliferating region remains constant:

∇ ⋅ vc = λp, [Equation 2]

where λp is the net proliferation rate (described below).

2. Angiogenesis—The angiogenesis component is based on 35 to represent blood flow, 

vascular leakage and vascular network remodeling resulting from wall shear stress and 

mechanical stress imposed by the tumor tissue as it spatially evolves in time. Briefly, as the 

tumor grows within a vascularized environment, the tissue has access to oxygen and 

nutrients diffusing from the vasculature. The interstitial flow of oxygen and nutrients is 

influenced by tissue pressure and by distance from the nearest vessel. Refer to 34, 47 for a 

more detailed description of the angiogenesis model.

3. Transport of oxygen and nutrients—Oxygen and nutrients σ are transported to the 

tumor from the location of extravasation from the vasculature. The extravasation λev
σ

represents the rate that σ are supplied from the vasculature. These substances, diffusing with 

diffusivity Dσ, are taken up by host tissue, proliferating tumor regions and hypoxic tissue 

with rates λhost
σ , λtumor

σ , and qs, respectively, and decay with rate λN
σ  in the necrotic region. 

Under steady-state conditions, the formulation of oxygen and nutrient uptake and decay is 
34, 44, 47:

0 = ∇ ⋅ Dσ ∇σ + λev
σ x, t, 1vessel, pi, σ, h − λσ σ σ, [Equation 3]

where x is position, t is time, 1vessel is the characteristic function for the vasculature (equals 

1 at vessel locations and 0 otherwise), pi is interstitial pressure, h is the hematocrit in the 

vascular network, and λσ is the rate of uptake and decay of σ as defined above 34. 

Extravasation is modulated by the extravascular interstitial pressure pi, scaled by the 

effective pressure pe. The weight of the convective transport component of small molecules 

is kpi
 44:
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λev
σ = λev

σ 1vessel x, t ( h
HD

− hmin)
+

(1 − kpi

pi
pe

) 1 − σ [Equation 4]

HD and hmin are constants that represent the normal and minimum hematocrit necessary for 

oxygen extravasation, respectively. λev
σ  represents the constant transfer rate from pre-existing 

and tumor-induced vessels.

4. Transport of nanoparticles—Nanoparticle transport s through the tumor tissue is 

simulated from the point of extravasation from the vasculature. The uptake rate of 

nanoparticles by host and tumor cells is λuptake
s  44, 46:

∂s
∂t = ∇ ⋅ Ds∇s + λev

s x, t, 1vessel, pi, s − λuptake
s s . [Equation 5]

Under the assumption that the transfer rate λev
s  from vessels is constant, nanoparticle 

extravasation is: represented by 44, 46:

λev
s = λev

s 1vessel x, t (1 − kpi

pi
pe

)(
Ct

s

Cs − s), [Equation 6]

where diffusion of particles into the tumor tissue is modulated by the interstitial pressure 44. 

Particle extravasation is assumed to be Ct
s = Cse−αt, where Cs is the initial concentration 44. 

The extravasation is concentration dependent, simulating first order kinetics. The decay 

constant α is measured from previous in vivo experiments, in which the particle half-life is 

estimated to be 12 hours 11. The diffusivity Ds was calibrated from the combination of 

nanoparticle charge and size properties, based on measurements obtained in vitro 14.

5. Transport of drug—Drug G is released at the point of extravasated particles and 

diffuses through the tumor tissue with diffusivity DG. The rate λdecay
G  combines the effects of 

drug uptake by tumor and normal cells and the wash-out from the interstitial space, and 

reflects the half-life of the drug 5:

∂G
∂t = ∇ ⋅ DG∇G + λrelease

G t, s − λdecay
G G . [Equation 7]

The drug release λrelease
G  from the particles is approximated by 5:
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λrelease
G = sCt

G . [Equation 8]

Ct
G is the release of drug, fitted in time to follow the results obtained from the in vitro 

experiments in 13. The drug release rate thus combines the effect of particle concentration 

and the drug release profile. All diffusion equations are subject to the boundary condition 
∂B
∂n = 0 where B is the diffusible substance.

6. Drug effect on tumor—Cisplatin is a cell cycle dependent drug; hence, its cytotoxic 

effect is only exerted on proliferating cells. Drug effect is included into the proliferation 

term λp, where λe f f ect is the rate of drug-induced cell death 46:

λp =

0 outside the tumor
λMσ 1 − λeffectG − λA in proliferating tissue
0 in hypoxic tissue
−GN in necrotic tissue

. [Equation 9]

Here, λA is the apoptosis rate, λM is the mitosis rate, and GN is the non-dimensional rate of 

volume loss in the necrotic tumor core (assuming that cellular debris is constantly degraded 

and the fluid is removed34). This pharmacodynamic model assumes that cell proliferation 

and apoptosis rates are similar before and after drug therapy, and that cell death is 

instantaneous.

7. Calibration of Rate of Drug-Induced Cell Death—The model parameters for 

oxygen, drug effect and tumor growth were calibrated using data obtained experimentally 

with NSCLC tumor spheroids to find an 48hr IC50 for simulated avascular spheroids (in 
vitro simulations) 14. A detailed description of the in vitro experiments used to calibrate the 

simulations can be found in 5, which includes the synthesis, functionalization, 

characterization, drug loading, and drug release of the nanoparticles and cytotoxicity 

experiments in 2D and 3D cell cultures. The free drug concentration after 48 h of exposure 

was set based on the data from our previous study 5. The drug effect was determined via 

interpolation (running multiple simulations with different values) to obtain a tumor that had 

shrunk by half within the 48h of simulated drug exposure. This value was assigned the units 

of the drug concentration that had achieved the 50% regression with the tumor spheroids in 

the experiments in vitro 5. The 24hr, 72hr, and 96hr IC50 avascular treatment drug 

concentrations were scaled by the same proportion as the change in the drug effect. The 

trapezoid method was used to calculate the corresponding areas-under the-curve (AUC’s) to 

quantify the avascular IC50’s. Thus, the AUC’s are proportional to the drug effect at each 

IC50.

8. Tumor Tissue Heterogeneity—The values for drug-induced cell death used for the 

avascular IC50’s were employed in therapy simulations with vascularized lesions 
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(simulations of in vivo condition). To link the differences in drug effect to the effects of 

heterogeneous vascularization density, the in vivo simulations used the same nanoparticle 

concentration in a bolus dose as was needed in the in vitro simulations to achieve the IC50. 

Simulated tumors were grown to the same initial radius of 0.57 mm with the same pre-

existing vessel densities, but different oxygen thresholds for hypoxia and necrosis. In vivo 
simulations were run for a sufficient amount of time to obtain the smallest tumor radii 

following NP bolus injection, and were used to compare the efficacy of cisplatin-loaded 

nanoparticles among the various cases. The tumor blood vessel density was calculated by 

dividing vessel surface area (vessel length x vessel cross sectional area) by the tumor area. 

The tumor, nanoparticle, and drug main parameters and their values are summarized in Table 

1.

Four levels of tissue heterogeneity were obtained, respectively labeled VERY LOW, LOW, 

MEDIUM and HIGH, by varying the angiogenesis-induced tissue vascularization based on 

the response to tumor angiogenic factors (TAF) released in proportion to the tumor tissue 

hypoxic level. In Table 2, the hypoxic threshold defines the oxygen level at which tissue 

becomes hypoxic (quiescent but still viable) and ceases to proliferate, while the necrotic 

threshold defines the oxygen level at which the tissue becomes necrotic (not viable).

The values for HIGH were based on the previously calibrated tumors simulated in 47, set so 

that the vasculature network provides sufficient oxygen (σ ranging from 0.76 to 1.00) to 

support normal tissue metabolism. These values led to a highly vascularized tumor 

microenvironment and, consequently, to high tissue heterogeneity. At the other end of the 

spectrum, the values for VERY LOW were chosen so that no more than 95% of the tumor 

was proliferating. In this case, vascularization was minimized along with the tissue 

heterogeneity. The intermediate LOW and MEDIUM conditions were defined by growing 

tumors to the same size and finding values for these thresholds so that the respective 

proliferative fractions were incrementally in between the VERY LOW and HIGH cases.

9. Numerical Methods—The numerical implementation is detailed in 47 and references 

therein. Briefly, in all equations that involve a diffusion term, a fully nonlinear diffusion 

solver was used to solve the equation, u t = ∇ D(u, x, y ⋅ ∇ u + source u, x, y . The equations 

were discretized in space using centered finite difference approximations and the backward 

Euler time-stepping algorithm. The equations were then solved using a nonlinear adaptive 

Gauss-Seidel iterative method 32, 33. This system of equations was iteratively solved together 

to steady state at each timestep, to obtain the concentration of diffusible elements and the 

tumor oncotic pressure. The level set method was used to update the tumor viable/necrotic 

region as well as the interfaces between the tumor viable–necrotic and tumor–host tissue 

regions. The model implementation in C/C++ was run on a Asus PC with an Intel Core i7 

processor and 24 Gb RAM.

RESULTS

Simulation of heterogeneous tumor growth

Tumors were first grown to the same size under the conditions of VERY LOW, LOW, 

MEDIUM and HIGH heterogeneity, as defined in Table 2. The simulated tumors during the 
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initial growth phase are shown in Figure 1. Depending on the level of heterogeneity, this 

growth took varying amounts of time, with the HIGH case taking the longest (22.7 simulated 

days). The tissue heterogeneity is characterized in Figure 2 as a function of the tumor radius. 

Lower oxygen thresholds for hypoxia and necrosis, as in the case of VERY LOW 

heterogeneity, allow the tumor to have more proliferative tissue because a lower 

concentration of oxygen/nutrients is required for the tissue to thrive. In cases of higher 

oxygen thresholds, as with HIGH heterogeneity, more oxygen is required for the tissue to 

thrive. The angiogenesis component of the model is thus activated to generate more blood 

vessels, which supplies the tumor tissue with increased oxygen and nutrients. Angiogenesis 

is stimulated by the concentration of tumor angiogenic factors, which are released by the 

tumor hypoxic regions. Tumors with a higher fraction of hypoxic tissue (higher oxygen 

threshold), as in the case of HIGH heterogeneity, would be expected to release more tumor 

angiogenic factors.

While the intra-tumoral vessel density initially increased for the VERY LOW and LOW 

cases, it plateaued for radii beyond 0.40 mm (Figure 2A). In contrast, the density for 

MEDIUM and HIGH conditions first decreased for radii below 0.31 and 0.28 mm, 

respectively, before becoming larger. The angiogenesis model was calibrated in previous 

work 47 based on experimental data of tumor growth, and these results are consistent with 

this calibration. The proliferative tissue fraction corresponding to these vascular densities 

indicates that for a radius of 0. 57 mm at the start of treatment, these fractions were 0.96, 

0.82, 0.68, and 0.55 for VERY LOW, LOW, MEDIUM and HIGH conditions, respectively 

(Figure 2B). At this radius, the hypoxic tissue fractions were correspondingly lower, at 0.02, 

0.05, 0.10, and 0.20 (Figure 2C), while the necrotic fractions were 0.01, 0.12, 0.22, and 0.25, 

respectively. Compared to the more stable values for the proliferating and hypoxic fractions 

as the tumor radius increased, the necrotic fractions (Figure 2D) (except for the VERY LOW 

condition) exhibited an initial steep increase followed by a gentle decline past 0.350 mm as 

the proliferating portion slowly started gaining in value. The proliferating fractions increased 

while the necrotic fractions decreased due to the higher vessel density (more oxygen being 

transported into the tissue as it grew; Figure 2A). The hypoxic fractions remained relatively 

stable over time due to the level of angiogenic activity, as previously calibrated. The tumor 

viable (proliferating and hypoxic) fractions at the start of treatment are summarized in Table 

3.

Calibration of drug effect

A simulated tumor growing in the dish in vitro, surrounded by plentiful oxygen and 

nutrients, is shown in Figure 3A. This in silico tumor was exposed after 30 d to drug for 48 h 

to determine the value for the drug effect λe f f ect to achieve a 50% reduction in tumor size 

(Figure 3B). A range of area-under-the-curve values was obtained for different exposure 

times, as described in Methods, and summarized in Table 4.

Simulation of nanoparticle-mediated drug delivery

Representative simulation images of vascularized tumors at the start of treatment (the time 

immediately after the bolus injection) with the various levels of tissue heterogeneity are 

shown in Figure 4. As the heterogeneity increases from VERY LOW to HIGH, the 
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penetration and spatial distribution of nanoparticles and the drug released from them 

correspondingly becomes more heterogeneous. The deepest nanoparticle penetration is 

achieved with the VERY LOW case, for which the drug release is concentrated in the inner 

core of the tumor. In contrast, in the HIGH case the nanoparticles become stuck in the tumor 

periphery, unable to penetrate into the tissue. This is consistent with previous modeling work 

showing that tumor tissue heterogeneity leads to inhomogeneous small molecular and 

nanoparticle distribution, with the highest concentrations occurring on the periphery 8, 17. 

Interestingly, although in the LOW case the nanoparticles penetrate deeper, their 

concentration is more heterogeneously distributed than in the MEDIUM case, suggesting 

that the relationship between heterogeneity and nanoparticle penetration is not linear 8, 17.

It is to be noted that the spatial distribution of the neo-vasculature in the simulations (e.g., as 

in Figures 1 and 4) is stochastic because randomness is built into the method of migration of 

the endothelial cells along the gradient of angiogenic factors 34, 47, in order to more 

accurately simulate the angiogenesis process. Hence, running multiple simulations using the 

same parameters will result in tumors with slightly different vasculature layouts and tissue 

fractions. These differences are very small, and running multiple simulations (n=3) with the 

same parameters has confirmed that there is no significant difference between the obtained 

results.

The nanoparticle concentration within tumor tissue for each value of the drug strength 

(respectively based on 24, 48, 72, and 96 h IC50 values in vitro) is shown in Figure 5. The 

initial sharp increase in nanoparticle concentration reflects the bolus injection of 

nanoparticles into the system. In the case of the 24 h IC50 value, the concentrations are 

similar regardless of level of tissue heterogeneity, with an initial sharp peak at 2.5 h post-

treatment initiation followed by a sharp drop to 35% of initial concentration within 4 h. The 

concentration then declines slowly afterwards, to 10% of initial by 30 h. For the other three 

drug strengths, the LOW case exhibits the highest concentration of nanoparticles overall, 

with 30% still in tissue after 30 h. For the 48h IC50 case, the VERY LOW case retains the 

second highest concentration, while for both 72 and 96 h, it is similar to the MEDIUM and 

HIGH conditions, decreasing to 20% of initial value by 30 h. Noticeably, the nanoparticle 

concentrations are more heterogeneous in time for the 48 and 72 h cases, while the 24 and 

96 h evince more consistent profiles. This suggests that the drug strength is also a key 

parameter that influences the nanoparticle concentration as the tissue responds temporally 

and spatially to the drug, and is consistent with recent findings from an optimization model 

applied to this tumor model system 3.

The drug release from the nanoparticles within the first 4 h for the various drug strengths is 

shown in Figure 6. Consistently, the highest concentrations were achieved for HIGH tissue 

heterogeneity and the lowest for the VERY LOW heterogeneity. The 24 h IC50 strength 

exhibited the greatest differential between the various levels of heterogeneity, with 7 μM for 

HIGH and 5 μM for VERY LOW, in contrast to the 96 h IC50, which evinced 1 μM for 

HIGH and 0.75 μM for VERY LOW.

The area-under-the-curve (AUC) for the nanoparticles within tumor tissue is shown in 

Figure 7. For all IC50 conditions, the lowest values were obtained for the HIGH level of 
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heterogeneity, while the highest values were obtained for the LOW level. At this level, the 

72 h IC50 predominated overall at 1750 %initial.h. In contrast, the highest AUC for the 

other levels were achieved for the 96 h IC50, with 1530 for VERY LOW, 1410 for 

MEDIUM and 1380 %initial.h for HIGH conditions, respectively. These inhomogeneous 

outcomes reflect the variations in concentration as shown in Figure 5. In contrast, the 

intratumoral AUC for the drug released from them had a more consistent pattern across the 

levels of heterogeneity and drug strength (Figure 7B), following the levels of drug release 

(Figure 6). The 24 h IC50 evinced the highest values overall, increasing from 9.6 μM.h to 

13.1 μM.h for the VERY LOW and HIGH levels, respectively. The values for the other drug 

strengths followed a similar increasing trend but with lower values, ranging for the VERY 

LOW to HIGH levels from 3.5 to 4.7, 2.1 to 2.8, and 1.5 to 2.0 μM.h for the 48, 72, and 96 h 

IC50 strengths, respectively. Thus, the 96 h IC50 had the lowest drug AUC values.

Figure 8 shows the minimum tumor radius achieved for each level of tissue heterogeneity, as 

a function of the intratumoral drug AUC. In all cases, there was a nearly linear relationship 

between tumor radius and AUC, with radius decreasing as the AUC values increased. The 

largest radius reduction was achieved by the VERY LOW case with the 24 h IC50 drug 

strength, yielding 52% shrinkage from the initial tumor radius, while the smallest decrease at 

this drug strength was 41% for the MEDIUM case. On the other hand, the 96 h IC50 drug 

strength was equally ineffective across all levels of heterogeneity, achieving at best a 9% 

reduction in tumor radius for the HIGH case. This information is summarized in Figure 9, 

highlighting the decrease in tumor radius for the different drug strengths across the four 

levels of heterogeneity. While higher drug strengths, as represented by lower IC50 values, 

yielded higher response, the magnitude of this response was dependent on the level of tissue 

heterogeneity.

Figure 10 shows the minimum tumor radius as a function of drug strength dependent on the 

size of the tumor tissue viable (proliferating and hypoxic) fraction and intratumoral vascular 

density, both calculated at the start of the treatment. As expected, as the drug strength 

increases (represented by lowering IC50 values), the tumor regression is correspondingly 

higher. For the highest strength (24 h IC50), this regression was maximized by higher values 

of the viable tumor tissue fraction (Figure 10A) and lower values of the intratumoral 

vascular density (Figure 10B), together representing lower tumor heterogeneity. For the 

other drug strengths, the regression was less dependent on viable fraction and vascular 

density.

DISCUSSION

This study builds upon previous experimental 13, 14 and modeling work 5 to evaluate the 

effect of vascular density-driven tissue heterogeneity on NSCLC tumor response to cisplatin 

delivered via 3-layered gold nanoparticles. As such, this work represents a first step towards 

the development of a principled approach to predict nanotherapy efficacy using patient-

tumor-specific characteristics, such as proliferative index and vascular density. Tumors with 

different intra-tumoral vascular densities (Figure 1) were first generated in silico by varying 

the oxygen thresholds for hypoxia and necrosis to yield different proportions of 

proliferating, hypoxic and necrotic tissue (Figure 2), thus defining various levels of tissue 
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heterogeneity. Next, using experimentally-obtained data with 3-layered gold nanoparticles 

loaded with cisplatin 13, 14, the magnitude of the drug effect in silico was calibrated for 

inhibitory drug concentrations to achieve 50% tumor tissue remission over 24, 48, 72, and 

96 h (Figure 3). The simulated vascularized tumors were then treated with these drug 

concentrations. Figure 4 illustrates the nanoparticle and drug concentrations at the time 

immediately following bolus injection in Figure 5, showing representative images of these 

concentrations within the tumor tissue with various levels of heterogeneity. In Figures 5 

through 10, the information is summed over the whole tumor space for each case of drug 

strength and tumor heterogeneity. The resulting inhomogeneous intratumoral nanoparticle 

and drug AUC values (Figure 7) yield correspondingly heterogeneous tumor regressions 

(Figures 8, Figure 9). This system was then used to determine the expected tumor size based 

on the fraction of viable tumor tissue and intratumoral vascular density (Figure 10).

The results show that tumor vascular density coupled with the drug strength non-trivially 

influences the nanoparticle uptake and washout (Figure 5), and the associated tissue 

response (Figure 8). The regions of the system with high vascular density also have locally 

high nanoparticle and drug concentrations. Although regression generally correlated with 

drug strength, the level of vasculature-driven tissue heterogeneity additionally modulates this 

regression. The drug strength affects the proportion of proliferating, hypoxic, and necrotic 

tissue fractions, which in turn dynamically affect and are affected by the vascular density. 

The drug strength was varied in the model through the “drug effect” term, which is related to 

the pharmacodynamic model that drives the tumor growth. The simulations help to quantify 

the nonlinear relationship between drug strength and response, showing that the response 

becomes more insensitive to variation in the drug strength as this strength decreases or the 

tissue heterogeneity increases (Figure 9). Higher drug strengths may be able to achieve a 

stronger tumor regression but only if the intra-tumoral vascular density is below a certain 

threshold (Figure 10B). In contrast, drug strengths of lower magnitude may yield similar 

responses regardless of vascular density. Since drug strength is a key clinical parameter 

underlying both response and systemic toxicity, the overall results support the notion that 

drug strength remains a critical modeling parameter for predictive evaluation. This is 

consistent with recent modeling work that combined an optimization approach to determine 

optimal nanoparticle sizes for maximum tumor regression 3.

This modeling platform, while supporting the intuitive outcome that tumor heterogeneity 

and drug strength influence the tumor response, provides a means to quantify the 

understanding of these effects, e.g., to help define nanoparticle formulation and delivery 

methods. For instance, if tumor heterogeneity could be measured in terms of vascular 

density, drug efficacy in cases of higher drug strength is predicted to be highest against 

tumors with the lowest levels of heterogeneity (Figure 8 and Figure 9). In this case, the 

viable tissue fraction remains the same as at the start of treatment while the tumor shrinks, 

since most of the tumor is proliferating (Figure 2B) and responsive to the drug. When using 

weaker drug strengths, in contrast, drug efficacy is predicted highest against tumors with 

high vascular heterogeneity. In this case, a smaller viable fraction lessens the tissue 

responsiveness. Future work examining the balance between tumor vascular heterogeneity 

and nanotherapy efficacy is expected to further help elucidate the underlying mechanisms in 

order to maximize the tumor response for specific drug strengths and vehicle formulations.
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This study establishes a more systematic methodology to assess the effect of tumor tissue 

vascular density on the response to nanotherapy. With specific tumor- and nanotherapy-

parameter values, the system could be expanded to evaluate other types of nanoparticles and 

drugs. In particular for non-small cell lung cancer (NSCLC), parameters such as vascular 

density could be measured via imaging or histological analysis 31. Vascular permeability and 

blood volume could be quantified by positron emission tomography 4. Additionally, there 

exist methods for detecting tumor hypoxia, including the detection of hypoxia-induced 

proteins 2, 48. The concept of manipulating the vascular density to achieve improved 

response (e.g., “vascular normalization” 23), as has been tried for NSCLC with small 

molecule tyrosine kinase inhibitors or monoclonal antibodies that target VEGF 21, may find 

further utility if coupled with consideration of the chemotherapeutic drug strength. 

Clinically, angiogenesis inhibitors have been shown to improve overall survival when 

combined with standard first line and second line therapy 21. In cases where tumor vascular 

density were predicted by the model to be inadequate for a desired level of response, 

manipulation of angiogenesis might be explored as a means to change this density to 

augment the nanotherapy efficacy.

The interaction between vasculature, cells, nanoparticles, and drug molecules is a complex 

kinetic process in need of further consideration by computational modeling and simulation 

studies. Recently, a vascularized tumor model system evaluated the drug kinetics of 

combination chemotherapy among various cellular compartments 7. Future studies could 

combine drug kinetics with a nanoparticle delivery model. The model used herein simulates 

cell death as an instantaneous process. However, cell cycle dependent drugs such as cisplatin 

rely on processes that may take several hours before cytotoxic effects are realized 41. Thus, 

accounting for the delay in the drug cytotoxic action may yield more accurate results. 

Additionally, there are several well characterized drug resistance mechanisms, such as 

decreased intracellular transport, enzymatic deactivation, and alteration in proteins involved 

in apoptotic pathways 42.These mechanisms could be integrated to create a more 

comprehensive pharmacodynamics model, with the ultimate goal to predictively determine 

optimal nanotherapy customized to patient-specific tumor vasculature conditions.
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Figure 1. 
Simulation of tumor nodules growing in time with different levels of vasculature-induced 

tissue heterogeneity. Red color denotes the proliferating region, blue indicates hypoxia, and 

brown means necrosis. The pre-existing capillary grid is shown as rectangular lines along 

with irregular sprouts growing from them due to the angiogenesis process. Bar: 250 μm.
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Figure 2. 
Characterization of tumor tissue heterogeneity, defining the four levels of heterogeneity in 

this study. (A) Intra-tumoral vascular fraction (vascular surface area divided by tumor area); 

(B) Proliferating fraction; (C) Hypoxic fraction; (D) Necrotic fraction.
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Figure 3. 
Simulated tumor growing in avascular conditions in vitro. Red: proliferating tissue; blue: 

hypoxic tissue; brown: necrotic tissue. Bar: 250 μm.
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Figure 4. 
Representative simulation images of vascularized tumors with various levels of 

heterogeneity shown at the start of treatment (immediately after bolus injection) with 

cisplatin-loaded nanoparticles. At this time, nanoparticles and drug can be seen within the 

system but the tumor tissue has not yet responded to the effect of the drug. Red: proliferating 

tissue; blue: hypoxic tissue; brown: necrotic tissue. Bar: 250 μm.
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Figure 5. 
Nanoparticle concentration (as a percent of initial amount) within tumor tissue after 

injection, for each level of tissue heterogeneity at the various IC50-based drug strength 

values.
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Figure 6. 
Drug release from nanoparticles within the first 4 h after injection for each level of tissue 

heterogeneity at the various IC50-based drug strength values. As the half-life for cisplatin is 

30 min, values beyond 4 h are negligible.
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Figure 7. 
AUC values for intratumoral accumulation of (A) nanoparticles and (B) drug. Drug strength 

increases with shorter IC50 times.
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Figure 8. 
Minimum tumor radius for each level of tissue heterogeneity as a function of the 

intratumoral drug AUC. The points along each curve represent, from left to right, 96, 72, 48, 

and 24 IC50-based drug strength values (AUC increases with shorter IC50 times).

Miller and Frieboes Page 23

Ann Biomed Eng. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 9. 
Minimum tumor radius achieved during therapy as a function of drug strength and tissue 

heterogeneity (strength increases with shorter IC50 times).
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Figure 10. 
Minimum tumor radius achieved during treatment as a function of drug strength dependent 

on (A) size of tumor tissue viable (proliferating and hypoxic) fraction and (B) intratumoral 

vascular fraction (vascular surface area divided by tumor area), both calculated at the start of 

the treatment. The tumor vasculature-induced tissue heterogeneity increases from VERY 

LOW (leftmost point) to HIGH (rightmost point), while the drug strength increases with 

shorter IC50 times.
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Table 1:

Computational model main parameters and associated values. All other model parameters are as in 47.

Parameter Value Reference

Tumor proliferation rate (λp ) 1 day−1 Measured in 5

Oxygen diffusivity (Dσ) 1 (*) 47

Oxygen transfer rate from vasculature

λev
σ 5 (*) 47

Oxygen uptake rate by proliferating tumor

cells λtumor
σ 1.5 (*) 47

Oxygen uptake rate by hypoxic tumor cells
(qs)

1.3 (*) 47

Oxygen uptake rate by tumor

microenvironment λhost
σ 0.12 (*) 47

Oxygen decay rate (λσ) 0.35 (*) 47

NP extravasation from angiogenic vs.

normal vessels λev
s

10 Estimated

NP diffusivity (Ds) 0.3 (*) 14

NP decay (α) 12hr half-life Estimated

CDDP diffusivity (DG) 0.6 (*) Estimated

CDDP drug effect λe f f ect
27, 9.45, 5.6, 4.0
(for 24, 48, 72,
and 96 h IC50)

Calibrated to experimental
data

CDDP decay rate λdecay
−G 0.5hr half-life 26

CDDP release profile from NP Ct
G Data shown in

Figure 5B in 13
Measured in 13

CDDP in vitro IC50 (48 h) for A549 cells
(spheroid)

15.9 ± 1.2 μM Measured in 5

(*)
Value is rescaled by the square of the simulation system characteristic length (1 cm) and divided by the system characteristic time (1 sec) 

multiplied by the oxygen diffusivity 38 (1 × 10−5 cm2 s−1).

CDDP: cisplatin; NP: 3-layered gold nanoparticles characterized in 5, 13, 14.
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Table 2:

Definition of levels of tumor tissue heterogeneity based on the thresholds for inducing hypoxia and necrosis.

Level of Tissue Heterogeneity Tumor hypoxic threshold Tumor necrotic threshold

VERY LOW 0.305 0.300

LOW 0.405 0.400

MEDIUM 0.485 0.480

HIGH 0.575 0.570
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Table 3.

Tumor viable (proliferating and hypoxic) fractions at the start of treatment as a function of tissue 

heterogeneity.

Level of Tissue
Heterogeneity

Tumor Viable
Fraction

VERY LOW 0.98

LOW 0.87

MEDIUM 0.78

HIGH 0.75
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Table 4.

Area-under-curve (AUC) calculated for the IC50 obtained at four different ranges of time for a simulated 

tumor spheroid growing in in vitro conditions.

IC50 Range of Time AUC
(μM.h)

24hr IC50 1082

48hr IC50 760

72hr IC50 676

96hr IC50 644
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