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From a Sampling Precision
Perspective, Skewness Is a
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Abstract

Two recent publications in Educational and Psychological Measurement advocated that
researchers consider using the a priori procedure. According to this procedure, the
researcher specifies, prior to data collection, how close she wishes her sample
mean(s) to be to the corresponding population mean(s), and the desired probability
of being that close. A priori equations provide the necessary sample size to meet
specifications under the normal distribution. Or, if sample size is taken as given, a
priori equations provide the precision with which estimates of distribution means
can be made. However, there is currently no way to perform these calculations
under the more general family of skew-normal distributions. The present research
provides the necessary equations. In addition, we show how skewness can increase
the precision with which locations of distributions can be estimated. This conclusion,
based on the perspective of improving sampling precision, contrasts with a typical
argument in favor of performing transformations to normalize skewed data for the
sake of performing more efficient significance tests.
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The starting point for the present work is two recent articles, published in

Educational and Psychological Measurement, based on the assumption that research-

ers have an important stake in obtaining sample statistics that are good estimates

of corresponding population parameters (Trafimow, 2017; Trafimow & MacDonald,

1New Mexico State University, Las Cruces, NM, USA

Corresponding Author:

David Trafimow, Department of Psychology, New Mexico State University, P.O. Box 30001, MSC 3452, Las

Cruces, NM 88003-8001, USA.

Email: dtrafimo@nmsu.edu

https://sagepub.com/journals-permissions
https://doi.org/10.1177/0013164418764801
https://journals.sagepub.com/home/epm


2017). In the case of experimental research in education or psychology, researchers

often are interested in sample means as estimates of population means. It would be

desirable for researchers to have a way to choose sample sizes that engender confi-

dence that the sample means to be obtained will be close to the corresponding popula-

tion means. If the goal is to obtain sample means that are close to corresponding

population means, and to be able to be confident in the accuracy of the estimation,

Trafimow (2017) suggested a procedure to aid in the process. The procedure com-

mences with the researcher specifying, prior to data collection, how close she wishes

the sample mean to be to the population mean, and how confident she wishes to be of

being that close. The researcher then uses an appropriate equation to obtain the sam-

ple size needed to meet the specifications. Then comes the usual process: The

researcher performs the experiment with the required sample size (or a larger sample)

and computes the sample means. Finally, the researcher believes that the sample

means are good estimates of the population means. The justification for the belief is

that the conditions required were determined prior to data collection. That is, the deci-

sion to believe the data is made by the choice of sample size before the researcher

collects the data, as opposed to a significance test performed after the researcher sees

the findings. Hence, we have the a priori procedure.

In the case of a single group, where the researcher is interested in the group mean,

Trafimow (2017) provided a derivation of Equation 1, where f is the fraction of the

scale (also the standard deviation) that we are defining as close. For example, we

might wish to have our sample mean be within three tenths of a scale (also of a stan-

dard deviation) of the population mean. In addition, Equation 1 includes the critical

z-score that corresponds to the level of confidence the researcher wishes to have that

the sample mean really is within the specified distance of the population mean, sym-

bolized as zc. The critical z-score that corresponds to a desire to have 95% confi-

dence is 1.96.

n =
zc

f

� �2

: ð1Þ

As an example, suppose we wish to determine the minimum sample size needed to

be 95% confident that the sample mean is within 0.3 standard deviations of the popu-

lation mean. Using Equation 1, it is easy to find the answer: n = 1:96=0:3ð Þ2 = 42:68.

After rounding to the nearest whole number, we conclude that it is necessary to obtain

43 participants to have a 95% probability of obtaining a sample mean that is within

0.3 standard deviations of the population mean.

Trafimow and MacDonald (2017) showed how to generalize this work to cases

where there are multiple groups, and where the researcher is interested in multiple

means. It is not necessary to present the equations here. However, it is important to

note a limitation of both articles, which is the necessity to assume normally distribu-

ted populations. What if the population of concern is skewed? In that case,

Equation 1, or the equations presented by Trafimow and MacDonald (2017), may be

less useful. It would be desirable to be able to employ the a priori procedure even
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when the distribution is skewed rather than normal. For example, reaction time data,

arguably the staple of cognitive psychology, are notoriously skewed (Whelan, 2008).

So are distributions pertaining to income (Levy, 2008) and success on detection tasks

(Trafimow, MacDonald, & Rice, 2012). In applied areas, skewed distributions also

predominate. For example, Trafimow (2001) found that confidence in the accuracy

of normative perceptions pertaining to condom use are negatively skewed; 65% of

participants were ‘‘extremely confident,’’ with very few scores among the ‘‘not con-

fident’’ options. Continuing with applied social psychology, Stasson and Fishbein

(1990) studied relations among attitudes, subjective norms, and behavioral intentions

toward using seat belts under safe or risky driving conditions—all these distributions

are skewed. Using data from Mahler, Beckerley, and Vogel (2010), Valentine, Aloe,

and Lau (2015) found a skewed distribution for attitudes toward tanning. Skewed

distributions are the rule, not the exception (Blanca, Arnau, López-Montiel, Bono, &

Bendayan, 2013; Ho & Yu, 2015; Micceri, 1989).

Although our general goal is to demonstrate how to apply the a priori procedure

to the family of skew-normal distributions, of which the family of normal distribu-

tions is a subset, there also is a more specific goal. That is, researchers in educational

and psychological areas tend to be taught that skewness is deleterious and interferes

with the efficiency of statistical tests, especially parametric tests.1 Thus, educational

and psychological researchers are trained to perform a variety of transformations that

can be used to render the data more normal, for the conduction of more efficient sta-

tistical tests (e.g., Imam, 2006; Spencer & Chase, 1996; see also Greenwald, Nosek,

& Banaji, 2003). Put more colloquially, skewness is the enemy, to be defeated by

data transformations that normalize the data.2 In contrast, our goal is to demonstrate

that skewness increases the precision with which distribution locations can be esti-

mated. Thus, although we agree that normalizing often increases the efficiency of

statistical tests, the cost in precision may balance out, or more than balance out, that

advantage.3 Below, we bullet-list some popular transformations, where X refers to

the original variable and X 0 refers to the transformed variable:

� X 0 =
ffiffiffiffi
X
p

� X 0 = ln Xð Þ
� X 0 = log10 Xð Þ
� X 0 = log10 X + kð Þ (where k is a constant)
� X 0 =

ffiffiffiffiffiffiffiffiffiffiffiffi
k � X
p

� X 0 = log10 k � Xð Þ (where k is a constant, and k . X )

The Family of Skew-Normal Distributions

The normal distribution has two parameters: the mean m and the standard deviation

s.4 But because normal distributions are symmetrical, m also serves as a location

parameter and s also serves as a scale parameter. To deal with the skewed data, we
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need to add an extra parameter to the normal family, which is called the skew-normal

family.

A random variable Z is said to have a standard skew-normal distribution with

skewness parameter l, denoted as Z;SN lð Þ, if its probability density function (pdf)

is given by

f zð Þ = 2f zð ÞF lzð Þ, ð2Þ

where f �ð Þ and F �ð Þ are the pdf and cumulative distribution function (cdf) of the

standard normal distribution, respectively. The skew-normal density functions with

different skewness parameters are presented in Figure 1. Figure 1 illustrates that as

skewness deviates increasingly from zero, in either the positive or negative direction,

there is an increasing tendency for the distribution to become narrower.

Let Z;SN lð Þ, and consider the linear function of Z,

X = j + vZ: ð3Þ

Then the random variable X is said to have a skew-normal distribution with location

parameter j, scale parameter v, and shape parameter l, denoted as X;SN j, v2, lð Þ.
The pdf of X is given by

f xð Þ= 2

v
f

x� j

v

� �
F l

x� j

v

� �
: ð4Þ

The mean and variance are

E Xð Þ= j +

ffiffiffiffi
2

p

r
dv and V Xð Þ= v2 1� 2

p
d2

� �
,

Figure 1. A variety of skew-normal density curves are represented. The solid curve shows
the density function for standard normal distribution (l = 0, j = 0, v = 1:0). The density for
l = 2:0 is showed by the dotted curve. The star and cube curves are for densities with
skewness l =� 3:0 and l = 5:0, respectively.
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where

d =
lffiffiffiffiffiffiffiffiffiffiffiffi

1 + l2
p :

In contrast to the normal distribution, if the distribution is skew-normal, the mean

is not equivalent to the location; nor is the standard deviation equal to the scale.

There are three parameters that describe skew-normal distributions: location j, scale

v, and shape l. If l = 0, the distribution is normal, and then j = m and v = s. Stated

more generally, when the skewness is zero, the distribution is normal; thus, there is

no distinction between the location and the mean, nor between the scale and the stan-

dard deviation. However, when l 6¼ 0, the distribution is skewed, and it is more use-

ful to focus on location and scale than to focus on mean and standard deviation.

The Effect of Skewness on the Sample Size Needed for
Sampling Precision

As we have seen, when the distribution is skew-normal, the location parameter is

used instead of the mean (j replaces m) and the scale parameter replaces the standard

deviation (v replaces l). Most important, there is a shape (skewness) parameter l

that plays a central role in the argument to be made. As l deviates increasingly from

zero, the distribution is increasingly skewed. It is interesting to consider how the nec-

essary number of participants needed to meet specifications for closeness and confi-

dence changes, depending on the skewness parameter.

Unfortunately, there is no closed form expression for finding the necessary sample

sizes under different levels of skewness to meet specifications for closeness and con-

fidence, while minimizing the width of the interval around the location parameter j.

It is notable that when the distribution is skewed, the interval around the location

parameter is not symmetrical. Appendix A provides the derivation of the necessary

equations for numerically obtaining necessary sample sizes to meet various specifi-

cations for closeness f and confidence c, given the skewness of the distribution.

Appendix B provides R code.

Using Appendix A and solving numerically, we obtained the necessary sample

sizes to meet specifications where f (closeness or precision) was set at 0.1, 0.2, 0.3,

0.4, and 0.5, confidence level was set at 0.95 and 0.90, skewness was set at 0 (normal

distribution), 0.5, 1.0, 2.0, and 5.0. Figures 2 and 3 illustrate the findings.

Figure 2 illustrates the interaction of the desired precision f and skewness l, when

the confidence level is set at 0.95. Figure 2 shows five curves, each of which repre-

sents a different level of precision, with the topmost curve indicating the most preci-

sion ( f = 0.1) and the bottommost curve indicating the least precision ( f = 0.5).

Unsurprisingly and consistent with Trafimow (2017; Trafimow & MacDonald,

2017), as more precision is specified (going from bottom to top), more participants

are required to meet that specification.
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More important, as skewness l increases along the horizontal axis, the sample size

required to meet specifications for precision and confidence decreases! Thus, from

the point of view of gaining more precision for a lower cost in sample size, skewness

is positive rather than negative. We stress that although we used sample size n along

the vertical axis, to illustrate how skewness renders fewer participants necessary to

be confident that one’s sample location is close to the population location, we could

have used precision along the vertical axis. Had we done so, it would have shown

that, for any level of n, precision increases as skewness increases.

Third, there is an interaction whereby making l deviate more from 0 makes a

larger difference when more precision is desired than when less precision is desired.

Put more colloquially, skewness becomes increasingly friendly, relative to normality,

as the desired level of precision increases. We stress this interaction because as

Figure 2. The sample size (n) necessary to meet specifications for precision (f = 0.1, 0.2,
0.3, 0.4, or 0.5) and confidence (95%) is presented along the vertical axis as a function of
skewness along the horizontal axis. The nodes represent numerically obtained solutions for
particular levels of skewness (levels of skew at 0, 0.5, 1.0, 2.0, and 5.0).
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education and psychology scientists wish to become increasingly precise in their

experiments, skewness becomes increasingly friendly relative to normality.

Figure 3 differs from Figure 2 in that the desired confidence level was set at 0.90

rather than at 0.95. The most important effect of this decreased level of desired con-

fidence is that the sample sizes in Figure 3 are reduced relative to Figure 2.

Nevertheless, the same pattern emerges in both figures. That is, more precision

necessitates more participants, skewness reduces the number of participants neces-

sary to reach a specified level of precision, and the advantage of skewness relative to

normality is more important when greater precision is desired. Thus, Figures 2 and 3

both support our main point: If one wishes her sample data to accurately represent

the location of the population from which the sample came, skewness is a friend and

not an enemy.

Figure 3. The sample size (n) necessary to meet specifications for precision (f = 0.1, 0.2,
0.3, 0.4, or 0.5) and confidence (90%) is presented along the vertical axis as a function of
skewness along the horizontal axis. The nodes represent numerically obtained solutions for
particular levels of skewness (levels of skew at 0, 0.5, 1.0, 2.0, and 5.0).
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Simulation Results

We performed simulation results to support the derivation in Appendix A, and

Appendix B contains code in R.5 If the equations are correct, we should obtain histo-

grams that adhere reasonably closely to theoretical density distributions.

For a given precision f, we need to restrict our left precision f1 and right precision

f2 to be within the range of f so that max j f1j, f2f g � f and the width of the interval

constructed is as short as possible to maximize precision. Without loss of generality,

we assume, in this article, that the skewness parameter l is known and positive.

The required values of sample size n, f1, and f2 for confidence level c = 0:95, 0:90;

precision f = 0:1, 0:3; and skewness l = 0, 0:5, 1:0, 2:0, and 5.0 are listed in Table 1

and Table 2, respectively. Moreover, if the population skewness l is known, it is pos-

sible to obtain the smallest sample size necessary to fulfill requirements for any given

levels of precision and confidence. For example, if we choose a confidence level

c = 0:92 and a precision level f = 0:1, with known skewness l = 2:6888, then the smal-

lest required sample size is n = 95. We will use this example later. Consistent with

Figures 2 and 3, the tables show that the sample size needed decreases as skewness

increases.

To check the goodness of fit for our model, we used Monte Carlo simulations to

estimate the coverage probabilities. We designed the simulations by setting location

parameter j = 1:0, 2:0; scale parameter v = 1:0, 5:0; skewness l = 0, 0:5, 1:0, 2:0, 5:0;

and f = 0:1, 0:3. The sample sizes needed for all configurations are listed in Tables 1

and 2. We provide the R program in Appendix B, based on the equations in Appendix

A, used to generate data which are skew-normally distributed with location vector

j1n, scale matrix v2In, and skewness l1n. The estimated coverage probabilities were

Table 1. The Value of Sample size n, Left Precision f1, and Right Precision f2 Under Different
Skewness Parameter l for the Given c = 0:95, 0:90 and Precision f = 0:1a.

l c n f1 f2

0 0.95 385 20.1 0.1
0.90 166 20.1 0.1

0.5 0.95 158 20.0772 0.0992
0.90 95 20.0969 0.0999

1.0 0.95 146 20.0735 0.0999
0.90 85 20.0949 0.0995

2.0 0.95 140 20.0714 0.0994
0.90 80 20.0937 0.0999

5.0 0.95 138 20.0696 0.0999
0.90 75 20.0943 0.0998

aThe sample size needed is decreasing with the increasing of skewness. Also, a smaller sample size is

needed for lower confidence. The table illustrates that the less precision leads to the smaller sample size

needed for the given confidence level.
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computed and illustrated in Tables 3 and 4, with the number of runs, M = 10, 000;

and confidence levels, c = 0:95, 0:90.

The correspondences of our simulation results and the proposed skew-normal den-

sity curves are shown in Figures 4 to 6. In all figures, marks ‘‘[’’ and ‘‘]’’ are the

lower and upper bounds for the 95% confidence interval of location j. We can see

that the lower bound approaches the location when skewness increases, whereas the

upper bound does not change much, which also implies that for same location and

scale, larger skewness implies a shorter interval for the 95% confidence level.

Table 2. The Value of Sample Size n, Left Precision f1, and Right Precision f2 Under Different
Skewness Parameter l for the Given c = 0:95, 0:90 and Precision f = 0:3a.

l c n f1 f2

0 0.95 43 20.3 0.3
0.90 19 20.3 0.3

0.5 0.95 22 20.2665 0.2989
0.90 16 20.2888 0.2879

1.0 0.95 19 20.2431 0.299
0.90 13 20.2816 0.2867

2.0 0.95 18 20.2217 0.2936
0.90 11 20.2799 0.2909

5.0 0.95 17 20.2101 0.2958
0.90 10 20.2746 0.2894

aThe table illustrates that the less precision leads to the smaller sample size needed for the given

confidence level.

Table 3. Relative Frequency for 95% and 90% Confidence Intervals for Precision f = 0:1
Under Location Parameter j = 1:0, 2:0, 5:0, Scale Parameter v = 1:0, 5:0, and Skewness
Parameter l = 0, 0:5, 1:0, 2:0, 5:0, Corresponding to Table 1.

l c n j = 1:0, v = 1:0 j = 1:0, v = 5:0 j = 2:0, v = 1:0 j = 2:0, v = 5:0

0 0.95 385 0.9478 0.9513 0.9484 0.9491
0.90 166 0.9025 0.895 0.8982 0.8956

0.5 0.95 158 0.9472 0.9500 0.9533 0.9506
0.90 95 0.8991 0.8995 0.9039 0.9026

1.0 0.95 146 0.9508 0.9483 0.9501 0.9507
0.90 85 0.9012 0.8988 0.8999 0.9049

2.0 0.95 140 0.9489 0.9460 0.9499 0.9492
0.90 80 0.9 0.8954 0.9019 0.9013

5.0 0.95 138 0.9520 0.9478 0.9485 0.9534
0.90 75 0.9007 0.8975 0.9013 0.9038
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Table 4. Relative Frequency for 95% and 90% Confidence Intervals for Precision f = 0:3
Under Location Parameter j = 1:0, 2:0, Scale Parameter v = 1:0, 5:0, and Skewness Parameter
l = 0, 0:5, 1:0, 2:0, 5:0, Corresponding to Table 2.

l c n j = 1:0, v = 1:0 j = 1:0, v = 5:0 j = 2:0, v = 1:0 j = 2:0, v = 5:0

0 0.95 43 0.9483 0.9501 0.9481 0.9532
0.90 19 0.8996 0.8986 0.9039 0.8997

0.5 0.95 22 0.9491 0.9461 0.9494 0.9468
0.90 16 0.8967 0.9016 0.9041 0.8971

1.0 0.95 19 0.9557 0.9480 0.9519 0.9495
0.90 13 0.9015 0.904 0.9069 0.9063

2.0 0.95 18 0.9490 0.9486 0.9473 0.9496
0.90 11 0.9015 0.9486 0.9473 0.9496

5.0 0.95 17 0.9522 0.9499 0.9484 0.9504
0.90 10 0.9053 0.8989 0.9009 0.9005

Figure 4. Density function and histogram of 95% confidence interval for location parameter
j = 0, scale parameter v = 5:0, and skewness parameter l = 1:0, where the brackets are the
endpoints of the confidence interval.

Figure 5. Density function and histogram of 95% confidence interval for location parameter
j = 0, scale parameter v = 1:0, and skewness parameter l = 2:0, where the brackets are the
endpoints of the confidence interval.
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Example With Real Data

We will use the data set provided by Ye and Wang (2015), with sample size 96, to

illustrate our process (see Appendix C). The data pertained to leaf area index (LAI)

of Robinia pseudoacacia in the Huaiping forest farm of Shaanxi, China, from June

to October in 2010 (with permission of authors), in which the sample mean and stan-

dard deviation are �x = 2:6358 and s = 1:2099, respectively. The sample skewness can

be used to estimate d, so we can estimate the skewness parameter l since l = dffiffiffiffiffiffiffiffi
1�d2
p .

By Joanes and Gill (1998), an estimate of the sample skewness is given by

=
1

n

Xn

i = 1

xi � �xð Þ3=s3 = 0:6135,

and the estimate of d is

d̂ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p

2

Sk
2
3

Sk
2
3 + 4�p

2

� �2
3

vuut = 0:9373:

Therefore, using l = dffiffiffiffiffiffiffiffi
1�d2
p , l̂ = 2:6888.

Also, the moment estimates of the scale parameter v and the location parameter j

are

v̂ = s=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p
d̂

2

r
= 1:8224

and

ĵ = �x�
ffiffiffiffi
2

p

r
d̂v̂ = 1:2729,

respectively.

Figure 6. Density function and histogram of 95% confidence interval for location parameter
j = 0, scale parameter v = 5:0, and skewness parameter l = 5:0, where the brackets are the
endpoints of the confidence interval.
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For the precision f = 0:1 and the confidence level c = 0:92, as we saw in the previ-

ous section, the smallest sample size needed to meet requirements is 95 when the

population skewness is assumed to be 2:6888 (see Appendix B for the R code). The

foregoing calculations were based on all 96 cases but because 95 cases are sufficient,

we also performed calculations below based on a random sample of 95 cases. Using

the 95 cases, the sample mean is �xs = 2.6366. Therefore, the 92% confidence interval

for the location parameter j is [2.3053, 2.6424] by Appendix A. The sample estimate

of j, given by ĵ = �xs �
ffiffiffi
2
p

q
d̂�v̂, is 2.4868 and is included in the confidence interval.

Note that for given precision and confidence levels, the sample size we obtained

is the smallest one that guarantees our goal of having a 92% probability of having the

sample location statistic be within 0.1 of the population location parameter. For any

sample size greater than the least one necessary to meet specifications, the width of

the confidence interval will be even shorter, as Appendix A shows.

In summary, the theoretical simulations support that the derived equations are

valid, and the example shows how they can be applied to an existing data set.

Discussion

Our major goal was to derive a way to generalize the a priori procedure from the fam-

ily of normal distributions to the more general family of skew-normal distributions.

This was accomplished in Appendix A and supported by the computer simulations.

Our secondary goal was to demonstrate that skewness aids in precision. Contrary to

the usual mantra that skewness should be reduced via data transformations to increase

the efficiency of parametric significance tests, the present demonstrations show that

skewness increases sampling precision. As skewness increases, fewer participants are

necessary to obtain a desired level of sampling precision. Or if the sample size is

taken as a constant, the precision increases as the skewness increases. Moreover,

there is an interaction between the desired level of precision and skewness such that

as more precision is desired, the effect of skewness on the necessary sample size

becomes more pronounced.

Although our focus has been on quantifying these trends, the underlying reason

can be understood qualitatively. Consider again Figure 1 that shows different curves

at various levels of skewness. As skewness deviates increasingly from zero, the dis-

tributions become narrower and taller, thereby implying that sample values deviate

less from the location.

But does it take a large amount of skewness to gain an important advantage in

sampling precision? In fact, Figures 2 and 3 show this is not so. For example, con-

sider the topmost curve in Figure 2 that shows a decrease in the necessary sample

size from 385 to 158, merely by increasing the skew from 0 to 0.5. More generally,

the major effects of changing skewness occur between 0 and 0.5, reaching asymptote

shortly thereafter. Because of this, we emphasize that even if a distribution is only

slightly skewed, the slight amount of skewness can have an important effect on the

sample size needed to reach a desired level of sampling precision.
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But there is a caveat. Specifically, researchers are used to using means rather than

locations. The friendliness of skewness for sampling precision that we have demon-

strated with respect to locations does not apply to means. Therefore, to take full

advantage, it is necessary for researchers to compute sample location statistics instead

of, or in addition to, sample means. Although such calculations may not be com-

pletely straightforward, we hope that the example we provided with real data shows

that with the aid of computers, the calculations nevertheless can be performed without

too much difficulty (see Appendix B for code in R).

Significance Tests Versus Sampling Precision

Figures 2 and 3 demonstrate that, from the point of view of precision, skewness is a

desirable characteristic for data to have. On the other hand, however, from the point

of view of performing most inferential statistical procedures, skewness is problematic

because it contradicts the normality assumption on which these procedures depend,

and renders tests less efficient.6 Thus, a researcher who is primarily interested in

obtaining good estimates of population locations should embrace skewness, whereas

a researcher who is interested in null hypothesis significance tests should eschew

skewness. These contradictory concerns bring up the question: Should researchers

emphasize sampling precision or significance tests?

It is worthwhile to consider the voluminous—and growing—literature criticizing

null hypothesis significance tests (see Hubbard, 2016, and Ziliak & McCloskey, 2016,

for recent reviews).7 This literature shows that it is invalid for researchers to use sig-

nificance tests to draw the types of conclusions that many of them draw. Whether this

is due to significance tests simply being invalid, or whether it is due to researchers

‘‘misusing’’ significance tests, need not concern us here. Members of both camps

likely would agree that the useful information that significance tests provide is very

limited, though they doubtless would disagree on whether the information is or is not

at all useful. But there should be wide agreement that sampling precision is highly

desirable in the social sciences. Thus, when a researcher obtains skewed data, and

considers a transformation to reduce the skewness, the researcher should be knowl-

edgeable about the very positive effect that skewness has on sampling precision, as

Figures 2 and 3 illustrate. The researcher can sacrifice sampling precision for the sake

of a more efficient significance test or the researcher can sacrifice the efficiency of

the significance test for the sake of increased sampling precision.

Having made this point, we hasten to add that there is a possible compromise

strategy. Researchers could present their descriptive data without using a transforma-

tion procedure, and thereby enjoy the benefits of skewness illustrated in Figures 2

and 3, while at the same time using a transformation strictly for the sake of perform-

ing efficient parametric significance tests (without taking the transformed data seri-

ously from a descriptive point of view). Whether a researcher finds this compromise

worth making may depend on that researcher’s views about the validity of signifi-

cance testing.
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There is an additional possible compromise. To see this, consider that increasing

sampling precision normally is a good thing because it decreases the standard error of

the mean, thereby decreasing the p-value that the researcher eventually computes. If

significance tests were developed for comparing location statistics, rather than sample

means, the advantage of more sampling precision, as opposed to less sampling preci-

sion, should remain.8 As of now, of course, such analyses have not been developed.

However, there is no reason, in principle, why researchers could not develop them

(though those who are critical of significance testing might argue that researchers

should not develop them). Whether or not such tests are ever developed, we urge

researchers not to miss opportunities to enjoy the advantages, with respect to preci-

sion, that skewness offers.

Conclusion

Researchers who perform research on skewed distributions are often advised by sta-

tisticians to perform some sort of data transformation to reduce the skewness. The

present article, however, runs contrary to this advice. Because skewness increases

sampling precision, decreasing skewness via a data transformation also decreases the

precision advantage that the researcher otherwise would enjoy. To our knowledge,

researchers are unaware that by performing data transformations, they are throwing

away an important advantage pertaining to sampling precision.

We recognize that a researcher could be made aware of the advantage of skewness

for sampling precision, and nevertheless choose not to avail herself of it. But we also

believe that many researchers who currently use data transformations likely would

not use them if they were aware of what they were losing. Our position is not that

researchers should never perform data transformations to decrease skewness, only

that they should be aware of what they are losing by doing so. It is one thing for

researchers to decide based on lack of knowledge, and it is quite another thing for

researchers to make an informed choice. The present demonstrations make clear that

data transformation to reduce skewness does have an important precision cost, though

to our knowledge, this has never been demonstrated before. Our specific hope is that

although some researchers may continue to transform data to reduce skewness in the

interest of significance testing, the present article will have the effect of decreasing

that frequency. Our general hope is that researchers will focus on developing equa-

tions that continue to increase the generality of the a priori procedure.

Appendix A

To derive the sampling distribution of the sample location, we need the multivariate

skew normal distribution. Multivariate skew normal distributions have been studied

by many authors (e.g., Azzalini & Dalla Valle, 1986; Gupta, González-Farı́as, &

Domı́nguez-Molina, 2004; Wang, Li, & Gupta 2009; Ye & Wang, 2015).

142 Educational and Psychological Measurement 79(1)



Definition: A random vector X = X1, X2, . . . , Xnð Þ0 is said to have an n-dimen-

sional multivariate skew-normal distribution with location vector m, scale

matrix V, and skewness vector a if its pdf is given by

f xð Þ= 2fn xjm, Vð ÞF a0V�
1
2 x� mð Þ

� �
, x 2 R

n,

denoted as X;SNn m, V, að Þ,where fn �jm, Vð Þ stands for the pdf of the n-variate

normal distribution with mean vector m and covariate matrix V, a0 is the transpose

of a, and V�
1
2 is an n3n symmetric and positive definite matrix such that

V�
1
2V�

1
2 = V�1and R

n is the n-dimensional vector space over the real numbers.

If we have a random sample of size n, it is not necessary to assume that

X1, X2, . . . , Xn are independent. We assume X = X1, X2, . . . , Xnð Þ0;SNn m, V, að Þ
with m = j1n, V = v2In, and a = l1n, where 1n = 1, 1, . . . , 1ð Þ0 2 R

n, and In is the

n3n identity matrix.

The following results will be used in constructing the confidence interval.

Proposition (Wang, Wang, & Wang, 2016): Let X = X1, X2, . . . , Xnð Þ0;
SNn j1n, v2In, l1nð Þ. Then

(a) each Xi is skew normally distributed, that is, Xi;N j, v2, lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + n�1ð Þl2
p

� �
,

i = 1, . . . , n, respectively, and the mean and variance are given by

mXi
[E Xið Þ= j +

ffiffiffiffi
2

p

r
d�v and s2

Xi
[V Xið Þ= v2 1� 2

p
d2
�

� �
,

where d� = lffiffiffiffiffiffiffiffiffiffi
1 + nl2
p .

(b) The sample mean has one dimensional skew normal distribution, that is,
�X;SNðj, v2

n
,
ffiffiffi
n
p

lÞ:

(c) �X and S2 are independent, where S2 = 1
n�1

Pn
i = 1

(Xi � �X )2.

(d) Let T =
ffiffi
n
p

�X�jð Þ
S

. Then T has the skew-t distribution with skewness parameterffiffiffi
n
p

l and n� 1 degrees of freedom.

Note that �X � j;SNð0, v2

n
,
ffiffiffi
n
p

lÞ. We can set up the confidence interval by set-

ting P f1sX1
� �X � mX1

� f2sX1

� �
= c, we can restrict f1 and f2 such that

max j f1j, f2f g � f for any given precision f and confidence level c.

P f1v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p
d2
�

r
+ v

ffiffiffiffi
2

p

r
d� � �X � j � f2v

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p
d2
�

r
+ v

ffiffiffiffi
2

p

r
d�

 !
= c:

Since �X;SN j, v2

n
,
ffiffiffi
n
p

l
� �

, we can standardize it to be
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Z =
�X � j

v=
ffiffiffi
n
p ;SN 0, 1,

ffiffiffi
n
p

l
� �

:

Then

P
ffiffiffi
n
p

f1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p
d2
�

r
+

ffiffiffiffi
2

p

r
d�

 !
� Z �

ffiffiffi
n
p

f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p
d2
�

r
+

ffiffiffiffi
2

p

r
d�

 ! !
= c:

Set L nð Þ= ffiffiffi
n
p

f1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p
d2
�

q
+

ffiffiffi
2
p

q
d�

� �
, and U nð Þ= ffiffiffi

n
p

f2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2

p
d2
�

q
+

ffiffiffi
2
p

q
d�

� �
, then

ðU nð Þ

L nð Þ

2f zð ÞF
ffiffiffi
n
p

lz
� �

dz = c

We can obtain the value of n as well as f1 and f2 by solving the above equation for

given f , c, and known l since max j f1j, f2f g � f . In this way, the confidence interval

for j is

�X � vU nð Þffiffiffi
n
p , �X � vL nð Þffiffiffi

n
p

	 


when v2 is known.

For the case that v2 is unknown, the confidence interval for j is

�X � SU� nð Þffiffiffi
n
p , �X � SL� nð Þffiffiffi

n
p

	 

,

where the U� nð Þ and L� nð Þ are obtained by solving the integral equation

ðU� nð Þ

L� nð Þ

fT tð Þdt = c,

where fT tð Þ is the pdf of T .

Appendix B

R Code for Calculating the Sample Size Needed With Given Precision and
Confidence Level

inv \- function(val,skew,n){

alpha \- n^.5*skew;

value \- dsn(val,0,1,alpha)

all\- uniroot.all(function(x)dsn(x,0,1,alpha)-value, interval=c(-100-n,100 + n),tol

= .Machine$double.xmin, maxiter = 100000,n = 10000)
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a1 \- max(all);

b1 \- min(all);

pr \- psn(a1,0,1,alpha)-psn(b1,0,1,alpha)

return(c(pr,b1,a1))

}

tablesn \- function(skew,n){

val \- seq(-5,5,.001)

ta \- matrix(0,ncol=3,nrow=length(val))

for (i in 1 : length(val)) ta[i,] \- inv(val[i],skew,n)

return(ta)

}

s2.6888n95 \- tablesn(2.6888,95)

write.csv(s2.6888n95,"c:\\cong\\s2.6888n95.csv")

R Code for the Calculation

data\-c(4.87, 3.32, 2.05, 1.50, 5.00, 3.02, 2.12, 1.46, 4.72, 3.28, 2.24, 1.55, 5.16,

3.63, 2.56, 1.27, 5.11, 3.68, 2.67, 1.26, 5.03, 3.79, 2.61, 1.37, 5.36, 3.68, 2.42, 1.87,

5.17, 4.06, 2.58, 1.75,

5.56, 4.13, 2.56, 1.81, 4.48, 2.92, 1.84, 1.98, 4.55, 3.05, 1.94, 1.89, 4.69, 3.02, 1.95,

1.71,

2.54, 2.78, 2.29, 1.29, 3.09, 2.35, 1.94, 1.34, 2.79, 2.40, 2.20, 1.29, 3.80, 3.28, 1.56,

1.10,

3.61, 3.45, 1.40, 1.04, 3.53, 2.85, 1.36, 1.08, 2.51, 3.05, 1.60, 0.86, 2.41, 2.78, 1.50,

0.70,

2.80, 2.72, 1.88, 0.82, 3.23, 2.64, 1.63, 1.19, 3.46, 2.88, 1.66, 1.24, 3.12, 3.00, 1.62,

1.14);

sa\-sample(data,95,replace=FALSE, prob=NULL);

ms\-mean(sa);

m\-mean(data);

s\-sd(data);

da\-((data-m)/s)^3;

su\-sum(da);

g\-su/96;

d1\-0.5*pi*g^(2/3);

d2\-g^(2/3) + (0.5*(4-pi))^(2/3);

delta\-sqrt(d1/d2);

alpha\-delta/sqrt(1-delta^2);

omega\-s/sqrt(1-2*delta^2/pi);

xi\-m-delta*omega*sqrt(2/pi);

hist(data, freq=FALSE, ylim=c(0,0.4), xlim=c(0, 6))

curve(dsn(x,1.2729, 1.8224, 2.6888), col="darkblue", lwd=2, add=TRUE)

Trafimow et al. 145



R Code for Figure 1

x\-seq(-2.5,2.5,0.1);

y\-dsn(x,0,1,0);

y1\-dsn(x,0,1,2);

y2\-dsn(x,0,1,-3);

y3\-dsn(x,0,1,5);

plot(x,y,ylim=c(0,0.7),type="l")

lines(x,y2,type="o", pch="*")

lines(x,y3,type="o",pch=23)

lines(x,y1,lty=3)
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The Observed Values of Leaf Area Index.

June July September October

4.87 3.32 2.05 1.5
5 3.02 2.12 1.46
4.72 3.28 2.24 1.55
5.16 3.63 2.56 1.27
5.11 3.68 2.67 1.26
5.03 3.79 2.61 1.37
5.36 3.68 2.42 1.87
5.17 4.06 2.58 1.75
5.56 4.13 2.56 1.81
4.48 2.92 1.84 1.98
4.55 3.05 1.94 1.89
4.69 3.02 1.95 1.71
2.54 2.78 2.29 1.29
3.09 2.35 1.94 1.34
2.79 2.4 2.2 1.29
3.8 3.28 1.56 1.1
3.61 3.45 1.4 1.04
3.53 2.85 1.36 1.08
2.51 3.05 1.6 0.86
2.41 2.78 1.5 0.7
2.8 2.72 1.88 0.82
3.23 2.64 1.63 1.19
3.46 2.88 1.66 1.24
3.12 3 1.62 1.14
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Notes

1. Even many nonparametric tests, though not assuming normal distributions, nevertheless

assume symmetrical distributions (Siegel & Castellan, 1988).

2. Transformation does not always work. Osborne (2002) and Plewis (1996) provided

thoughtful discussions of when transformations are more likely or less likely to be

successful.

3. This is not to say that increasing the efficiency of statistical tests is the best reason for

transforming data. As Roberts (2008) pointed out, the best reason for transforming data is

to make it easier for the researcher to see patterns in the data. We agree with Roberts that

transformations are desirable if they lead to discoveries that otherwise would not be made.

4. A reviewer suggested that shape parameters exist too, though they are constant.

5. To use R code in Appendix B to run simulations, simply change the values for skewness

and sample size to run the desired simulations.

6. We reiterate that many nonparametric procedures, though not assuming normality, do

assume symmetric distributions (Siegel & Castellan, 1988).

7. Null hypothesis significance testing was widely criticized at the American Statistical

Association Symposium on Statistical Inference in October of 2017. In addition, we pro-

vide some more specific citations criticizing null hypothesis significance tests (Bakan,

1966; Briggs, 2016; Carver, 1978, 1993; Cohen, 1994; Kass & Raftery, 1995; Meehl,

1967, 1978, 1990, 1997; Nguyen, 2016; Rozeboom, 1960, 1997; Schmidt, 1996; Schmidt

& Hunter, 1997; Trafimow, 2003, 2006; Trafimow & Marks, 2015, 2016; Valentine et al.,

2015; Vieland & Hodge, 2011).

8. The present authors are currently developing a priori equations for determining the sample

sizes necessary to be confident that differences in sample locations, for matched or inde-

pendent samples, are close to differences in population locations, under the general family

of skew-normal distributions.
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