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Highlights
High-throughput technologies are now
widely used in the life sciences field
and are producing ever-increasing
amounts and diversity of data.

While many laboratories and even
undergraduate students generate
high-throughput data, analyzing these
results requires a skill set that is tradi-
tionally reserved for bioinformaticians.

Learning to program using languages
such as R and Python and making
sense of the vast amounts of available
omics data have become easier,
High-throughput methodologies and machine learning have been central in
developing systems-level perspectives in molecular biology. Unfortunately,
performing such integrative analyses has traditionally been reserved for bio-
informaticians. This is now changing with the appearance of resources to help
bench-side biologists become skilled at computational data analysis and han-
dling large omics data sets. Here, we show an entry route into the field of omics
data analytics. We provide information about easily accessible data sources
and suggest some first steps for aspiring computational data analysts. More-
over, we highlight howmachine learning is transforming the field and how it can
help make sense of biological data. Finally, we suggest good starting points for
self-learning and hope to convince readers that computational data analysis
and programming are not intimidating.
thanks to the multitude of available
resources. This can empower bench-
side researchers to perform more
complex computational analyses.

Tools such as KNIME or Galaxy
(together with a growing number of
tutorials and courses) have been cru-
cial in providing simple user interfaces
to conduct complex analyses under
the hood, making the ‘big data’ revo-
lution accessible to biologists.
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Can a ‘Traditional’ Biologist Handle Big Data?
Biologists are facing an exciting yet challenging time with the increasing availability of high-
throughput data sets that need to be analyzed and understood. These omics data sets can be
either integrated with self-generated data or reanalyzed independently. In the former case, the
extra dimension provided by the new data can help generate additional hypotheses on
biological systems or support hypothesis validation. In the second case, one can consider
published data from a different perspective than that intended in the original study, integrating
additional data sources, to make new discoveries without having to invest the time and funds
in acquiring new data. Reanalysis and repurposing of published data is a growing trend [1].
The field of biological sciences is expecting a rise in specialists in data integration and
interpretation.

Integrative multiomics is a rapidly growing field, as reviewed by [2,3]. In addition, one of the
exciting fields with increasing amounts of impact and deposited data are the single-cell
technologies which encompass genomics, transcriptomics, and epigenomics [4,5]. These
technologies can be especially powerful when combined with other types of data [6].

The term ‘multiomics’ refers to the process of integrating data from different high-throughput
technologies. Examples of such combinations are as follows:
� Genomics + transcriptomics, often used in expression quantitative trait loci (eQTLs) studies,
which can elucidate genomic variants that are important for cellular functions and disease.

� Transcriptomics + proteomics, relating how the transcriptome is shaping the proteome to
the possible post-transcriptional and post-translational mechanisms governing this process,
as reviewed in [7].
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� Proteomics + metabolomics, correlating differences in protein levels with the metabolites
they regulate, synthesize, or degrade [8,9].

� Epigenetics + transcriptomics + proteomics, particularly how the regulatory state of the
genome influences gene expression [10] or to obtain a holistic view of stem cell differentiation
[11].

� Phenomics + genomics + transcriptomics, relating external phenotypic traits to genetic
sequences and gene expression, which can be helpful in plant biotechnology, for example,
[12].

Analyzing and making sense of such large data sets can be challenging. A natural ally for this
task is machine learning, which is becoming the go-to method for developing analytical
workflows for multivariate omics data. It can be used to build models for data classification
(e.g., to separate healthy and sick patients or protein members of different subcellular com-
ponents), to cluster data into separate groups, reduce the dimensionality of the data set for
visualization, and perform missing value estimation. However, using machine learning requires
more knowledge and experience than performing basic statistical hypothesis testing in Excel-
like spreadsheet environments. One has to understand the basic concepts to avoid producing
nonsensical results.

Moreover, data processing, integration, and modeling require some degree of program-
ming skills. For this reason, analyzing such data and using machine learning have tradi-
tionally been delegated to computer-savvy experts. This often prohibits any hands-on
contact from the domain specialists with their data, especially in heavily wet laboratory-
oriented fields. Programming languages such as R and Python offer unlimited power for
analysis but require some level of fluency in writing instructions and knowing relevant
functions and packages. Knowing at least one analytics platform is paramount to perform-
ing any integrative omics study.

This opinion paper is a conceptual primer aimed mainly at graduate students, PhD students,
and postdoctoral researchers who want to start their journey into computational data analysis,
but are not sure about the overall breadth of the field, which are the important first steps to take,
and what resources are available. We propose a meta-level workflow consisting of four
elements: (i) obtaining processed data from public repositories, which can be used alone
or in conjunction with self-generated data, (ii) hands-on manipulation and processing methods
for large data sets, (iii) using statistics andmachine learning to find significant differences and/or
relationships, (iv) accessing knowledge and annotation databases to help extract novel insights
(Figure 1). Finally, we give some tips on learning resources that might be helpful to start one’s
journey into integrative data analytics and machine learning.

Where to Find Publicly Available Data?
The volume of biological and biomedical data deposited into public repositories and databases
is vast and growing every week. This offers a valuable resource to those who are able to
navigate them. These data are free and instantly available. This can allow for rapid testing of
one’s ideas without delays associated with experiment planning and data acquisition. Some of
these repositories are listed in Table 1.

The National Center for Biotechnology Information’s (NCBI) Gene ExpressionOmnibus (GEO) is
an example of such a repository which, as of May 2018, contains nearly 4500 curated data sets
on gene expression, epigenetics, and genome variation profiling. A useful Web resource for
GEO-deposited data is the ARCHS4 (https://amp.pharm.mssm.edu/archs4/) from the
Ma’ayan laboratory [13], which provides access to processed gene expression tables from
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Figure 1. Basic High-Level Flow of Omics Data Analytics in the Life Sciences Field.
the raw data deposited in GEO and Sequence Read Archive (SRA). Of note, the main difference
between GEO and SRA is that GEO contains processed data while the raw data (such as
FASTQ files from a sequencing run) are deposited into the SRA. This means that if one is looking
for ‘ready-to-use’ gene expression tables, one should search the GEO.

The Encyclopedia of DNA Elements (ENCODE, [14]) consortium provides a high-quality
multiomics data resource for human, mouse, worm, and fruit fly models. It contains data
on gene expression, epigenetics, and 3D genome conformations that are generated through a
variety of technologies. In addition, the ENCODE consortium provides computational annota-
tion such as predicted DNA regulatory elements.

ProteomeXchange [15] stores published proteomics data sets from over 9000 projects,
covering a multitude of species. The data sets tagged ‘biological/biomedical’ pertain to the
general research audience, or can be tagged ‘technical’, if they are more relevant to the
specialized proteomics community. Sometimes, the deposited data are in the so-called raw
format only, which would require a preliminary processing step using proteomics software
before it can be interpreted. However, one can typically find the processed protein or peptide
quantification tables in the accompanying manuscript.
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Table 1. Summary of Large Data Repositories for Omics Analytics

Repository Data type Link

Gene Expression Omnibus Gene expression, noncoding RNA profiling,
epigenetics, genome variation profiling

www.ncbi.nlm.nih.gov/geo/

ENCODE Epigenetics, gene expression, computational
predictions

www.encodeproject.org

ArrayExpress DNA sequencing, gene and protein expression,
epigenetics

www.ebi.ac.uk/arrayexpress/

European Genome-Phenome Archivea Various omics with phenotype data (biomedical
studies)

https://ega-archive.org

PRoteomics IDEntifications (PRIDE), ProteomeXchange Proteomics, protein expression, post-translational
modifications

www.ebi.ac.uk/pride/archive/
http://www.proteomexchange.org/

1000 Genomes Genome sequences, sequence variants www.internationalgenome.org

MetaboLights Metabolomics www.ebi.ac.uk/metabolights/

GTExa Gene expression (microarrays and RNA-seq), genome
sequences

www.gtexportal.org

National Institutes of Health/National Cancer
Institute (NIH/NCI) Genomic Data Commons

Gene expression, epigenetics, miRNA-seq (focus on
cancer)

https://portal.gdc.cancer.gov

NIH dbGaPa Genotypes, gene expression, epigenetics, phenotypes https://www.ncbi.nlm.nih.gov/gap

cBioPortal Focused on cancer, contains data on gene copy
numbers, gene and protein expression, DNA
methylation, and clinical data

http://www.cbioportal.org

Single Cell Expression Atlas Single-cell gene expression (RNA-seq) https://www.ebi.ac.uk/gxa/sc/

RIKEN SCPortalen Single-cell gene expression (RNA-seq) http://single-cell.clst.riken.jp/

aNeeds granted access for individual-level data.
The European Genome-Phenome Archive (https://ega-archive.org) [16] offers a large collection
of biomedical omics data from multiple studies. However, as is often the case with medical
databases containing sensitive patient information, one has to apply to gain access via official
channels.

The Genotype-Tissue Expression (GTEx) Consortium Portal [17] (www.gtexportal.org) stores
omics data from a panel of 53 human tissues from densely genotyped donors. The combination
of gene expression data with genomic variants and patient information greatly facilitates eQTL
studies.

The database of Genotypes and Phenotypes (dbGaP) [18] (https://www.ncbi.nlm.nih.gov/gap)
is a database archiving data about interactions of human genotype and phenotype. The data
types encompass DNA variation, single-nucleotide polymorphism assays, DNA methylation,
copy number variation, and gene expression profiling using technologies such as RNA-seq and
microarrays. Those are linked to phenotype data such as disease-related clinical status.

Single Cell Expression Atlas (https://www.ebi.ac.uk/gxa/sc/) and SCPortalen (http://single-cell.
clst.riken.jp/) are repositories for data acquired using single-cell technologies, such as single-
cell RNA-seq.

Aside from technology- and domain-specific resources, initiatives now exist for the global
integration of omics data sets according to the FAIR principles (‘findable, accessible,
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interoperable, and reusable’). The biggest such initiative is the Omics Discovery Index [19]
(https://www.omicsdi.org/), which provides an open-source platform for discovery, access,
and dissemination of published omics data, and currently integrates 11 repositories. An
interesting feature available on this platform is the ‘similar dataset’ section, which can be used
to search for other data sets that are conceptually related, similar to recommended products in
online stores.

How to Analyze Big Data Sets?
After downloading the data set, the next step is to carry out an integrative analysis. Initially, this
process involves a series of data quality checks (such as looking at data distributions and
ranges or looking for any missing values) and joining of data sets based on common ID systems
(usually requires downloading ID translation tables). Subsequently, one can then perform the
desired statistical analyses or run machine learning workflows and/or annotate the data using
external knowledge bases. All of these steps require appropriate software.

Next-generation sequencing data often need processing before they can be represented in, for
example, expression table. To help with these steps, the Galaxy platform [20] offers powerful
solutions. It was developed with user-friendliness and simplicity in mind to allow nonspecialists
to handle genome and transcriptome data using a simple Web-based user interface. Impor-
tantly, the user does not have to worry about providing enough computational resources as
these are provided by many Galaxy-hosting institutions. Alternatively, a Galaxy server can be
quickly set up on a local server.

KNIME [21] is an accessible entry point for time-constrained biologists or for those daunted
by programming. It is a graphical user interface (GUI) analytics environment that offers a ‘point
and click’ alternative to classical programming. One can create node-based workflows in
which each node is a function that takes in a certain object (e.g., gene and protein expression
tables), processes it, and outputs the results (e.g., combined expression data as one matrix).
This modular approach offers flexibility and allows one to be creative while keeping the entire
workflow easy to follow and reproducible. The ‘Node Guide’ section of the KNIME Web page
is a great starting point with many examples and downloadable workflows (https://www.
knime.com/nodeguide). Moreover, a hub for bioinformatics problems was recently developed
to share KNIME workflows for biological data processing and analysis (https://cibi.
uni-konstanz.de/hub). More information on using KNIME in the life sciences field can be
found here [22].

Choosing between GUI-based analytical platforms such as KNIME or ‘classical’ program-
ming languages is a personal matter. KNIME offers a lot of ready-to-use functionalities to
combine using a GUI. While this allows for a quicker start, it also has limitations (e.g., the
user is limited only to the implemented nodes). Programming languages such as R and
Python offer much more flexibility for data analytics and are considered the standard tools
of trade in research and industry. The choice between R and Python is mostly related to
personal preferences. However, it might be more productive to start with a language that is
more commonly used in one’s professional environment as this enables code sharing and
hands-on help from colleagues. Both R and Python offer very versatile and powerful
analytical environments. Until recently, R was a more popular choice among biologists
as it had more mature libraries for biological data (including the popular Bioconductor
package repository). This is changing now, as the statistical and biological analytics suite
for Python is being constantly expanded. Both languages have a syntax that is relatively
easy to learn and there are no major speed differences between the two when it comes to
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typical data operations. One advice is to simply try both for a short period and see which
language is a better fit.

An important aspect of productive analytical programming is selecting the integrated develop-
ment environment (IDE). IDEs are programs that help programmers to write code by providing
access to coding tools, an interactive programming console, plotting areas and variable
inspectors. Analyzing data using R and Python without an IDE is more challenging and we
highly recommend using one such as RStudio for R and PyCharm or Spyder for Python.

One has to be cautious when integrating data frommany sources such asmultiple technologies
and even laboratories. Most quantification technologies require proper data normalization
procedures, for example, using a control sample that can take into account measurement
noise related to a given platform. It is advisable to work using normalized values or to calculate
them, if both the sample of interest and a control are available in the repository. In the worst
case, the observed signal in the data might be simply technical noise and not genuine biological
change, due to lack of proper normalization. Furthermore, it is important to understand how a
given unit is being used in the field. For example, RNA-seq expression values fragments per
kilobase of transcript per million mapped reads (FPKM) and reads per kilobase of transcript per
million mapped reads (RPKM) are typically used for visualization and ranking. However, one
should avoid using those widely used units for differential gene expression analysis [23]. Good
practices for other types of data, such as ChIP-seq, can be found elsewhere [24]. We strongly
recommend familiarizing oneself with the way analyses are carried out in respective fields prior
to downloading and integrating omics data sets.

How Can Machine Learning Help You with Your Data?
Dealing with big data sets is not easy. To address this, one of the tools that has become very
popular in the life sciences field ismachine learning. In brief, machine learning is a collective term
for computer algorithms that iteratively fit a predictive model to the observed data. This model
can then be generally applied to predict properties of yet unencountered data, as long as they
can be described by the same features. The breadth and depth of this dynamic field have been
extensively reviewed [257_TD$DIFF][25–27]. Here, we will focus on the practical basics regarding the
usefulness of machine learning in biology and provide an example of a machine learning
workflow design in Box 1.

In general, machine learning approaches are divided into two main classes: supervised and
unsupervised algorithms. Supervised learning algorithms build a mathematical description (a
model) of how a combination of features, such as a gene expression values, relates to some
target variable, such as ‘is important in cancer progression’. These models can then be used to
predict the target variable (classes) for data that the model has not yet encountered. An
example of this is predicting subcellular localization of proteins [258_TD$DIFF][28–30]. Here, one has to first
feed the algorithm a data set together with high-quality annotation, such as proteins assigned
to known subcellular compartments (a training set), on which to train the model. After this
process, the trained classifier can be used to assign subcellular localizations of other proteins in
the data set. Similar to the classification task, a supervised machine learning algorithm can be
trained to predict continuous values instead of classes (i.e., perform regression), such as
chromatographic retention times of peptides [259_TD$DIFF][31] or predicting gene expression levels using
data on epigenetics and genomic features [260_TD$DIFF][32].

Unsupervised approaches, as opposed to supervised approaches, do not require a prespe-
cified target variable of interest. Instead, this broad group of algorithms can help find (and
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Box 1. Machine Learning in Biology. How to Approach a Machine Learning Analysis for Biological Questions?

Planning amachine learning analysis can be an overwhelming task for a researcher lacking computational experience. In Figure I, we divided an example classification
workflow (mitochondrial protein prediction) into separate stages while emphasizing important questions that one should consider at each stage.

First, one has to define the target variable of interest and think about what can represent the positive and negative examples of the target.

Second, one has to carefully assemble a training set (for supervised methods). Selecting only confident positive and negative examples is essential for the quality of
the final analysis. One can perform a manual literature search or take examples (such as proteins) on which there is largest agreement between the different
databases.

Third, the input data used by the algorithm should contain enough positive and negative training examples. Importantly, machine learning should not be treated as
remedy for low-quality data. The classical statistical rule (crap-in, crap-out) applies to machine learning as well.

Subsequently, one should select a proper algorithm for the task. This step depends on the target type (classification vs. regression), number of available training data,
and technicalities such as presence of missing values.

Finally, the resulting class probabilities (or predicted continuous target values in regression) should bemanually evaluated. At this stage one can check if there are any
overfitting or underfitting problems and evaluate the workflow’s performance using statistics such as mean accuracy (for classification) or mean-squared error (for
regression) using left-out (test) data. Such statistically evaluated ranking can then be used with external annotation databases such as STRING or Enrichr and further
validated in the wet laboratory or used to build new hypothesis for more computational exploration.
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Figure I. Planning a Machine Learning-Based Analysis Requires Careful Consideration at Each Stage of the Analysis. We listed the most general
elements of designing such workflow using mitochondrial protein classification task as an example. However, same thinking patterns apply to regression tasks or for
feature importance analysis.
exploit) structure in the data. An example of such approach widely used in biology is data
clustering, which allows to group observations according to their properties. One can imagine a
panel of samples that are not clearly distinguished by some binary classification (like cancer/
healthy), but rather having various genomic mutations. Having obtained protein expression
profiles for each of the samples, one can use an unsupervised approach to see which of those
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mutations behave [261_TD$DIFF]similarly to one another. A typical algorithm used in such situation is
hierarchical clustering which generates a dendrogram in the process. Cutting this dendrogram
at a selected height results in formation of distinct clusters. These clusters can be then analyzed
for functional enrichments (described in more detail in the next section). Unsupervised
approaches have been useful for finding groups of coregulated proteins in cancer [133_TD$DIFF][33], finding
cobehaving mRNA and miRNAmodules in time-series data [236_TD$DIFF][34], or finding coexpressed genes
in many samples [262_TD$DIFF][10,35].

Yet another type of unsupervised algorithms allows for dealing with high-dimensional data, for
example, when one is interested in visualizing these or detecting outliers, by performing
dimensionality reduction. One of the most popular algorithms for this task is principal compo-
nent analysis. A good description of how it works and its applications in biology can be found
elsewhere [263_TD$DIFF][36].

Another interesting application of machine learning is identification of novel predictive features
for an observed phenotype (known collectively as ‘feature importance analysis’ or ‘feature
selection’). Here, machine learning is first used for a classification or regression task as
described earlier. However, during this process, many algorithms can inform the user about
which of the used features were the most important for a given task. Subsequently, one can
look at how well the selected features correlate with the target variable. An example of such
approach is expanding the model of nonsense-mediated mRNA decay (NMD) [264_TD$DIFF][37]. Here,
Lindeboom et al. looked at levels of NMD in human cancers and developed additional
descriptors based on genomic features (such as length of an exon harboring mutation). Using
random forest-based regression they could identify which of those new features are important
for predicting NMD efficiency, thereby expanding the current model. A short review of such
approaches in biology can be found in [265_TD$DIFF][38].

Machine learning pipelines can be built using R, Python, and KNIME (among many other
languages and platforms). While KNIME offers a great selection of machine learning
nodes, including WEKA [238_TD$DIFF][39] and H2O (http://docs.h2o.ai/) implementations, it offers less
flexibility for pipeline development compared with programming languages such as R and
Python. We found that starting with machine learning in KNIME and switching to ‘classical’
programming languages worked best for many of our students. This allowed them to
first learn the absolute basics of analytics and subsequently give them more creative
freedom.

One of the best places to start using machine learning in R is the ‘caret’ package, which offers
functions for data processing, classification and regression algorithms, feature selection, and
model evaluation tools. Similar to R, Python offers a powerful machine learning environment:
‘scitkit-learn’ [266_TD$DIFF][40]. Moreover, a good place to start one’s journey with machine learning is
downloading the Iris data set and following one of the many tutorials for a respective machine
learning environment (e.g., http://scikit-learn.org/stable/auto_examples/datasets/
plot_iris_dataset.html).

How to Annotate Results and Generate Hypotheses?
Biological data that have accumulated over the past decades is collated in databases using
systems of annotations and ontologies. One can use these external databases (Table 2) to help
explain functional relationships between genes or proteins of interest in new data sets. For
example, using information about pathways can indicate if observed expression changes are
modulating particular cellular functions.
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Table 2. Summary of Annotation Databases and Postanalysis Tools Helpful in Making Sense of Results in Computational Analytics

Annotation database/Tool name Description Link

UniProt Comprehensive proteomics knowledge base
(functions, pathways, sequences, modifications,
literature references, ID conversion).

https://www.uniprot.org

BioMart Gene-centric database with ID conversion,
genomic features (such as exons, introns,
untranslated regions), sequences, positions of
genes in the genome.

https://www.ensembl.org/biomart/martview/

NCBI Genome Data Viewer A Web tool for exploration and analysis of
eukaryotic genome assemblies.

https://www.ncbi.nlm.nih.gov/genome/gdv/

UCSC Genome Browser A collection of tools for analysis of genomes with a
plethora of available data ‘tracks’ such as
epigenetic signals and genomic features.

https://genome.ucsc.edu/

StringDB A database of known and predicted protein–
protein interactions. Integrates functional
relationship data from various sources.

https://www.string-db.org/

BioGRID Curated database of physical and genetic
interactions based on various experimental
sources.

https://thebiogrid.org/

DAVID Gene Ontology and pathway analysis Web tool for
calculation of functional enrichments in lists of
genes or proteins.

https://david.ncifcrf.gov/

Enrichr Web tool for calculating various functional
enrichments in lists of genes or proteins.

https://amp.pharm.mssm.edu/Enrichr/

g:Profiler Web tools for functional profiling of groups of genes
or proteins. Contains useful ID conversion and
orthology mapping tools.

https://biit.cs.ut.ee/gprofiler/
A popular knowledge base is UniProt (www.uniprot.org), which is a protein-centric resource,
annotating the proteomes of many studied species. Swiss-Prot is the manually curated part of
the database, offering high-quality annotation. It should be preferred over the electronically
generated TrEMBL annotation for functional genomics analyses. The ‘Retrieve/ID mapping’
tool by UniProt allowsmapping of both protein/gene identifiers between different systems (such
as RefSeq to UniProt Accession numbers) and query lists of proteins to annotate them with
biological properties such as protein sequences, domains, subcellular localization.

BioMart is another widely used database (with a helpful R package biomaRt [267_TD$DIFF][41] and a Python
library [268_TD$DIFF][42]), found at https://www.ensembl.org/biomart/martview/. BioMart offers biological
annotation such as genomic coordinates, transcripts and proteins associated with a given
gene, sequences, GC content, genetic variants, or protein domains. The genes of interest (the
query) are configured in the ‘Filters’ section of the database while the relevant biological
information that one may wish to download is configured in the ‘Attributes’ section. The
resulting annotated data table can be then saved to disk as a .csv file and integrated into
the analytical workflow by matching the gene, transcript, or protein IDs.

For genome-level annotation, NCBI offers the Genome Data Viewer (https://www.ncbi.nlm.nih.
gov/genome/gdv/), a tool for exploring eukaryotic genomes. This tool can be used to find
positions of genes and annotate the genome track with various types of external data. Another
similar tool for genome-level analysis is the UCSC Genome Browser (https://genome.ucsc.
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edu/), which focuses predominantly on human andmouse genomes and offers vast amounts of
functional data integrated in ‘tracks’ that are aligned to a given genome. UCSC Genome
Browser can seem overwhelming at first, but the steep learning curve for this tool is worth
enduring.

Some online resources offer even more ‘distilled’ levels of biological information. Search Tool
for the Retrieval of Interacting Genes/Proteins (STRING) [243_TD$DIFF][43] offers a database (https://www.
string-db.org) on functional connectivity between genes/proteins. Users can search for inter-
action networks between genes/proteins of interest or download the entire database. STRING
collates an array of biological sources such as biochemical experiments, text mining, and co-
expression studies and produces an integrated score. It offers a very simple and fast way to
check if a group of genes/proteins is functionally related. Apart from the integrated score,
STRING also performs simple Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analysis, further aiding hypotheses development. An alternative
resource to STRING is the Biological General Repository for Interaction Datasets (BioGRID)
[244_TD$DIFF][44], which hosts a variety of interaction data for multiple species. Other easy-to-use tools for
functional enrichment and pathway analysis are the Gene Ontology-centered DAVID [245_TD$DIFF][45],
which can help discover biologically important modules after performing differential expression
analysis or data clustering. Enrichr [269_TD $DIFF][46], available at http://amp.pharm.mssm.edu/Enrichr/
enrich, is another tool that takes a list of genes and calculates enrichments in many functional
categories such as pathways, ontologies, or transcription-factor binding. Finally, gene set
enrichment analysis [270_TD$DIFF][47] can help analyze whether an a priori-defined group of genes is
significantly affected in given biological states.

In addition to knowledge bases that contain annotation for multiple species, there are special-
ized resources curated by communities that are focused on specific organisms or groups of
organisms. Examples include the Saccharomyces Genome Database (https://www.
yeastgenome.org/), WormBase aimed at nematodes (https://wormbase.org), FlyBase aimed
at Drosophila (http://flybase.org), or SubtiWiki focused on Bacillus subtilis biology (http://
subtiwiki.uni-goettingen.de/).

Where to Find Help?
Learning to handle large-scale data analysis has become increasingly accessible thanks to
numerous resources available on the Internet. Acquiring these specialized skills is no longer
limited to hands-on training organized at institutes, but can be done from the comfort of one’s
office or home and with exceptional time flexibility. One of the largest providers of such
resources are Coursera and edX.org. These commercial platforms offer dozens of courses
on programming, statistics, machine learning, and even genomics.

One of the most popular courses on machine learning is the course offered by Andrew Ng
(simply called ‘Machine Learning’, found at https://www.coursera.org/learn/machine-
learning). This course is a good place to start one’s adventure with machine learning, as
the concepts are explained in a very intuitive and math-light way. Another important skill
(especially for people interested in using Python and R) is understanding the basic concepts of
programming and computer science. One of these courses is the ‘Introduction to Computer
Science and Programming Using Python’ offered by the Massachusetts Institute of Technol-
ogy (MIT) on the edX.org platform. Even though the course is Python based, the concepts
learned are transferable to other programming languages, such as R. An advantage of this
course is that it is free. In addition to this, a good read is ‘Ten simple rules for biologists learning
to program’ [271_TD$DIFF][48].
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Outstanding Questions
How can we further improve omics
data analytics for wet-laboratory
researchers?

How can we enhance data accessibil-
ity and annotation so that it can be
efficiently reused?

What changes in teaching curricula
should be introduced to increase
computational competence of stu-
dents and young researchers?
Another worthwhile resource is Coursera’s ‘Statistics with R Specialization’, which is a bundle
of courses that teaches statistics and R simultaneously and can be of benefit to anyone who is
interested in functional genomic analyses (which are inherently statistics heavy). Aside from
commercial providers, there are high-quality online courses from the European Molecular
Biology Laboratory/European Bioinformatics Institute (EMBL-EBI), which can be found at
www.ebi.ac.uk/training/online/. Here, the spectrum of skills is more concentrated on applied
biological problems and specific platforms, such as analyzing RNA-seq data. Moreover, the
genomics and biostatistics courses from Rafael Irizarry (found at https://rafalab.github.io/
pages/teaching.html) are another high-quality and free learning resource on biological data
analytics. For a more general selection of courses on R, Python, and Data Science, one can
refer to DataCamp (https://www.datacamp.com/). It offers high-quality courses with a free
(albeit limited) membership plan.

Furthermore, specialists in the omics field can be accessed through various forums with
specific questions. We strongly encourage referring to those forums when analyzing data.
This improves one’s understanding of the data peculiarities and various analytical approaches
needed to extract knowledge from the data sets and allows developing all the required skills
much faster, while avoiding potential beginner’s mistakes. Biostars (https://www.biostars.org/)
and SEQanswers (http://seqanswers.com/) are forums with very active bioinformatics com-
munities and good places to seek help.

Concluding Remarks
The curricula of most bioscience programs already contain elements of computational data
analytics. However, there is a need for increased focus on this subject, to encourage students
to complete their degrees with a working knowledge of at least one programming language and
statistics. Luckily for those who have already finished their formal education, many learning
resources are available that are well-structured and contain high-quality material, while forums
offer expert advice to overcome any challenges. The only prerequisite is that one has to be
prepared to battle through the initial confusion and understand that the time investment will pay
off in the near future. Just do it! (see Outstanding Questions).
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