
Machado et al. BMC Bioinformatics            (2019) 20:2 
https://doi.org/10.1186/s12859-018-2471-0

SOFTWARE Open Access

LimeSeg: a coarse-grained lipid
membrane simulation for 3D image
segmentation
Sarah Machado1, Vincent Mercier2 and Nicolas Chiaruttini2*

Abstract

Background: 3D segmentation is often a prerequisite for 3D object display and quantitative measurements. Yet
existing voxel-based methods do not directly give information on the object surface or topology. As for spatially
continuous approaches such as level-set, active contours and meshes, although providing surfaces and concise shape
description, they are generally not suitable for multiple object segmentation and/or for objects with an irregular
shape, which can hamper their adoption by bioimage analysts.

Results: We developed LimeSeg, a computationally efficient and spatially continuous 3D segmentation method.
LimeSeg is easy-to-use and can process many and/or highly convoluted objects. Based on the concept of SURFace
ELements (“Surfels”), LimeSeg resembles a highly coarse-grained simulation of a lipid membrane in which a set of
particles, analogous to lipid molecules, are attracted to local image maxima. The particles are self-generating and
self-destructing thus providing the ability for the membrane to evolve towards the contour of the objects of interest.
The capabilities of LimeSeg: simultaneous segmentation of numerous non overlapping objects, segmentation of
highly convoluted objects and robustness for big datasets are demonstrated on experimental use cases (epithelial
cells, brain MRI and FIB-SEM dataset of cellular membrane system respectively).

Conclusion: In conclusion, we implemented a new and efficient 3D surface reconstruction plugin adapted for
various sources of images, which is deployed in the user-friendly and well-known ImageJ environment.

Keywords: 3D segmentation, ImageJ, Surfel-based, Point-cloud, Cell volume, Cell surface, Cell membrane
segmentation

Background
Over the recent years tremendous improvements have
been made on the techniques allowing for acquisition of
3D images of biological samples at every scale. Volumet-
ric datasets acquired by optical or electron microscopy,
as well as with magnetic resonance imaging (MRI)
broaden the scientific questions that can be investigated.
The number of available bioimage analysis tools have
risen accordingly. Image segmentation has a very long
research history [1]. An inventory initiative accessible at
http://biii.eu returns more than 1200 tools to date, which
attests the interest and needs of such tools. Reviewing all
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methods is clearly beyond the scope of this work, but a few
representative works and principles will be introduced to
highlight LimeSeg specificities.

Spatially discrete segmentation methods
A first set of commonly used segmentation methods are:
intensity-based methods (simple thresholding, region-
growing), mathematical morphology methods (watershed
[2–4]) and various flavors of machine learning (from pixel
classification [5, 6] to deep learning [7, 8]). These meth-
ods are all working in discrete space, their output being
a label image in which every voxel is associated to a cer-
tain class or object (sometimes with a probability value).
Segmentingmany non overlapping objects naturally arises
from the voxel-based nature of these methods since

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-018-2471-0&domain=pdf
http://orcid.org/0000-0003-4722-6245
http://biii.eu
mailto: nicolas.chiaruttini@unige.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Machado et al. BMC Bioinformatics            (2019) 20:2 Page 2 of 12

each voxel has a unique associated label. Another con-
venient property is that nothing particular is needed
implementation-wise in order to segment objects with
complex topology. However, voxel-based methods have
some downsides. For instance, retrieving the surface of
objects from a label image requires an extra processing
step such as marching cubes [9] which is often deterio-
rating the smoothness of the shape and which could lead
to bias [10]. It is also difficult to get sub-voxel proper-
ties, a feature that is very common in continuous meth-
ods (sub-diffraction spot localization, filament tracking
[11, 12], ...).

Spatially continuous segmentation methods
A second set of commonly used segmentation meth-
ods are continuous based: snakes, level-set, active con-
tours [13–20] or meshes [21, 22]. For these methods,
no perimeter or surface reconstruction step is required.
Continuous methods are mainly used to segment pre-
cisely or concisely the shape of a few objects (crawling
cells, bones, animal...). Many continuous based meth-
ods are only suitable to segment a single object and are
restricted to 2D images. Indeed the adaptation of these
methods to multiple objects has potentially a high compu-
tational cost and requires complex algorithm adaptations
[22–25]. Another shortcoming of methods such as 3D
mesh based methods [21, 22] or snakes [26, 27] is that
changes in object topology have to be taken into account
explicitly in the implementation. Level-set methods do
not experience this issue. Last, in snakes methods, due to
the limited number of control parameters, the segmenta-
tion of tortuous objects is not possible. It is sometimes
possible to take advantage of these restrictions to seg-
ment noisy images or to fit an object into a particular
model [28, 29].

LimeSeg
We present in this work a segmentation method which
is loosely based on a molecular dynamics simulation
of a lipid membrane. Each lipid is represented by an
oriented particle, which is attracted by local image max-
ima. Lipids interact together to maintain the membrane
(surface) integrity. Such an approach is intuitive and
offers several advantages. It is a continuous method
which is easy to implement. As with discrete methods,
segmenting non overlapping objects is very easy, because
implementing surface repulsion is straightforward.
Moreover as lipids are loosely linked, topological changes
occur naturally during the segmentation process, with-
out explicitly taking these changes into account in the
algorithm. Previous works based on a similar approach
[30, 31], coined the term surfels (SURFace ELements)
for these oriented particles. Oriented particle based
systems have also been used for surface representation

[32, 33], however an implicitly defined surface is also
required in parallel of the particle system, contrary to our
work. More generally, particle systems (not necessarily
oriented) are extensively used for computer graphics
and real time simulation [34]. However, to our knowl-
edge, LimeSeg is the only work reporting a fully particle
based surfel used for image segmentation and which
is optimized enough to work on diverse and complex
use cases.

Principle
LimeSeg can be seen as a strongly coarse-grained mod-
eling of a lipid membrane, where each “lipid” particle is
attracted by the local underlying 3D image maxima. If
lipids were only attracted to local maxima, no correlation
would exist between lipid movement which could result
in membrane dismantling. So, in LimeSeg as in the case
of a real lipid membrane, each particle is also interacting
with its neighboring lipids, in order to maintain the mem-
brane integrity. However, unlike in a real physical system,
we do not maintain the number of lipid constant. This
allows the total surface to expand or shrink while adapt-
ing to the object being segmented. Thus, new particles are
constantly added or removed to allow for surface adapta-
tion, a process which is controlled through local particle
density estimation. In practice, this density estimation is
done by counting, for each particle, the number of parti-
cles included in a sphere of radius dthreshold centered on
the particle of interest.

Implementation overview
LimeSeg segmentation is an iterative process presented
in Algorithm 1. Each iteration has three steps. In the
first step the interactions between surfels is computed,
the second step ensures surfel number adaptation accord-
ing to surfel local density, in the third step the force
exerted by the image on the surfels is taken into
account and surfel position and orientation is updated
accordingly.

Implementation details
Each surfel i is defined by a position in 3D: pi and by a unit
normal vector: ni (Fig. 1a). The rules controlling the inter-
actions between neighboring surfels were chosen based
on the segmentation stability, consistency, reproducibility
and speed, unlike more physically meaningful simulations
[35–37]. The segmentation process starts from one or sev-
eral seeds, each seed being a surfel system that delimits
a surface. As detailed in the discussion, a seed is usually
a sphere, but can also be a more complex shape made
from a skeleton, or any pre-existing surfel system. The
segmentation ends when all the surfels have converged,
each iteration being divided into 6 main phases that are
detailed below.
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Algorithm 1 LimeSeg segmentation - simplified
algorithm

Input optimization parameters
(NMax,NMin, dthreshold ...)

Input set of particles of position pi and normal
vector ni

Output optimized new set of particles
1: do
2: //Interaction between particle pairs
3: for each pair of particles (i, j) do
4: if distance between pair < dthreshold then
5: Increment neighbor counter Nneighbors for

particle i and for particle j
6: Compute force and torque exerted by

particle i on particle j: Fi→j and Ti→j
7: end if
8: end for
9: //Particles number adaptation on density

10: for each particle i do
11: if Nneighbors < NMax then
12: if Nneighbors < NMin then � Particle density

too low
13: Generate new particle
14: end if
15: else � Particle density too high
16: Delete particle i
17: end if
18: end for
19: //Interaction between particles and image +

particle update
20: for each particle i do
21: Compute force exerted by image on particle i:

FImg→i
22: pi ← pi + FImg→i + ∑

j∈neighbors Fj→i� update
position

23: ni ← ni + ∑
j∈neighbors Ttiltj→i � update

direction
24: Computes convergence criterion
25: end for
26: while convergence criterion not met for all particles

1 - Neighboring surfel identification
Each surfel has a fixed-radius sphere of influence, and an
equilibrium distance with his neighbors: d0. At this step,
each surfel identifies and counts the number of surfels
comprised within its sphere of influence. These surfels
are considered as neighbors. The radius of the sphere of
influence is by default α × d0 with α = 1.75.
Setting a higher α leads to the computation of more

interactions without noticeable advantage, and setting
a lower α reduces the quality of the local density

estimation, which is necessary for proper surfel number
adaptation.

2 - Neighboring surfel forces computation (Fig. 1a)
In agreement with previous works for oriented particle
systems [30], we found that considering only pair interac-
tions, short-range coupling with a few layers of neighbor-
ing surfels, and three interactions that are detailed below
(Fdist, Fplane, Ttilt) were sufficient to fulfill our require-
ments. Surfels interact with neighbors comprised through
pair interactions. We note d = ‖pj − pi‖ the distance
and u = (pj − pi)/d the unit vector between surfels i
and j. The first pair interaction Fdistj→i = f (d/d0)u is the
force that maintains the preferred distance d0 between
pairs of surfels. If two surfels are separated by a distance
smaller than d0, Fdist is a harmonic repulsive force. If
the distance between the pair is above d0, Fdist mimics a
bond that can break: it is attractive, vanishes at d = d0
and with d → ∞. The second interaction Fplanej→i =
kplane(u · (ni + nj))ni and third pair interaction Ttiltj→i =
ktilt(ni · u)u act on the position and on the surfel normal
respectively. All together Fj→i (= Fplanej→i + Fdistj→i ) and
Ttiltj→i are the interactions exerted by the surfel j on the
surfel i. They both favor equal distance between particles
and co-planarity.

3 - Interaction with the image
Each surfel is attracted by the local underlying 3D image
maximum Fsignal and is biased by a constant pressure
Fpressure, allowing for surface adaptation to 3D objects
contained in the image. First, Fsignal = ±fsignaln is the
data attachment term of constant norm that links the par-
ticles to the 3D image. The direction of this force depends
on the local image maximum location relatively to the
normal vector (Fig. 1b). Second, Fpressure = fpressuren
is a fixed global pressure set by the user. This pressure
tends to induce the shrinking or the expansion of the sur-
face (Fig. 1c). It is equivalent to the “balloon force” used
in related segmentation method [22, 38]. If the surfel is
located near to a local image maximum, both Fsignal and
Fpressure become null.

4 - Surfel number adaptation
During segmentation, the number of surfels needs to
adapt: the number of surfel has to diminish while the
surface shrinks and increase during surface expansion.
For local surfel number adaptation, we implemented the
following rules (Fig. 1d). 1) If the number of surfels com-
prised in its sphere of influence is higher than an upper
limit, the surfel removes itself. 2) If the number is smaller
or equal to the lower limit, a new surfel is created at the
position of lowest surfel density. Practically, this position
is estimated by computing the sum of the repulsive forces
exerted by neighboring surfels. We have set up a balance
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Fig. 1 Surfel interaction rules. a - Forces and torque acting on a neighboring pair of surfel. Top left: notation convention for the position and normal
vector of surfels. Top right: preferred distance interaction d0 and associated force Fdist . Bottom left, planar interaction Fplane . Bottom right, Ttilt . b -
Interaction with the 3D image. Fsignal has a constant norm. It is positive, null, or negative depending on the local image maximum. c - Fpressure
exerted along the normal vector. The sign of fpressure controls surface shrinkage or expansion. d - Adaptation of surfel number depending on local
neighbors. The number of neighbors within the sphere of influence is counted. Depending on this number, the surfel is removed or a new one is
generated

period of a few iterations during which a newly created
surfel can neither disappear nor generate a new neigh-
boring surfel. We found that such a rule improves the
stability of the system. Finally, to allow for clearance of
spurious surface, surfels that are too isolated to create new
surfels (because their number of neighbors is below the
threshold) are removed.

5 - Update of surfel position and orientation
The numerical integration follows an explicit Eulerian
scheme combined to a purely viscous behavior: at each
integration step, the displacement of each surfel is equal
to its resulting force multiplied by d0: pi(t + 1) = pi(t) +

d0×[
∑

j∈neighbors(Fdistj→i +Fplanej→i)+Fpressure+Fsignal],
and the normal of each surfel is summed with the result-
ing sum of torques ni(t + 1) = ni(t) + ∑

j∈neighbors Ttiltj→i .
With this integration scheme, forces can be directly inter-
preted as displacement per integration step, in units of d0.
For instance, if a constant force of value 0.01 is exerted on
a surfel, and if d0 is set to 15 pixels, it will require 100 steps
to move the surfel by 15 pixels.

6 - Convergence test
The iterative process stops when all surfels are locked,
as they met two convergence criteria. First, each surfel is
considered as having converged when it undergoes little
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displacement or rotation in the course of a defined num-
ber of integration steps. Second, when all its neighbors
have converged, the position and normal vector of a
defined surfel are locked. The above two-step convergence
can be used to restrict the active computation zone and speed
up thce segmentation (see FIB-SEM segmentation part).

Implementation efficiency
Of the different phases of the optimisation loop, neigh-
boring surfels identification, (also called fixed-radius near
neighbor search problem), is the most computationally
intensive. To accelerate this step, we implemented a cus-
tom space-partitioning tree building algorithm, which is
further parallelized on graphics processing units (GPU)
using CUDA library and the Java JCUDA wrapper. The
computation of pairs of forces is also a time consuming
step which can also be processed on GPU. Nonethe-
less, CPU computation remains faster for low number of
particles, thus LimeSeg automatically switches between
CPU and GPU with a threshold at 20k surfels. Overall,
with these optimizations, an integration step scales almost
linearly with the number of particles (N1.05) and three
parts (1 - 2 - 3) contributes almost equally to 90% of the
integration time.

Results
We first review the emergent properties of the sim-
ulated set of particles. LimeSeg is controlled by two
sets of parameters: i) parameters ruling the particle
system (α, f (d/d0), kplane, ktilt , fpressure, density thresh-
olds and convergence criteria), ii) parameters ruling
the interaction of particles with the image (d0, fsignal,
band width over which a maximum is looked for).
Not all parameter combinations are appropriate. Some
combinations lead to particle instability or to particles
that ignore the image influence. By trials and errors,
we found a set point in the phase space of parame-
ters which allows for a very good stability of the sys-
tem, while keeping the surface ability to be deformed
under the image influence. In LimeSeg, all parameters
are set by default to values matching this set point
except two: d0 and fpressure.

• d0 is the equilibrium distance between surfels,
expressed in number of pixels. It is the most essential
parameter of LimeSeg as it sets the minimum feature
size that can be segmented. In typical use cases, this
value lies between 1 and 20 pixels.

• fpressure is the force biasing the surface movement
towards inflation (positive) or deflation (negative).
Like any other force within LimeSeg it has the unit of
a distance per integration step, in units of d0. It
should lie between −0.04 and 0.04 to keep the
particle system stable.

These two key parameters should be set by the user
according to its use case. We show in the following
section how the system behaves in synthetic test cases and
demonstrate how these two parameters can be modified
to bring the particle system to an expected behavior.

Leakage / Arrest
A common problem to overcome in segmentation is
leakage: the surfel surface could improperly spread
through small “holes” where the data outline is missing or
weak. As a result, voxels that not do belong to the object
would be included into the object. Conversely, little holes
could also be part of the original object (the beginning of
a “neck” or of a tube for instance). In that case, the sur-
fel system should go through the hole. Indeed, a surface
that would stop around the hole would converge without
reaching the outline of the object, resulting in an incom-
plete segmentation. Depending on the parameters chosen
by the user, both behaviors can be obtained with LimeSeg.
As a demonstration, we segmented a test case consisting
of a 100x100x100 image cut in half by a plane containing
a circular hole of radius rhole in its center. We segmented
this image while varying the radius of the hole rhole and
fpressure but keeping d0 constant. Depending on the param-
eter combination, two outputs are observed: i) the surface
stops around the hole (required in the case of artifactual
holes in the image signal) or ii) the surface goes through
the hole and continues growing (required to segment an
object containing a tube, a neck) (Fig. 2a). In a diagram
plotting rhole/d0 as a function of fpressure, these two seg-
mentation outcomes are found in two distinct domains
separated by a 1/r curve. In other terms, the frontier is
governed by an intrinsic quantity, which is equal to the
radius multiplied by the pressure. This quantity has the
unit of a surface tension, and reveals an intrinsic emerging
threshold of the system. It can be understood as follows:
during segmentation, the radius of the hole combined
with the applied pressure sets transiently a surface ten-
sion that can be computed by the Young-Laplace equation
and that is withheld by the particle network. If the ten-
sion is above the threshold, the link between surfels are
disrupted and new surfels are generated to fill the gaps,
leading to expansion of the surface. If the tension is below
the threshold, surfel interactions are maintained, the sur-
face is stable and the convergence can be reached without
going through the hole. In conclusion, the user can tune
fpressure and d0 to adapt the segmentation to the required
output. Intuitively, lowering d0 or increasing fpressure leads
to a better penetration of the surface through gaps.

Noise resilience
Another common matter of interest in segmentation is
the method resilience to image noise. We address in a
simple test case how the signal to noise ratio affects
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Fig. 2 Point cloud mechanics characterization. a - Behavior of surfels network with fixed d0 as a function of fpressure when it encounters a circular
hole of radius rhole . In the blue region, the surfel mesh does not cross the hole. In the yellow region the surfel mesh flows through the hole. A 1/r
dotted line approximates the frontier between these regions. b - Image noise segmentation benchmark, see text for details. Left: equatorial plane of
sphere image with various noises and resulting segmentation. Right: Segmentation score (i.e. root mean square of surfel distance to the target
sphere in pixel) as a function as noise and fpressure , all other parameters are unchanged. c - Surface fusion test. The initial state consists of a spherical
seed inside a torus. After several iterations, the shape of the segmentation surface successfully merges with itself (fpressure > 0). d - Surface fission
test. The initial state consists of a spherical seed surrounding two spherical objects. The segmentation surface successfully splits during the course of
the segmentation (fpressure < 0)

the segmentation outcome. Starting from a slightly off-
centered spherical seed, we segment a larger sphere while
varying the noise contained in the image. In our test
image, the edge of the sphere has on average 2 pixels in
thickness, with a variability depending on the 3D rasteri-
zation and a signal value of 1. A Gaussian noise centered
on zero was added on the image, with standard devia-
tion values ranging from 0 to 2.5 (typical lateral slices
are shown Fig. 2b, left). We evaluated the segmentation
outcome with positive fpressure values varying from 0.005
to 0.035. To evaluate the reliability of the segmentation,
we measured after convergence, the deviation of the dis-
tance from each particle to the target sphere (Fig. 2b,
right). When the intensity of the positive pressure was
too low (< 0.01), even a very small noise was preventing

the seed inflation ,which lead to incorrect segmentation.
Conversely, the seed could pass the outline of the sphere
on a signal to noise ratio dependent manner, in the case of
high positive pressures (> 0.03). There is an optimal value
for fpressure around 0.01, which allows for the object outline
detection at a low signal to noise ratio. For noisy images, a
fpressure value around 0.01 is thus recommended.

Surface topology
Another relevant information about a segmentation
method is how it handles topological changes, i.e. can
a surface spontaneously split and merge? To test Lime-
Seg for intrinsic merging, we segmented a torus starting
from a spherical seed located inside the torus. We used
a positive pressure and observe that the two ends of the
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“C” shape are fusing to form the torus (Fig. 2c). To test
for fission, we segmented two spheres starting from one
unique spherical seed, which was surrounding the two tar-
get spheres. We applied a negative pressure and starting
from one seed we obtained two distinct segmented sur-
faces (Fig. 2d). In conclusion, LimeSeg handles topological
changes such as fusion and fission. As already explained
in the introduction and in contrast with mesh methods,
the topological changes naturally arise from the particle
set interaction rules.

Discussion
We demonstrate through several use cases the capabili-
ties and versatility of LimeSeg. The imaging modalities
(confocal microscopy, MRI, FIB SEM), image contrast and
resolution, signal to noise ratio, shape size and object den-
sity are also different in these examples. Through these
examples, features of LimeSeg are exemplified such as the
3D segmentation of big objects (15 millions surfels for
the cell membrane system), of highly convoluted objects
(brain / cell membranes) and of multiple spatially exclud-
ing objects (cells of an epithelium).

Segmentation of lipid vesicles
This first basic test consists in segmenting the surface of
deformed lipid vesicles, which are attached on a glass cov-
erslip. The vesicles are imaged with a confocal microscope
that outputs a 3D image stack. We segmented two vesicles
sequentially, starting from spherical seeds located inside
each vesicle. We show in Fig. 3 how the point set matches
the outlines of these two vesicles. Each vesicle segmen-
tation takes a few seconds and each vesicle is made of
approximately 1000 particles.

Segmentation fromMRI images: full human brain
segmentation
In this test case, we segment the cortical surface of anMRI
dataset (FLAIR sequence, see Fig. 4, bottom), which con-
sists of 512x512x224 voxels. We set an initial “skeleton”
seed which is slightly larger than the brain. This skeleton
(or non-spherical seed) is used to initialize the segmenta-
tion and consists of roughly defined ROIs surrounding the
brain at specific slices through the stack (Fig. 4, left). Using
the user specified d0 value, the plugin can dispatch sur-
fels on this basic geometrical skeleton before starting the
segmentation. When convergence is reached with d0 = 4,
one can notice that finer details of the cortex are missed
(see for instance the blue region of Fig. 2a). It indicates
that the size of brain convolutions is too small relatively
to fpressure and d0. In such a case, the segmentation pro-
cess can be refined by progressively reducing d0. In this
example, we refined the brain segmentation by reducing
d0 down to 1.5 pixels and resumed the segmentation to
reach final convergence. At the end of the segmentation,
the fine brain convolutions are detected (Fig. 4, right). The
whole process took 5 min and resulted in a 300,000 point
cloud.

Plasmamembrane and endoplasmic reticulum
segmentation
We challenged the method by segmenting a 3D EM
dataset of 4136x3120x626 voxels. The dataset consists
of nearly isotropic sections of a Hela cell (4.13 nm in
XY, 5 nm in Z) (Fig. 5a) prealigned with TrackEm2 [39],
without additional preprocessing. We aimed to segment
two structures sequentially: the plasma membrane and
the endoplasmic reticulum (ER). For such a big dataset,

Fig. 3 Segmentation of deformed lipid vesicles. The two vesicles are segmented sequentially. Right: segmentation outcome. Three z slices where
surfels appear as dots are shown as well as the 3D reconstruction, where the in-planes surfels are highlighted
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Fig. 4 Human brain MRI surface segmentation. From left to right: 1 - initialization of the shape with ROI skeleton (blue line on the data image). 2 -
After segmentation convergence with d0 = 4, many details of the cortex are missed. 3 - Segmentation refinement by decreasing d0 to 1.5. 4 -
Zooms showing details being retrieved by the finest segmentation where surfels appear as green dots

it is expected that during the course of the segmenta-
tion, a large portion of surfels will have converged, while
relatively small regions will continue to grow actively.
Keeping all the points that have converged at each inte-
gration step induces unnecessary computational cost. To
circumvent this problem, LimeSeg, like other segmenta-
tionmethods [17], has a way to restrict the computation to
actively segmenting regions. In brief, while constructing
the space partitioning tree, LimeSeg detects and replace
large chunks of locked surfels by a single super surfel. The
conversion of active surfels into passive and locked super
surfels is reversible. If a particle that is not locked is inter-
acting with a super surfel, the super surfel is replaced by
the chunk of surfels it contains in the next integration step,
allowing for rearrangements.
The plasma membrane segmentation was performed

starting with 5 spherical seeds located outside of the
cell. The seeds have inflated and merged until they have
surrounded the cell. This segmentation took 4 h on a stan-
dard desktop computer with an entry-level graphic card
and resulted in a 4 million particle point cloud (Fig. 5b,
c, green). We next segmented the ER system. We initiated
the segmentation with 5 spherical seeds located into the
lumen of the ER and ran 80,000 integration steps over 6
h. This led to a cloud of 15 million points in which the
double nuclear envelope, that is inherently linked to the
ER system, was segmented as well (Fig. 5b, c, magenta).
Some limitations can be seen: inexistent holes are some-
times detected and the ER cannot be segmented when two
membranes are too close (ER lumen too thin, Fig. 5d).
We believe that this segmentation is still very satisfac-
tory given the very little amount of work required by
the user. Many aspects of the cell membrane geometry

are preserved and can be detected in the segmentation:
membrane invaginations like clathrin coated pits (Fig. 5e),
nuclear pore complexes (Fig. 5f ), the complex network of
intertwined filopodia and the highly convoluted ER shape
(Fig. 5c). Thus, the segmentation generated with Lime-
Seg provides a very good starting point for further shape
analysis, like proper surface quantification and curvature
measurements.

Cell segmentation and cell volumemeasurement form
confocal images: the case of a Drosophila egg chamber
In the previous examples, only one object is being seg-
mented at a time.We showwith this example thatmultiple
objects can be segmented simultaneously by delimiting
cells from confocal fluorescent slices of a drosophila egg
chamber (Fig. 6a). The egg chamber is an interesting case
study as it consists of three different cell types which shape
and size are very different: nurse cells, follicle cells and
the oocyte. As a prerequisite for segmentation, the user
needs to provide LimeSeg the approximate position of
each cell. This seeding can be done in many ways: man-
ually, by identifying local minima in a blurred image, by
using the fluorescent channel of nuclei (like we did) and
by computing the barycenter of each nuclear blob. At each
position, a sphere of predefined radius serves as an ini-
tial point set. The user then specifies that each sphere is
a different object and then LimeSeg sets a unique identi-
fier to all surfels of a particular cell spherical seed. This
part is in contrast with the FIB-SEM dataset, where each
sphere was attributed to a unique object identifier. Based
on these identifiers, surfel-surfel interactions are differen-
tiated. If two interacting surfels belong to the same cell,
the interactions are as described before. Conversely, if two
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Fig. 5 Endoplasmic reticulum (ER) and plasma membrane (PM) segmentation of a FIB-SEM HeLa cell dataset. a - Typical data slice where the
nucleus, ER and PM are visible. b - Resulting segmentation of ER (magenta) and PM (green). c - Segmented ER and PM, overlaid on the original data.
d - Missed parts of nuclear envelope where the double membrane is too thin to be correctly segmented (left). Spurious hole generated during
segmentation (right). e - Detail showing plasma membrane invagination in 2D and 3D. F - Detail of nuclear pore complex as seen on 2D and on 3D.
Scalebars: a, c: 1μm; d, e, f: 100nm

surfels of different cells interact, they are not considered
as neighbors and only the repulsive part of Fdist is kept,
allowing for surface repulsion.
The egg chamber segmentation was carried out in two

stages. We first segmented the follicle cells using a low
value for d0, necessary to resolve the geometry of these
small cells (computation time 5 min) (Fig. 6a). Then we
locked this set of points, which defines the egg chamber
periphery. Second, we initialized the segmentation of the
oocyte and of the nurse cells using skeleton seeds and a
higher d0 value (Fig. 6b, left). These bigger cells are seg-
mented while keeping fixed points of the follicle cells to
maintain the outline (Fig. 6b, right).We show in Fig. 6c the
segmentation result for these two types of cells and some
details of surfel positioning in the image in Fig. 6d. The

processing of this example image took 10min and resulted
in a cloud of 380,000 points, which can be used for further
quantifications.

Cell tracking and shape analysis of LimeSeg outputs
Even if not shown in this manuscript, LimeSeg supports
analysis of time series and multichannel images. In partic-
ular, for limited object shape changes between successive
frames, the object shape can be segmented over time by
providing the output of the previous frame as an input to
the following frame.
A point cloud is the structure used during segmenta-

tion, but it is not the best structure objects to perform
further object shape analysis. A polygonal mesh is much
more suited. LimeSeg provides a surface reconstruction
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Fig. 6 Drosophila egg chamber segmentation. a - Segmentation of the follicle cells. Up: surfels appear as colored dot (one color per cell). Below: 3D
reconstruction. Only the surfels below the shown slice on top are represented. Left: initial state; right: final state. b – Segmentation of the nurse cells.
During the course of segmentation, surfels of follicle cells were locked to maintain the egg outline. c – 3D reconstruction output for nurse cells and
follicle cells. d – Detail of surfel positions after segmentation convergence

algorithm from its point cloud and functions for basic
shape analysis (volume / surface / surface center of mass).
The data can be accessed directly via ImageJ commands,
or via scripting. As an alternative to ImageJ, the point
cloud and/or the meshes can also be exported in the stan-
dard ply file format, which then can be imported into
other software for further processing and analysis.

Conclusion
In conclusion, we implemented a new surface recon-
struction plugin adapted for various sources of images.
LimeSeg is intended to be used to segment one or mul-
tiple objects in a modular fashion. It has been optimized
to enable segmentation of relatively large images, using
graphical processing units for the most consuming time
steps and the generic ImgLib2 library [40]. To facilitate the
work of bio-image analysts, LimeSeg is implemented as
an ImageJ / Fiji [41–43] plugin, a software which is under
very active development and with which the microscopy
and image analysis community are already familiar with.

LimeSeg user interface is composed of a recordable graph-
ical user interface GUI, an ImageJ application program-
ming interface, and provides a 3D viewer. On the user
interface side, it can be used with simple predefined com-
mands that require initial seeds and 2 parameters. More
detailed instructions regarding the software usage, cus-
tomization, tutorials and updates are available on the
ImageJ wiki (https://imagej.net/LimeSeg). The plugin is
available via its ImageJ update site (http://sites.imagej.net/
LimeSeg/) and the code is available on GitHub (https://
github.com/NicoKiaru/LimeSeg).

Methods
Experimental datasets used in this study:

• Vesicles are giant unilamellar vesicles made of
DOPC, supplemented with 0.1% DOPE-Atto647N
(ref AD-647N, Atto-tec, Germany) and 0.03%
DSPE-PEG(2000) Biotin (ref 880129, Avanti Polar
Lipids, USA) electroformed during 1 h at 1V RMS

https://imagej.net/LimeSeg
http://sites.imagej.net/LimeSeg/
http://sites.imagej.net/LimeSeg/
https://github.com/NicoKiaru/LimeSeg
https://github.com/NicoKiaru/LimeSeg
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[44] in a sucrose buffer at 250 milliosmoles. Vesicules
were adhered on avidin coated glass coverslips,
deflated with an hyperosomotic shock due to buffer
evaporation and imaged with a Yokogawa
spinning-disc CSU-X1 mounted on a Nikon
Ti-Eclipse microscope stand using a 100x objective
with NA 1.3 (z spacing 340 nm, xy pixel size 122 nm).

• MRI dataset was acquired from a normal healthy
person, using a FLAIR sequence.

• FIB-SEM 80% confluent HeLa cells were rinsed once
with PBS, fixed for 3h on ice using 2.5%
glutaraldehyde/2% paraformaldehyde in buffer A
(0.15M cacodylate, 2mM CaCl2). Then cells were
extensively washed on ice in buffer A, pelleted and
incubated 1h on ice in 2% osmium tetroxide and 1.5%
potassium Ferro cyanide in buffer A and finally rinsed
5 times in distilled water at room temperature. Cells
were then incubated 20min at room temperature in
0.1M thiocarbohydrazide, which had been passed
through a 0.22 μm filter, and extensively washed with
water. Samples were incubated overnight at 4◦ C
protected from light in 1% uranyl-acetate, washed in
water, further incubated in 20mM lead aspartame for
30min at 60◦C and finally washed in water. Samples
were dehydrated in a graded series ethanol, embedded
in hard Epon and incubated for 60h at 45◦C then for
60 h at 60◦C. A small bloc was cut and mounted on a
pin, coated with gold and inserted into the chamber
the HELIOS 660 Nanolab DualBeam SEM/FIB
microscope (FEI Company, Eindhoven, Netherlands).
ROI were prepared using focused ion beam (FIB) and
ROI set to be approximatively 20 microns wide. For
imaging, electrons were detected using Elstar
In-Column secondary electrons Detector (ICD).
During acquisition process, the thickness of the FIB
slice between each image acquisition was 5 nm.

• The drosophila egg chamber is dissected from a
drosophila ovary. Cell nuclei were stained with DAPI
and cell membranes labeled with the fusion proteins
Nrg::GFP and Bsg::GFP [45]. The egg chamber was
embedded in Vectashield and spacers were used to
prevent tissue deformation. Images were acquired
using an inverted Olympus point scanning confocal
microscope IX81 with a 60x objective NA 1.42
(z spacing 750 nm, xy pixel size 265 nm).

Availability and requirements
Project name: LimeSeg
Project home page: https://github.com/NicoKiaru/
LimeSeg
Operating system(s): Platform independent
Programming language: Java
Requirements: ImageJ/Fiji
License: CC0 Public Domain
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