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Abstract
Spatio-temporal cortical activity patterns relative to both peripheral input and local network activity carry information
about stimulus identity and context. GABAergic interneurons are reported to regulate spiking at millisecond precision in
response to sensory stimulation and during gamma oscillations; their role in regulating spike timing during induced
network bursts is unclear. We investigated this issue in murine auditory thalamo-cortical (TC) brain slices, in which TC
afferents induced network bursts similar to previous reports in vivo. Spike timing relative to TC afferent stimulation during
bursts was poor in pyramidal cells and SOM+ interneurons. It was more precise in PV+ interneurons, consistent with their
reported contribution to spiking precision in pyramidal cells. Optogenetic suppression of PV+ cells unexpectedly improved
afferent-locked spike timing in pyramidal cells. In contrast, our evidence suggests that PV+ cells do regulate the spatio-
temporal spike pattern of pyramidal cells during network bursts, whose organization is suited to ensemble coding of
stimulus information. Simulations showed that suppressing PV+ cells reduces the capacity of pyramidal cell networks to
produce discriminable spike patterns. By dissociating temporal precision with respect to a stimulus versus internal cortical
activity, we identified a novel role for GABAergic cells in regulating information processing in cortical networks.
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Introduction
The timing of action potentials in cortical pyramidal cells often
contains information about current and remembered sensory
experiences (Optican and Richmond 1987; Abeles et al. 1994;
Nadasdy et al. 1999; Lisman 2005; Kayser et al. 2009; Victor
2000; Shmiel et al. 2005; Wang et al. 2008). Spike times in these
codes may be referenced relative to temporal features of a
stimulus, relative to an ongoing cortical oscillation, relative to
other cells in a local ensemble, or a combination thereof.
GABAergic interneurons play a role in regulating spike timing
in pyramidal cells at the single-cell level (Cobb et al. 1995;

Pouille and Scanziani 2001) and at the level of homogeneous
interneuronal networks (Whittington et al. 1995). It is unclear,
however, how these observations translate to the diverse popu-
lations of cells that comprise even local cortical networks, that
is, the cortical microcircuit.

Four related issues contribute to this uncertainty. First,
diverse groups of inhibitory cells regulate activity not only of
pyramidal cells but also of each other. Thus, activation of excit-
atory afferents could produce net feedforward inhibition as at
the single-cell level (Pouille and Scanziani 2001), or net disinhi-
bition, by activation of GABAergic interneurons that target
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other inhibitory cells (Pi et al. 2013; Zhang et al. 2016). For
example, complex interactions between recurrent excitation
and inhibition in local networks sharpen tuning in auditory
cortex (Kato et al. 2017). Second, inhibitory influences on indi-
vidual cells can differ from influences on an interconnected
network due to non-linearities present in the network (Seybold
et al. 2015). Divisive inhibitory influences can become subtrac-
tive at the network level, and vice versa. Third, excitatory
inputs to the column, for example, thalamo-cortical (TC) affer-
ents, activate large numbers of cells simultaneously, triggering
activity patterns that go beyond those observed in single-cell
recordings (MacLean et al. 2005; Krause et al. 2014). For example,
although pyramidal cells in supragranular and infragranular
layers both receive direct inputs from thalamus (Constantinople
and Bruno 2013; Krause et al. 2014), differences in local excit-
atory and inhibitory connectivity and in integrative and firing
properties position these 2 populations of pyramidal cells to
play fundamentally different roles in signal coding and intrinsic
cortical dynamics (Sakata and Harris 2009; Barth and Poulet
2012; Neske 2016).

Finally, activity within the cortical column is not a superposi-
tion of independent spike trains, but rather is highly correlated.
Emerging evidence suggests that cortical information is conveyed
via spatio-temporal patterns of spiking occurring within the con-
text of coordinated network activity rather than by stochastic fir-
ing of individual cells (Abeles et al. 1993; Luczak et al. 2015;
Castejon and Nunez 2016; Yuste 2015). Coordinated spiking indica-
tive of bursts or packets of network activity with intervening peri-
ods of silence (ON/OFF periods; UP/DOWN states; synchronized
state) was first described in cortex of sleeping and anesthetized
animals (Steriade et al. 1993; Neske 2016). Arousal, especially in
the form of locomotion or active sensation (e.g., whisking), is
accompanied by a transition to the desynchronized state, corre-
sponding to an extended ON period (Poulet and Petersen 2008;
Schneider et al. 2014; McGinley et al. 2015; Zhou et al. 2014).
Evidence suggests that the synchronized and desynchronized
states represent points along a continuum (Curto et al. 2009;
McGinley et al. 2015) and that the spatio-temporal patterns of
spiking (“packets”) observed during bursts in the synchronized
state are preserved even during extended ON periods (Luczak
et al. 2013). However, although the desynchronized state is associ-
ated with behavioral arousal, sensitivity is optimal when the net-
work is otherwise quiescent, either in brief DOWN states or in
extended hyperpolarization (Curto et al. 2009; McGinley et al.
2015). Elevated firing rates when stimuli occur during optimal net-
work states (Lakatos et al. 2005; Curto et al. 2009; McGinley et al.
2015) have been interpreted in terms of elevated burst probability
when the network is in a DOWN state (Luczak et al. 2013).

Packets occur spontaneously in addition to being induced by
afferent input, indicating that they can be powered by intracor-
tical network dynamics. The importance of intracortical net-
work mechanisms is evidenced by the resemblance between
spontaneous bursts and activity triggered by sensory stimuli
(Luczak et al. 2009; 2013; Carrillo-Reid et al. 2015; Sakata and
Harris 2009; Miller et al. 2014). GABAergic cells play critical roles
in regulating ongoing cortical network activity (Neske and
Connors 2016), allowing its limited expression while preventing
hyperexcitability (Destexhe et al. 2003; Destexhe 2010; Sanchez-
Vives et al. 2010). Within this regulatory framework, what role
do GABAergic cells play in constraining spike timing?

Multiple classes of cortical GABAergic cells have been identi-
fied in recent years, facilitating study of their roles in cortical
processing (Tremblay et al. 2016). We focused on 2 of these
classes, cells expressing parvalbumin (PV+), that is, fast-spiking

cells that target somata and proximal processes of pyramidal
cells (Kawaguchi and Kubota 1998; Kubota et al. 2011; Hu et al.
2014) and cells expressing somatostatin (SOM+) that target dis-
tal dendrites of pyramidal cells (Markram et al. 2004; Kubota
2014). PV+ and SOM+ cells play distinct roles in regulating
ascending and descending information streams in cortex. PV+
cells are strongly activated by TC afferents and constrain spike
timing in pyramidal cells via rapid feedforward inhibition. SOM+
cells are postulated to modulate responses in distal dendrites to
feedback excitation (Gentet et al. 2012). PV+ cells can limit spike
output to narrow temporal windows by truncating excitatory
post-synaptic potentials (EPSPs) that would otherwise last for
several milliseconds (Pouille and Scanziani 2001; Gabernet et al.
2005; Cruikshank et al. 2007). The same mechanism allows PV+
cells to control network synchrony and oscillatory behavior
(Cardin et al. 2009; Buzsáki and Wang 2012; Sohal et al. 2009).
Their strong activation during bursts in brain slices (Fanselow
and Connors 2010; Tahvildari et al. 2012; Neske et al. 2015) sug-
gests an important role in regulating intrinsic network activity.
Here, we tested directly the role of SOM+ and PV+ cells in regu-
lating network activity and spike timing of pyramidal cells, using
targeted recordings and optogenetics in auditory TC slices.

Materials and Methods
Mice and Surgical Procedures

All procedures were approved by the University of Wisconsin-
Madison Animal Care and Use Committee and conform to
American Physiological Society/National Institutes of Health
guidelines. Mice were obtained directly or bred from stock (The
Jackson Laboratory, Bar Harbor, ME). To identify specific types
of interneurons, heterozygous SOM-tdTomato and PV-
tdTomato mice were bred from homozygous Cre-dependent
tdTomato (Stock 007 914, Ai14) male and SOM-Cre (Stock
013 044, SOM-IRES-Cre) or PV-Cre (Stock 008 069, PVcre) female
mice. Untargeted patch clamp recordings were also made from
B6CBAF1/J mice (F1 hybrid of C57/B6 and CBA/J mice; The
Jackson Laboratory). Some of the Cre-expressing animals were
used for optogenetic activation/suppression experiments. In
early experiments, this was accomplished via stereotaxic injec-
tion of adeno-associated virus expressing Cre-dependent halor-
hodopsin-YFP (AAV5/EF1α-DIO-eNpHR3.0-eYFP, Gene Therapy
Center Vector Core, University of North Carolina at Chapel Hill,
Chapel Hill, NC). Injections were performed on 3- to 5-week-old
mice of both sexes. Animals were anesthetized with isoflurane
(1.5–2%) and craniotomized above auditory cortex based on ste-
reotaxic coordinates (Franklin and Paxinos 2008). A total of
500–1000 nL of virus was injected into 2–3 sites spanning audi-
tory cortex rostral-caudally approximately 500 μm from the lat-
eral pial surface over 20–30min (about 10min per injection
site). Injections were performed through a patch pipette broken
to a tip diameter of approximately 50 μm and controlled with a
Nanoject II (Drummond Scientific Company, Broomall, PA)
mounted on a stereotaxic frame. Injected mice recovered for
3–5 weeks prior to preparation of brain slices. In later experi-
ments, we bred SOM-Cre and PV-Cre animals with mice with
Cre-dependent expression of the inhibitory pump archaerho-
dopsin (Stock 021 188, Ai40(RCL-ArchT/EGFP)-D) to yield pups
with ArchT expressed selectively in each interneuron subtype.

Slice Preparation

Auditory TC slices were prepared from male or female mice (de
novo: 4- to 12-week-old; recovered from surgery: 6- to 10-week-
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old) deeply anesthetized with isoflurane and decapitated. We
modified a previously described slicing method (Cruikshank
et al. 2002; Krause et al. 2014) to maximize preservation of
afferents connecting auditory thalamus and cortex in young
adult and adult animals. In this method, brains were blocked
with 3 cuts (Supplementary Fig. 1), each perpendicular to the
preceding cut: first, a sagittal cut about 2mm lateral to the mid-
line, preserving the larger block; second, a 45° rostral–dorsal to
caudal–ventral cut, preserving the dorsal/caudal block; and
third, a cut 20° off the horizontal–caudal plane, preserving the
lateral/caudal block. The resulting block was affixed to a vibrat-
ing microtome on the final cut face and sliced into 500-μm sec-
tions. Slices at this angle are roughly midway between the
coronal–horizontal plane, such that “caudal” regions of the slice
are about equally “dorsal,” but tilted slightly so that medial
regions are ventral to lateral regions. In the adult mouse, this
blocking procedure best preserves the ventral medial geniculate
nucleus (MGv) and primary auditory cortex (Au1) in the same
slice along with the C-shaped TC fibers that travel rostal and
ventral before arcing caudal on the way to auditory cortex
(based on the Allen Mouse Brain Connectivity Atlas, http://
connectivity.brain-map.org) (Oh et al. 2014).

During blocking and sectioning, slices were maintained in
ice-cold cutting artificial cerebrospinal fluid (ACSF) consisting
of (in mM) 111 NaCl, 35 NaHCO3, 20 4-(2-Hydroxyethyl)pipera-
zine-1-ethanesulfonic acid (HEPES), 1.8 KCl, 1.05 CaCl2, 2.8
MgSO4, 1.2 KH2PO4, 10 glucose, and bubbled with 95% O2/5%
CO2. Once cut, slices were immediately placed in cutting ACSF
warmed to 34 °C, which cooled to room temperature as slices
rested for at least 1 h. Slices were moved to the recording
chamber and perfused at >6mL/min with regular ACSF consist-
ing of (in mM) 111 NaCl, 35 NaHCO3, 20 HEPES, 1.8 KCl, 2.1
CaCl2, 1.4 MgSO4, 1.2 KH2PO4, and 10 glucose, warmed to 30–33 °
C and bubbled with 95% O2/5% CO2. Maintaining a strong flow
of ACSF over the slice by minimizing the volume in the cham-
ber and strategic arrangement of inflow and outflow was neces-
sary to ensure robust network activity. We note that although
the concentration of divalent cations is standard for “tradi-
tional” slice ACSF, physiological CSF may contain slightly lower
concentrations of Ca and Mg, and this has been shown to have
an impact on spontaneous bursting activity in slices (Sanchez-
Vives and McCormick 2000).

Electrophysiology and Data Analysis

Bipolar stimulating electrodes (100KΩ, FHC, Inc., Bowdoin, ME)
were placed into the TC fiber bundle rostral to hippocampus; we
have shown previously that this stimulation configuration acti-
vates current sinks in auditory cortex indistinguishable from
those elicited by stimulation in thalamus (Krause et al. 2014).
Current pulses consisted of a 200-μs biphasic square wave of
amplitude 10–100 μA (STG4002 stimulator; Multichannel Systems,
Reutlingen, Germany). The vertical strip of cortex (“column”) with
optimal responses to the stimulated TC fibers was identified by
recording TC responses in layer 4 of Au1 at 250-μm increments,
using a glass patch pipette filled with ACSF and broken to a resis-
tance of 500–700 kΩ. We used these responses to identify the cor-
tical location with the largest early (<10ms latency) extracellular
responses; further recordings were focused at this location.
During data collection, the stimuli were delivered as a train of 4
pulses at 40Hz, which reliably evoked recurrent network activity
(Krause et al. 2014). The stimulus intensity used for a given exper-
iment was adjusted to give network bursts that occurred reliably
after pulse 2 and before pulse 4 in the train; the specific intensity

required likely depended on the integrity of TC fibers in each
slice. For most experiments, there was substantial adaptation
after the first or second trial, so we omitted the first 2 trials. To
further account for adaptation of responses, we repeated our
analyses using only the latest half of the trials, but this did not
qualitatively impact results or conclusions.

For single-cell recordings, SOM+ or PV+ interneurons were
patched using a combination of fluorescence and differential
interference contrast (DIC) microscopy. Light from a mercury arc
lamp (X-Cite exacte; Lumen Dynamics, Mississauga, Ontario,
Canada) passed through an excitation filter (540–580nm; Chroma,
Bellows Falls, VT) and broad-spectrum transmitted light were pre-
sented simultaneously to identify labeled cells and surrounding
tissue features, respectively, and emission/transmittance (emis-
sion filter 593–667nm; Chroma) captured on a charge-coupled
device (CCD) camera (C9100-02, Hamamatsu Corp., Sewickley,
PA). A borosilicate micropipette (KG-33, 1.7mm OD, 1.1mm ID;
King Precision Glass, Claremont, CA), pulled to give open-tip
resistance of 3–5MΩ (P-1000; Sutter Instruments, Novato, CA)
filled with intracellular solution (in mM: 140K-gluconate, 10
NaCl, 10 HEPES, 0.1 ethylene glycol-bis(2-aminoethylether)-N,N,
N′,N′-tetraacetic acid (EGTA), 2 MgATP, and 0.3% biocytin; pH
7.2), was advanced to contact the targeted cell and a >1 GΩ seal
made with weak negative pressure. Pyramidal cells were
patched similarly, with transmitted light only, and identified
based on their visible triangular morphology with apical den-
drite under DIC optics. Spikes were recorded in the on-cell con-
figuration in voltage clamp in response to trains of 4 × 40Hz TC
stimuli. After on-cell recording, whole-cell access was estab-
lished and recordings continued in current-clamp mode. For
some cells, whole-cell access occurred before on-cell recordings
were completed. In these cells, spikes recorded in whole-cell
configuration were analyzed. In addition to Cre-dependent
tdTomato expression and morphological characteristics, cell
types were identified by their characteristic responses to current
pulses, particularly spiking patterns and rates (i.e., regular-
spiking vs. fast spiking). For all recordings, the recorded voltage
or current signal was low-pass filtered at 4 kHz and digitized at
40 kHz.

During all experiments, including during single-cell record-
ings, simultaneous extracellular population recordings in layer
5 (and in some experiments also in layers 2/3) were used to
measure network activity. Broken glass pipettes (as above, bro-
ken to resistances of 500–800 kΩ) filled with regular ACSF were
inserted into layer 5 at a cortical depth slightly greater than
halfway from pia to white matter. Stimulus artifacts were
blanked by interpolating between points before and after the
artifact. Extracellular voltage was filtered between 500 and
3000Hz, full-wave rectified, and smoothed by convolution with
a Gaussian kernel with unit integral and σ = 2ms to produce a
smoothed multiunit activity (MUA) signal (smMUA), also
referred to as “population activity” throughout this paper. A
threshold for elevated activity was defined as the geometric
mean of all the points greater than the arithmetic mean of the
smMUA signal (Sakata and Harris 2009; Krause et al. 2014).
Burst onsets were defined as periods above threshold for at
least 80% of points in a 20-ms window and burst offsets defined
as a decrease below the threshold for 80% of points in a 50-ms
window. These criteria reliably identified network bursts
observed by eye and did not include early responses to individ-
ual stimulus pulses (which are too brief).

Many measures have been suggested for quantifying spike
timing, but creating a firing-rate–independent measure of cor-
relative features such as spike timing across trials is nontrivial
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(Joris et al. 2006; Cohen and Kohn 2011; Cutts and Eglen 2014).
We assayed spike timing using a variation of the previously
described “spike-time tiling coefficient” (STTC; Cutts and Eglen
2014), which computes the fraction of spikes coincident with a
specified coincidence window (Δt) above those expected by
chance. Instead of comparing between 2 simultaneously
recorded units as originally described, the measure was com-
puted between all permutations of trials for a given unit. The
calculation depends on a free parameter Δt, which defines the
window on which spikes are considered “coincident.” Then, 2
proportions are calculated, PA, the proportion of spikes from
spike train A that are within Δt of any spike in spike train B,
and TB, the proportion of all time that is within Δt of any spike
in spike train B. The STTC is calculated as
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This measure is high (approaching 1) when all spikes occur
at the same time as spikes in other trials, and zero for randomly
distributed spikes. The STTC was only calculated for cells that
fired at least 1 spike on more than one-third of trials. The STTC
tends toward unity as the coincidence interval increases.
Importantly, the STTC is robust to changes in firing rate (Cutts
and Eglen 2014) but will change with coordinated changes in fir-
ing rate that are on time scales much slower than Δt.

A second measure of spiking precision across trials was adapted
from a spike train distance metric (Victor and Purpura 1996). We
define the spike train similarity S between 2 trials (a, b) as

= − ( ) ( + )S D a b N N1 , /spike
a b

where Dspike is the Victor–Purpura metric for spike train dis-
tance (Victor and Purpura 1996), defined as the cost of trans-
forming one spike train into another by adding, shifting, or
removing spikes. The cost of adding or removing a spike is
defined as 1; the cost of shifting a spike is equal to q ·Δt, where
q is a free parameter that determines the temporal precision of
interest. We used q = 0.5/ms to compare with our STTC results,
meaning that it is more efficient to remove and add a spike
(a total cost = 2) than to shift a spike by more than 4ms. We
normalized the Victor-Purpura distance by the sum of the num-
ber of spikes N in trains a and b (Dimitrov et al. 2014) and sub-
tracted from 1 to transform from a measure of distance to a
measure of similarity. We defined the spike train similarity for
one cell across all trials as the average of S across all trial com-
binations (a, b) for which Na + Nb ≠ 0. Even with the normaliza-
tion to number of spikes, this measure can be sensitive to
changes in firing rates but has an advantage over the STTC
measure in that it uses a non-binary measure of coincidence.

We wished to compare across experiments the timing of
spikes relative to burst onset and offset. Because population
bursts vary in duration between and within slices, we normal-
ized burst duration and defined the “burst phase” as 0 at the
start of a burst and 1 at the end of a burst. The “burst-firing
phase” was the fractional time of each spike between onset
and offset of the burst detected on that trial. To calculate firing
rates during bursts, spike trains recorded from single cells were
convolved with a Gaussian kernel (σ = 2ms) before temporal
scaling to units of burst phase to preserve units of firing rate in
terms of spikes/second (Hz).

Statistical comparisons between cell types used standard
1-way ANOVA when normality was not rejected using a 1-way
Kolmogorov–Smirnov test; otherwise, a Kruskal–Wallis test of

analysis of variance by ranks was used. Levene’s test was used
to compare variances. All statistical tests used the MATLAB
(Mathworks, Natick, MA) Statistics Toolbox.

Optogenetic Suppression of Inhibition

Halorhodopsin or ArchT pumps were activated by passing light
from the arc lamp through the microscope objective (10x) cen-
tered on the cortical region of study using a filter in the excita-
tion range for halorhodopsin (540–580 nm). Activation of these
constructs caused substantial hyperpolarization in labeled cells
(see Supplementary Fig. 3). The light was turned on 100ms
before stimulus onset and held on for a total of 500ms. Light
intensity was titrated for each experiment to a level that pro-
duced an effect on population responses, in the range of
0.6–2.9mW/mm2 for halorhodopsin and 1.5–5.8mW/mm2 for
ArchT. Light-on trials were interleaved with light-off trials. The
first two trials of each type were discarded because these trials
often contained induced bursts that differed substantially in
magnitude and latency from subsequent events. The effects of
optogenetic suppression on individual cells were tested with
Wilcoxon signed-rank tests.

We did not observe any evidence of toxicity, for example,
abnormal “blebbing” of membranes, that has been associated
with older halorhodopsin constructs (Gradinaru et al. 2008).
Additionally, patched eNpHR3.0+ cells had normal resting poten-
tials and firing behavior. Our stimuli were brief (several hundred
milliseconds) relative to durations known to impact intracellular
chloride concentrations, which span several seconds (Raimondo
et al. 2012). We also did not observe any differences between
eNpHR3.0 and ArchT slices with or without light stimulation and
did not observe any differences without light in those slices com-
pared with slices without any optogenetic expression.

Linear Mixed-Effects Model

To analyze the effect of optogenetic suppression of different
interneuron populations, we fit population responses using a lin-
ear mixed-effects model (Kristensen and Hansen 2004; Winter
2013). This approach allows for controlling for random effects due
to repeated measures within subjects, enabling us to consider
non-independent samples in a principled way. Other methods
such as using repeated-measures ANOVA could not be structured
to our data without enforcing independence by summarizing
each experiment with a single value for each condition (such as a
mean or median) and therefore losing important information
about within-subject variability or consistency.

Models consisted of a response variable based on the popu-
lation activity (smMUA peak, burst latency, or burst duration),
fixed effect of interneuron suppression (LightOff/SOM+/PV+),
and recording layer (L5 or L2/3), an interaction term between
the 2 fixed effects, and random effect of slice (experiment),
with random slopes by condition and by layer for the effect of
slice. In summary, the full model was as follows, with fixed
effects β, random effects γ, suppression i, layer j, and slice k:

ε

= β + β ( ) + β ( ) + β ( ) + γ + γ ( )

+ γ ( ) +

i j i j i

j

Response ,

.

ijk k k

k ijk

0 1 2 3 0 1

2

Statistical evaluation of the linear mixed-effects model
occurred at 2 levels. First, we used a likelihood ratio test to
determine whether fixed effects in the above equation are sig-
nificant, comparing the full model to a reduced model that
lacks the interaction term (the interaction term indicates an
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effect of suppression that depends on layer). If omitting the
reaction term significantly reduced model likelihood, we further
analyzed the individual coefficients for that term. Otherwise, we
omitted the interaction from the model. For example, for the
effect of suppression of interneurons on the peak and latency
(Fig. 6; Table 2), the model was significantly improved by including
the interaction between interneuron suppression and layer (i.e.,
β3; peak χ2(2) = 124.1, P < 0.0001; latency χ2(2) = 31.7, P < 0.0001).
For the duration, the interaction was not significant (χ2(2) = 0.72, P
= 0.69), but both of the individual fixed effects (β1, χ2(2) = 20.2, P <
0.0001, and β2, χ2(2) = 17.4, P < 0.0001) were significant. This result
indicates that, although there were effects of interneuron sup-
pression and differences between layers, there was no difference
in the effect of interneuron suppression across layers. Therefore,
we used a reduced model with no interaction term for evaluating
duration and used the full model for the other measures. We
report likelihood ratio tests using chi-squared values. Residuals
were visually inspected to confirm homoscedasticity. For the
latency and duration measures, heteroscedasticity was corrected
by log-transforming the response variables. After choosing the
appropriate models, we tested the significance of individual coeffi-
cients (Table 2). For ease of interpretation, coefficient estimates
for these models were exponentiated after fitting to express
effects as multiplicative gains. Coefficients are reported with 95%
confidence intervals. All data analysis and statistical comparisons
used the MATLAB (Mathworks, Natick, MA) Statistics Toolbox and
custom MATLAB software.

Tempotron Learning Model

To test how discriminable random spiking patterns are with dif-
fering distributions of burst-firing phase, we implemented a tem-
potron learning model (Gütig and Sompolinsky 2006). Briefly, the
tempotron is a single-compartment, leaky integrate-and-fire neu-
ron that responds in a binary manner (“spike” or “no-spike”) to a
pattern of weighted synaptic inputs. Patterns were arbitrarily
assigned to “go” or “no-go” categories, where the correct response
to a “go” pattern is a spike, and the correct response to a “no-go”
pattern is no spike. The membrane voltage V(t) was given by
summing the weighted inputs convolved with a causal filter K
given by the equation:

( ) = −− τ − τK t e et t/ /decay rise

We set τ ∶= 15 msdecay and τ ∶= 3.75 msrise . If V(t) reached
threshold, the trial ended at time t and a spike was registered.
After each trial, weights ω were updated according to the tem-
potron learning rule:

∑Δω = λ ( − )
<

K t t .
t t

imax

i max

This rule multiplies the maximum update step ∫(λ = ⁎ )K: 0.001
by a factor that represents the contribution of spikes at the
observed times relative to the time of the maximum V(t).
Synaptic weights were increased by Δω when there was a miss
error and decreased by Δω when there was a false alarm error.
We also included a momentum μ∶ = 0. 99, as in the original
tempotron model, to accelerate the learning process. Because
deep cells had higher mean firing rates than superficial cells, in
some simulations (see Results) we matched firing rates between
deep and superficial cells by omitting deep cells in descending
rank order until the mean firing rate in the sample of deep cells
was as close as possible to the mean firing rate of the superficial
cells.

Results
Induced Network Activity

We seek to understand the spatio-temporal patterns of spiking
during correlated network activity (“network bursts”) within
the cortical column, and the regulation of this activity by 2 clas-
ses of cortical inhibitory cells. We chose to study these ques-
tions in brain slices (Fig. 1A), in which we and others have
shown that such activity is readily observed. In murine audi-
tory TC slices, 2 types of responses are observed in response to
activation of TC afferents. Short-latency current sinks in layer 4
and EPSPs in cells of all recorded layers are consistent with
monosynaptic TC inputs (Cruikshank et al. 2002; Krause et al.
2014; Raz et al. 2014) (Fig. 1B, inset). Longer latency, variable
duration responses, corresponding to network bursts, are also
observed. Intracellularly, these consist of depolarizations that
arise from polysynaptic inputs and are shared across cells in
the column; spiking activity recorded in individual cells and as
multiunit activity extracellularly occurs preferentially during
these burst events (Fig. 1B). Here, we defined network bursts as
a sustained increase in the smoothed population MUA recorded
in layer 5 (Fig. 1C; see Materials and Methods). Burst duration
varied with stimulus intensity and across slices but was typi-
cally around 40–70ms (Fig. 1D). Network bursts of similar dura-
tion have been observed previously in vitro (Metherate and
Cruikshank 1999; MacLean et al. 2005; Krause et al. 2014;
Hentschke et al. 2017; Shu et al. 2003) and in auditory cortex in
response to acoustic stimuli in vivo (Curto et al. 2009; Luczak
et al. 2009, 2013; Sakata and Harris 2009).

Afferent stimulation can itself induce bursts of correlated net-
work activity within the auditory cortical column. Importantly,
these stimuli can also coincide with spontaneous bursts, or with
bursts induced by prior stimulation (Destexhe and Pare 1999;
Petersen et al. 2003; MacLean et al. 2005; Luczak et al. 2013; Rigas
and Castro-Alamancos 2009). Our observation that nearly all spik-
ing activity occurs in the context of network bursts suggests that
driving the network into the activated state underlying network
bursts is necessary for throughput of afferent information. Thus,
we are interested in how the network responds to afferent stimula-
tion occurring during bursts. To investigate this, we chose for most
of our experiments trains of afferent stimuli (4 × 40Hz, 10–100 μA)
at intensities that induced bursts after the second and prior to the
fourth stimulus in a train of four pulses, such that there was
always at least 1 stimulus pulse occurring during the burst (Fig. 1B).

Because stimulation during ongoing bursts can hasten their
termination, we verified that the bursts we observe are not short
merely due to our experimental paradigm that includes trains of
stimuli that overlap with induced bursts. We found no difference
in burst duration with versus without stimulation amidst bursts
in a subset of experiments (n = 7, mean duration difference ±
standard error of the mean (SEM) = 1.1 ± 5.0ms; paired t-test P =
0.84; Fig. 1E). Duration of bursts can also be affected by the
method for detecting and defining bursts, which differs across
studies. For example, the duration of the thresholded MUA signal
in layer 5 was typically less than the intracellular depolarization
signal (Fig. 1B), although we note that the vast majority of spiking
activity occurred within the detected bursts according to our defi-
nition (Krause et al. 2014; Hentschke et al. 2017).

Cell Type-Specific Firing Patterns During Network
Bursts

To investigate the role of GABAergic cells in regulating network
activity, and specifically spike timing in the context of this
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activity, we first determined the firing patterns of pyramidal,
PV+, and SOM+ cells during network bursts induced by tha-
lamic stimulation. To record from specific classes of GABAergic

cells during network bursts, we prepared slices from transgenic
animals expressing the fluorophore tdTomato in either PV+ or
SOM+ cells (Supplementary Fig. 2). We identified pyramidal
cells based on their morphology in these same slices. The 3 cell
types had distinct patterns of firing with respect to bursts
(Fig. 2A–C) and intrinsic properties (Table 1; see also Supplementary
Material). Pyramidal cells tended to fire sparsely during bursts
(Fig. 2A). By contrast, GABAergic cells tended to fire more densely.
SOM+ cells tended to fire multiple spikes late in bursts; occasion-
ally, some SOM+ cell spikes occurred after the detected burst
duration (Fig. 2B; 13.4% of SOM+ cell spikes were after bursts,
compared with only 2.6% of pyramidal cell spikes and 3.9% of PV
+ cell spikes). PV+ cells tended to fire multiple spikes early and
throughout bursts (Fig. 2C). On average, pyramidal cells fired sig-
nificantly fewer spikes per trial (including spikes before or after
detected bursts) than either inhibitory cell population (Fig. 2D; H
(2) = 32.1, P < 0.0001; Pyr vs. SOM+ P < 0.0001, Pyr vs. PV+ P <
0.0001) and were more likely to fire no spikes on a given trial
(Fig. 2E; H(2) = 21.7, P < 0.0001; Pyr vs. SOM+ P = 0.0003, Pyr vs. PV
+ P = 0.0016). Thus, although interneurons make up only 10–20%
of neurons in auditory cortex, their substantial firing activity posi-
tions them to exert strong influence over induced network activ-
ity. Pyramidal cells in layer 5 fired more spikes per trial than
pyramidal cells in layers 2/3 or 4 (not shown; H(2) = 21.0, P <
0.0001; Pyr L2/3 vs. L5 medians 0.06 vs. 1.0, P = 0.0008; Pyr L4 vs.
L5 medians 0 vs 1.0, P = 0.0009). There were no significant laminar
differences in firing rate for either interneuron type.

Almost all spikes from single-cell recordings occurred dur-
ing bursts, but occasionally some cells spiked before bursts. We
presume that pre-burst spiking activity is necessary to initiate
bursts, although we found that this activity was very sparse
compared with participation in the bursts themselves, as we
have shown previously (Krause et al. 2014). The probability of
firing at least 1 spike before a burst (“early spikes”) was actually
lowest in pyramidal cells and highest in PV+ cells (Fig. 2F; 9/93
pyramidal, 6/28 SOM+, 12/29 PV+). Even among the subset of
cells that fired some early spikes, most spikes occurred after
burst onset (Fig. 2G). Very few early-spiking cells were in supra-
granular layers (Fig. 2H); most early-spiking PV+ cells were in
layer 4, whereas most early-spiking pyramidal and SOM+ cells
were in layer 5 (Fig. 2H). These results are consistent with previ-
ous reports of robust thalamic excitation of granular layer PV+
cells (Pouille and Scanziani 2001; Rose and Metherate 2005), the
relative density of infragranular cell spiking (Sakata and Harris
2009; Barth and Poulet 2012; Krause et al. 2014), and direct tha-
lamocortical excitation of infragranular cells (Tan et al. 2008;
Constantinople and Bruno 2013; Krause et al. 2014).

Timing of Spikes Relative to Stimulus Train

Sensory information in vivo is likely to be conveyed during
high conductance states manifested as desynchronized or so-
called UP states (Destexhe et al. 2003, 2007; Harris and Thiele
2011). During these periods of elevated network activity, high
levels of synaptic input and net depolarization of cellular mem-
brane potential will impact substantially on the precision and
reliability of spike timing (Destexhe et al. 2003; Pachitariu et al.
2015), but there have been few systematic studies of spike tim-
ing and its control by GABAergic interneurons during such peri-
ods of high network activity. We used thalamically induced
network bursts as a model high conductance state and assayed
spike timing during these network bursts in response to ongo-
ing thalamic stimulation.

Figure 1. Induced network bursts and spiking activity. (A) Typical recording

configuration. Two glass micropipettes are shown, 1 in layer 2/3 and 1 in layer

5. During single-cell recordings, another electrode always monitored population

activity in layer 5. A metal-stimulating electrode pair is placed in the fiber tract

from MGv to auditory cortex. Toward the left of the image is approximately ros-

tral/ventral; toward the top is roughly lateral, but note from Supplementary

Figure 1 that the slicing procedure results in slices not in any cardinal plane of

section. ACx: auditory cortex, with boundaries indicated by white bars; MGv:

medial geniculate nucleus, ventral division. (B) Three example trials from 2

simultaneously recorded cells, along with high-pass filtered population activity

recorded on a third electrode. Horizontal bars indicate bursts detected in extra-

cellular activity. Inset shows magnified response to the first stimulus pulse

from 1 cell. EPSP latency = 2.4ms. (C) Network burst detection procedure. The

raw extracellular trace (black, top) is filtered between 500 and 3000 Hz to give

the MUA signal (gray, center). TC stimulus times are marked with triangles. The

MUA signal is smoothed with a Gaussian kernel to give the smMUA signal

(black, bottom). Burst onset and offset (vertical lines) are determined by thresh-

old (horizontal dashed line) crossings above the geometric mean of the smMUA

signal (see Material and Methods). (D) Histogram of mean burst durations while

recording from each individual cell. (E) Six example trials and detected bursts.

On 3 trials, the fourth stimulus pulse (which would have occurred during

bursts) is omitted, but there is no change in burst duration. Scale same as in (B).
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The precision of spike timing relative to the TC stimulus
train varied between and within cell types (Fig. 3A–C). Some
cells, especially PV+ interneurons, exhibited firing that was
tightly linked to the ongoing stimulus train and relatively inde-
pendent of the induced network activity (e.g., cell 9, Fig. 3C).
However, in most cells, precision of spike timing relative to tha-
lamic stimulation was poor (e.g., cells 1 and 2, Fig. 3A). This
finding was surprising. Our stimulus paradigm consisted of pre-
cise, synchronous afferent inputs. Spike timing relative to audi-
tory stimulus features is very precise earlier in the auditory
hierarchy (Langner 1992; Krishna and Semple 2000; Bartlett and
Wang 2007; Wang et al. 2008), and specializations in auditory
cortex for rapid processing of incoming input suggest that tim-
ing information is also important in auditory cortex (Rose and
Metherate 2005; Kayser et al. 2010).

To investigate further, we quantified stimulus-related spike
timing in each cell class using the STTC (see Materials and

Methods). A second measure, a variation on the Victor-Purpura
spike train distance (Victor and Purpura 1996) (see Materials
and Methods), gave nearly identical results (Supplementary
Fig. 4A). Importantly, we chose to use the STTC as a measure of
spike timing because other measures like the cross correlation
show increases with firing rate (De La Rocha et al. 2007; Cohen
and Kohn 2011; Cutts and Eglen 2014). We calculated the STTC
over a range of coincidence windows within which spikes were
deemed coincident (Fig. 3D). Although there was variation
within cell types, PV+ cells tended to have a higher STTC over a
wide range of coincidence windows. For precision of Δt = 1ms
(Fig. 3E), PV+ cells were significantly better timed than both
SOM+ cells (F(2,88) = 12.73, P < 0.0001; SOM+ vs. PV+ P = 0.0014)
and pyramidal cells (Pyr vs. PV+ P < 0.0001). We also considered
the effect of timing by layer (Fig. 3F), which showed more pre-
cise firing in layer 4 for all types of cells, presumably reflective
of larger TC EPSPs in this layer (Krause et al. 2014). A 2-way

Figure 2. (A–C) Intracellular recordings (top) from a pyramidal (A), SOM+ (B), and PV+ cell (C), along with example MUA traces (middle: high-pass filtered and rectified

signal; bottom: smMUA signal) from 3 different slices. Upward-pointing triangles mark the time of TC afferent stimulus pulses and downward pointing triangles

mark intracellular spikes. Horizontal bars indicate duration of detected bursts. Spikes are truncated above −20mV. Values in mV indicate resting membrane potential.

(D) Pyramidal cells averaged fewer spikes per trial than SOM+ or PV+ cells. Box plots here and elsewhere indicate median (horizontal line), interquartile range (box),

range outliers (black bars), and outliers (symbols). (E) Most pyramidal cells (Pyr) fired sparsely or not at all, even during UP states, whereas most interneurons (SOM+

and PV+) fired at least one spike on every trial. (F) A minority of all cell types fired some fraction of their spikes early, prior to burst onset, although this was more

common in interneurons, particularly PV+ cells. (G) Even among those cells that fired some early spikes, most cells fired most of their spikes during induced bursts.

(H) PV+ cells with the greatest fraction of early spikes were found in layer 4; pyramidal and SOM+ cells that fired early spikes were mostly found in layer 5. Horizontal

axis depicts fractional depth from pia to white matter; dotted lines mark boundaries between layers 1, 2/3, 4, 5, and 6.

Table 1 Properties of recorded cell types

RMP (mV) Rin (MΩ) τm (ms) Spike width (ms) ISI ratio EPSP slope (mV/ms) EPSP Latency (ms)

Pyr −69.1 ± 10.5 92.6 ± 53.2 10.2 ± 6.2 1.04 ± 0.26 0.30 ± 0.18 2.35 ± 2.39 2.6 ± 0.86
SOM+ −64.6 ± 5.2 173.9 ± 84.5 13.4 ± 9.6 0.67 ± 0.25 0.61 ± 0.26 3.99 ± 7.86 3.4 ± 2.4
PV+ −66.8 ± 11.4 82.0 ± 26.0 4.2 ± 1.3 0.37 ± 0.14 0.86 ± 0.15 15.0 ± 12.2 1.9 ± 0.36

Values are presented as mean ± standard deviation (SD). Spike widths are full width at half-maximum. ISI ratio is a measure of spike adaptation equal to the ratio of first

to last interspike interval for a 400ms depolarizing current at half-maximal firing rate. Resting membrane potential (RMP) did not vary significantly between groups

(F(2 112) = 1.86, P = 0.16). Input resistance was significantly higher in SOM+ cells (F(2 112) = 21.0, P < 0.0001; Pyr vs. SOM+, P < 0.0001; Pyr vs. PV+, P = 0.69; SOM+ vs. PV+,

P < 0.0001). Membrane time constants were significantly shorter in PV+ cells (F(2 112) = 14.0, P < 0.0001; Pyr vs. SOM+, P = 0.10; Pyr vs. PV+, P = 0.0002; SOM+ vs PV+, P <

0.0001). Spike widths were significantly different between all groups (F(2 112) = 84.3, P < 0.0001; Pyr vs. SOM+, P < 0.0001; Pyr vs. PV+, P < 0.0001; SOM+ vs PV+, P < 0.0001).

Spike adaptation (ISI ratio) was significantly different between all groups (F(2 112) = 89.6, P < 0.0001; Pyr vs. SOM+, P < 0.0001; Pyr vs. PV+, P < 0.0001; SOM+ vs PV+, P =

0.0001). EPSP slopes were greater in PV+ cells (H(2) = 30.6, P < 0.0001; Pyr vs. SOM+, P = 0.69; Pyr vs. PV+, P < 0.0001; SOM+ vs PV+, P < 0.0001). Similarly, EPSP latencies were

shorter in PV+ cells than pyramidal or SOM+ cells (H(2) = 20.2, P < 0.0001; Pyr vs. SOM+, P = 0.75; Pyr vs. PV+, P = 0.0002; SOM+ vs PV+, P = 0.0003).
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ANOVA was significant for main effects of cell type (F(2,82) =
6.42, P = 0.0026) and layer (F(2,82) = 4.26, P = 0.017), but the
interaction between cell type and layer was not significant (F
[4,82] = 0.86, P = 0.49). The main effect of layer was driven by
greater precision in layer 4 compared with the other layers
(layer 2/3 vs. layer 4, P = 0.023; layer 4 vs. layer 5, P = 0.030).

Stimulus-Based Timing Is Improved by Suppressing
PV+, but not SOM+ Cells

The data presented so far indicate that PV+ cells are strongly
and precisely driven by thalamic stimuli (Fig. 3), suggesting
that they are poised to provide precise feedforward inhibition
in pyramidal cells. These observations are in line with previous
reports, which have suggested that thalamically evoked action
potentials in cortical pyramidal cells are tightly regulated by
inhibitory circuits (Pouille and Scanziani 2001; Gabernet et al.
2005; Rose and Metherate 2005; Higley and Contreras 2006;
Oswald et al. 2006; Cruikshank et al. 2007; Wehr and Zador
2003; Tiesinga et al. 2008; Isaacson and Scanziani 2011).
Specifically, these studies showed that inhibitory cells con-
strain integration windows and the timing of spikes in pyrami-
dal cells, contributing to the information capacity of the
cortical network. We sought to determine whether inhibitory
cells similarly regulate spike timing in pyramidal cells during
bursts. We expected that suppression of PV+ cells in particular
would release pyramidal cells from inhibition, causing them to
fire more indiscriminately and decrease the precision of spike
timing relative to the stimulus. We tested this hypothesis by
recording from individual pyramidal cells and measuring
effects of optogenetic suppression of either PV+ or SOM+ cells
on spike rate and timing. We suppressed SOM+ or PV+ cell

activity by expressing halorhodopsin (via viral vectors) or
ArchT (via transgenics) in SOM-Cre (n = 43) and PV-Cre (n = 23)
mice (Supplementary Fig. 3) and compared spike timing in
pyramidal cells with and without suppression.

Suppression of either SOM+ or PV+ interneurons only mod-
estly increased the firing rate of pyramidal cells during bursts.
Pyramidal cell spike probability (Fig. 4A) trended toward
increasing for SOM+ cell suppression (Wilcoxon signed-rank
test, z = 1.86, P = 0.062) and was significantly increased for PV+
cell suppression (z = 3.66, P = 0.0002). Pyramidal cells fired more
spikes per trial (Fig. 4B) with suppression of either cell type
(SOM+ medians 0.76 vs. 1.28 spikes/trial, z = 2.46, P = 0.014; PV+
medians 0.90 vs. 1.06 spikes/trial, z = 4.24, P < 0.0001). Thus,
pyramidal cell firing during bursts becomes slightly less sparse
when SOM+ or PV+ cells are suppressed.

We expected that suppression of PV+ cells in particular would
also lead to less precise spike timing in pyramidal cells relative to
TC input. However, we observed no evidence of degraded timing
of pyramidal cell firing during suppression of PV+ or SOM+ cells
(Fig. 4C–F). Contrary to our expectations, suppressing PV+ cells
actually improved stimulus-related timing of most pyramidal
cells (Fig. 4G), an effect not observed with suppression of SOM+
cells. We observed the same result across a wide range of coinci-
dence intervals, using the spike similarity measure, and in the
cross correlogram (see Supplementary Fig. 4B–D). There are sev-
eral possible reasons for this unexpected result, although we
were unable to identify one specific factor. Relief from strong
feedforward inhibition could have biased spiking in favor of
responses to direct TC input rather than intrinsic network activ-
ity. Alterations in the dynamics of the bursts themselves may
also play a role. Changes in STTC in pyramidal cells were weakly
correlated with reductions in burst duration (Fig. 4H; r2 = 0.23,

Figure 3. Spike timing with respect to stimulus. (A) Spike rasters for 3 example pyramidal cells, each with 20 trials. Bursts are indicated by gray bars that alternate

shade for the 3 cells. The cells are plotted in order of increasing (from top to bottom) STTC (see Materials and Methods). STTC values listed are for Δt = 1ms. (B–C)

Same as in (A), but for 3 SOM+ (B) and 3 PV+ (C) cells. (D) STTC plotted as a function of the time window (Δt) in which spikes were considered synchronous for pyrami-

dal cells (black), SOM+ cells (red), and PV+ cells (blue). Dark lines are medians, and shaded regions indicate the interquartile range. (E) Comparison of STTC between

cell populations at Δt = 1ms. Spiking activity in PV+ cells was better timed across trials than for pyramidal or SOM+ cells. (F) The data in (E) separated by cortical

layer. Overall, across all cell types cells in layer 4 were better timed (see Results).
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P = 0.04)). We also observed on average a reduction in the SD of
burst onset latency, but this reduction only trended toward cor-
relation with changes in STTC (r2 = 0.16, P = 0.10). These latter
effects, which suggest a relationship between burst dynamics
and timing, led us to investigate how PV+ and SOM+-mediated
inhibition regulates spiking activity within network bursts.
Below, we present data suggesting that PV+ cells do play a role

in improving spike timing in pyramidal cells, but in the context
of network activity rather than in the context of single-cell
responses to external inputs.

Packet-Like Timing of Spikes Relative to Network
Activity

Spike timing relative to an external stimulus can provide useful
information, marking at a fixed latency the occurrence of stim-
ulus features within a particular neuron’s receptive field.
However, spike latencies can also vary with stimulus para-
meters, e.g., intensity, orientation or location (Panzeri et al.
2001; Shriki et al. 2012). Therefore, extraction of unambiguous
information about a stimulus requires an internal reference
signal, such as one provided by endogenous network activity
(Kayser et al. 2009). Organization of spike times relative to other
members of the local ensemble has been proposed to underlie
population codes in the cortical network (Abeles et al. 1993;
Luczak et al. 2013). We examined the organization of spiking
within network bursts in slices by considering the phase at
which spikes were fired, and examined how this organization
depended on activity of GABAergic cells. Importantly, we made
a distinction between the variation of burst firing phase within
populations of cells (separated by cell type) versus the proper-
ties of individual cells within those populations.

Mean pyramidal and PV+ cell firing rates coincided with
population activity levels throughout bursts, though pyramidal
cells fired sparsely; firing in SOM+ cells was denser later in the
burst (Fig. 5A). These general trends are more evident in rate-
normalized traces (Fig. 5B). However, it is important to also con-
sider the timing of individual cells within each population.
Previous work has shown evidence for organization of network
spiking activity into brief “packets,” reflecting a stereotyped
sequence of activation of individual cells. Information within
these packets can be carried both by the subset of cells partici-
pating in the packet and by the relative phase at which cells
are active within the packet (Luczak et al. 2013, 2015).
Maximum information transfer requires maximum entropy in
the repertoire of codes but minimum entropy in the code for a
given stimulus. Therefore, an “ideal population” that utilizes
timing within a packet to encode information has high variance
in timing across the population but also high precision within
each cell. That is, for a downstream neuron monitoring the out-
put of this cortical network, optimally discriminable spike
times of different potential inputs would have mean firing
phases distributed across the burst (high phase variability
across the population) but low-phase variability for each indi-
vidual cell. To distinguish between these critically different
types of variance, we refer to the SD of mean firing phases
across the population as “phase diversity” and the SD of firing
phases within a cell as “phase variability.”

We computed the mean and variability of firing phase
within the burst (defined as 0 at burst onset, 1 at burst offset)
for each cell (Fig. 5C). Over all cell types, firing phase spanned
∼80% of the burst duration, i.e., phase diversity was high, with
a near uniform distribution of mean firing phases occurring
during the central 60% of the burst. However, the distribution
and diversity of mean firing phases and firing phase variability
differed between cell types. Pyramidal cells had high phase
diversity (Fig. 5D), but the phase variability for individual pyra-
midal cells was low (Fig. 5E), consistent with a population
adapted for temporal coding. That is, that although pyramidal
cell population activity was distributed throughout bursts, indi-
vidual pyramidal cells tended to fire consistently at particular

Figure 4. Single-cell effects of suppressing inhibition on firing rates and

stimulus-related timing. (A) Spike probability for pyramidal cells recorded in

slices with SOM+ or PV+ cells expressing inhibitory opsins in control conditions

versus with inhibition suppressed. (B) As in (A), for spikes fired per trial. (C)

Spike rasters for 3 example pyramidal cells, as in Figure 3A. (D) Suppressing

SOM+ cells had little effect on these cells’ timing. (E) Same as (C), but for cells

recorded in slices in which PV+ cells express inhibitory opsins. (F) Suppressing

PV+ cells led to a pronounced improvement of pyramidal cells’ stimulus-

related timing. (G) The STTC, calculated at Δt = 1ms, for cells recorded with

and without optogenetic suppression of SOM+ or PV+ cells. (H) Effects on STTC

were weakly correlated with effects on burst duration. In (A) and (G), * indicates

significant differences based on a Wilcoxon signed-rank test (α = 0.05).
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phases of the burst. By comparison, SOM+ and PV+ populations
had less phase diversity (Fig. 5D; Pyr vs. SOM+, Levene’s statis-
tic (1,64) = 8.51, P = 0.0049; Pyr vs. PV+, Levene’s statistic (1,61) =
9.97, P = 0.0025) and individual cells had more phase variability
(Fig. 5E; F(2,81) = 20.66, P < 0.0001; Pyr vs. SOM+ P = 0.040, Pyr vs
PV+ P < 0.0001). Consistent with the mean firing rates in
Figure 5A, the mean firing phase of the SOM+ population was
later than both pyramidal and PV+ cells (F(2,81) = 8.01, P =
0.0007; SOM+ vs. Pyr P = 0.0004, SOM+ vs. PV+ P = 0.0027). These
results are consistent with the organization of pyramidal cell fir-
ing observed in vivo in which these cells tend to fire at consis-
tent latencies relative to “packets” (Luczak et al. 2013). However,

although interneurons (particularly PV+ cells) were well timed
to input patterns (Fig. 3), they were not well timed to the output
packet structure.

Interneurons Exert Powerful Control Over Network
Activity

To investigate the extent to which SOM+ and PV+ interneurons
regulate network activity and the temporal organization of
pyramidal cell spiking during bursts, we paired TC stimuli with
optogenetic suppression of SOM+ or PV+ cells via halorhodop-
sin or ArchT; effects of the two opsins did not differ signifi-
cantly and were pooled. We measured population activity in
both layer 5 and layer 2/3 (Fig. 6A,B), because our previous
observation that some bursts consisted primarily of activity in
layer 5 without activity in layer 2/3 (Krause et al. 2014) sug-
gested differing dynamics. We analyzed three measures
extracted from the population activity: burst latency (Fig. 6C),
the peak of the MUA signal (Fig. 6D), and burst duration
(Fig. 6E). We fitted a linear mixed-effects model to the popula-
tion activity measures (see Methods). Model coefficient esti-
mates for the individual parameters are in Table 2; we based
our interpretations of significance on the means and standard
errors of these parameter estimates. In Figure 6C–E, we plot
means and standard error averaged across slices for each com-
bination of factors.

In control conditions, bursts were earlier in layer 5 com-
pared with layer 2/3 (center inset, Fig. 6A,B; Table 2; Fig. 6C),
consistent with our previous results and with other results that
showed activity starting in deep layers and propagating to
superficial layers (Chauvette et al. 2010; Beltramo et al. 2013;
Krause et al. 2014; Wester and Contreras 2012; Stroh et al. 2013).
Layer 2/3 bursts were more intense than layer 5 bursts but did
not last as long (Table 2; Fig. 6D,E).

Unsurprisingly, suppression of either population of inhibitory
cells increased burst amplitudes, but there were differential
effects on burst latencies and durations, as well as differing mag-
nitudes of effects on layer 5 compared with layer 2/3 bursts.

Suppressing either SOM+ or PV+ cells reduced burst onset
latency in layer 5 (Fig. 6C), but this effect was much greater for
PV+ suppression (ratio of the latency with PV+ vs. SOM+ cells
suppressed = 0.64, 95% CI [0.58, 0.71], P < 0.0001). Both PV+ and
SOM+ suppression increased the peak intensity of bursts
(Fig. 6D), but the effect was larger for PV+ compared with SOM+
suppression (PV – SOM = 0.016mV, 95% CI [0.003, 0.029], P =
0.017). By contrast, suppression of SOM+ versus PV+ interneur-
ons had opposite effects on network burst duration. Bursts
were shorter when PV+ cells were inactivated (Fig. 6E), similar
to the effect of suppressing inhibition pharmacologically
(Sanchez-Vives et al. 2010). By contrast, bursts were longer
when SOM+ cells were inactivated (Fig. 6E), suggesting that
suppression of SOM+ cells produces more complex effects than
simple reduction in inhibitory tone.

The most dramatic effects were observed in layer 2/3 follow-
ing suppression of PV+ cells. There was a slightly greater reduc-
tion in latencies following SOM+ and PV+ suppression in layer
2/3 compared with layer 5. Because bursts likely initiate in layer
5, this result suggests that suppression of inhibition led to
more rapid spread of bursts to layers 2/3. This effect is likely
driven by either the greater intensity of bursts in layer 5 (dem-
onstrated by increased peak MUA) hastening the spread of acti-
vation to the supragranular layers, or the reduced inhibition in
the supragranular layers increasing responsiveness, or a combi-
nation of both factors. PV+ suppression also had a bigger effect

Figure 5. Spike timing with respect to bursts. (A) Firing rates averaged within

populations as a function of burst duration for pyramidal (black), SOM+ (red),

and PV+ (blue) cells. Population activity (green) is also plotted on an indepen-

dent vertical scale, normalized to the peak population activity. Dark lines indi-

cate means, shaded area is ± SEM. (B) Same as (A), but with all traces

normalized to peak firing rate to illustrate the relative time courses of popula-

tion activity in each cell type. (C) Timing of spikes across the duration of burst,

normalized from onset (0) to offset (1). Cells are sorted by their mean firing

phase relative to bursts, indicated with dots. Shaded bars indicate ±1 SD. Color

code indicates cell type: pyramidal cells, black/gray; SOM+ cells red, PV+ cells

blue. (D) Mean firing phases for the data from (C). Phase diversity is indicated by

the range of the distributions. Pyramidal cells had the most phase diversity. (E)

SD of firing phase relative to bursts. Firing phase variability was lower in indi-

vidual pyramidal cells compared with SOM+ or PV+ cells.
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Figure 6. Effects of optogenetic suppression of interneurons on network bursts. (Ai) Population activity (smMUA) recorded in layer 5 in an animal expressing an inhib-

itory opsin in SOM+ cells. The top gray traces are single trial examples recorded with no light; the colored traces are with yellow light suppressing SOM+ cells. Darker

black/colored lines at the bottom are means across trials. Light came on 100ms before activation of TC afferents (TC afferents were activated starting at time = 0) and

lasted a total of 500ms. (Aii) Simultaneously recorded data from supragranular layers 2/3 in the same slice as in (A). Central insets show the same data, but grouped

by control (black, top) and SOM+ suppression (colored, bottom) and normalized by peak to emphasize temporal relationships, with infragranular bursts as solid lines

and supragranular bursts as dotted lines. (Bi–ii) Another example experiment, but with PV+ suppression. Conventions are the same as in (Ai–ii). (C–E) Means ± stan-

dard error for peak (C), latency (D), and duration (E). Results are separated according to the layer (infragranular/supragranular) where population activity was

recorded; within each layer, the black, red, and blue symbols represent light off, SOM+ suppressed, and PV+ suppressed, respectively.

Table 2 Population effects of optogenetic suppression of interneurons during UP states

Measure/parameter Interpretation Estimate 95% CI P-value

LATENCY Intercept 48.4 [43.0, 54.5]
β1(SOMsupp) Effect in L5 of SOM+ suppression 0.96 [0.93, 0.99] 0.014
β1(PVsupp) Effect in L5 of PV+ suppression 0.62 [0.56, 0.68] <0.0001
β2(L2/3) L2/3 versus L5, with no light 1.15 [1.09, 1.21] <0.0001
β3(SOMsupp,L2/3) Interaction between SOM+ suppression and L2/3 recording 0.95 [0.93, 0.97] <0.0001
β3(PVsupp,L2/3) Interaction between PV+ suppression and L2/3 recording 0.94 [0.90, 0.97] 0.0003

PEAK Intercept 0.0442 [0.0388, 0.0497]
β1(SOMsupp) Effect in L5 of SOM+ suppression 0.0041 [0.0009, 0.0072] 0.011
β1(PVsupp) Effect in L5 of PV+ suppression 0.0198 [0.0068, 0.0328] 0.0028
β2(L2/3) L2/3 versus L5, with no light 0.0181 [0.0100, 0.0262] <0.0001
β3(SOMsupp,L2/3) Interaction between SOM+ suppression and L2/3 recording 0.0018 [−0.0011, 0.0047] 0.22
β3(PVsupp,L2/3) Interaction between PV+ suppression and L2/3 recording 0.0246 [0.0203, 0.0290] <0.0001

DURATION Intercept 44.3 [41.7, 47.0]
β1(SOMsupp) Effect in L5 of SOM+ suppression 1.10 [1.02, 1.28] 0.012
β1(PVsupp) Effect in L5 of PV+ suppression 0.85 [0.79, 0.92] <0.0001
β2(L2/3) L2/3 versus L5, with no light 0.82 [0.75, 0.89] <0.0001

Intercepts reflect population responses recorded in L5 with no light. Interpretations indicate the meaning of a given parameter based on the ordering of parameters

in the model; β-parameters not listed are those defined as zero. Units for the peak measure are in mV. For burst latency and duration measures, the response vari-

ables were log-transformed prior to regression; estimated coefficients are reported in their exponentiated form (see Methods) and represent unitless multiplicative

factors; the intercepts are expressed in units of ms.
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on burst peak in layer 2/3 compared with layer 5 (Table 2). The
interaction of PV+-suppression with layer was significantly
greater than the interaction of SOM+-suppression with layer
(PV – SOM = 0.0228mV, 95% CI [0.0177, 0.0280], P < 0.0001), and
the interaction of SOM+ suppression with layer was not signifi-
cant (Table 2). These results suggest that PV+ cells exert a dom-
inant influence on activity in the supragranular layers
compared with their influence in the infragranular layers and
compared with the influence of SOM+ cells, consistent with the
concentration of PV+ cells in upper layers of cortex
(Supplementary Fig. 2D), though both interneuron populations
can influence the rate at which activity spreads between
laminae.

Suppressing PV+ Cells Impairs Packet-Based Timing

Spike timing during network bursts can greatly enhance the
amount of information carried in a population (Borst and
Theunissen 1999; Panzeri et al. 2001; Kwag et al. 2011; Kayser
et al. 2012; Contreras et al. 2013; Luczak et al. 2015). If informa-
tion is encoded in temporal patterns of spikes, then the rele-
vant timing information may not solely be timing relative to
the stimulus (Fig. 4), but also timing relative to population
activity (Fig. 5). We showed above that there is low variability
in firing phase in individual pyramidal cells within bursts, but
there is high diversity in firing phase across the pyramidal cell
population (Fig. 5), indicating pyramidal cells can encode infor-
mation by their phase of firing (Kayser et al. 2009). Next, we
show that interneurons play a role in organizing this network-
based spike timing by repeating the analysis of Figure 5C with
and without suppression of SOM+ and PV+ cells. Consistent
with their more modest effects on burst properties illustrated
in Figure 6, suppressing SOM+ cells had little impact on the
order that pyramidal cells fired during bursts (Fig. 7A,B) or on
the mean firing phase during bursts (Fig. 7E; mean phase
change = 0.007). Thus, as for spike timing relative to afferent
stimuli (Fig. 4G), SOM+ cells appear to exert little regulatory
control over the temporal organization of pyramidal cell spik-
ing during bursts. By contrast, suppression of PV+ cells altered
the temporal sequence of activation (Fig. 7C,D), primarily by
causing some cells that fired later in bursts to fire earlier
(Fig. 7E; mean phase change = 0.10, PV+ vs. SOM+ effect t(33) =
2.52, P = 0.017), and phase diversity was significantly lower
with PV+ suppression (Fig. 7E; Levene’s statistic (1,38) = 4.63,
P = 0.038). This loss of phase diversity compressed the frac-
tional span of the burst over which the population of pyramidal
cells was active, thereby reducing the capacity of a potential
temporal population code. Suppression of neither PV+ nor
SOM+ cells had a significant effect on consistency of burst fir-
ing phase in individual cells (Fig. 7F).

We observed two effects of suppressing PV+ cells that could
potentially impact the organization of firing patterns during
network bursts. First, the bursts themselves became shorter
(Fig. 6E), compressing the temporal scale of spike packets dur-
ing bursts. Second, the diversity of spike phases available to the
network during a burst was reduced with suppression of PV+
cells, compressing the available time scale for population-based
codes (Fig. 7D). Suppression of PV+ cells also (modestly)
increased firing rates of pyramidal cells (Fig. 4A,B) and had dif-
ferential effects on network activity in supragranular versus
infragranular layers (Fig. 6). Because it was unclear how each of
these changes might impact the ability of the network to pro-
duce distinct patterns of activity critical for population codes,
we implemented a simple decoding model that interprets spike

patterns, the tempotron (Gütig and Sompolinsky 2006). The tem-
potron is an integrate-and-fire model that produces a binary
decision (spike or no spike) in response to patterns of synaptic
inputs. Our main goal was to test the ability of the model to dis-
tinguish temporal patterns within network activity based on the
structure of such activity observed in control conditions versus
with PV+ cells suppressed. The model was driven by simulated
spiking activity of 100 units with firing statistics based on our
recordings from pyramidal cells during bursts (Fig. 8A, top). The
tempotron integrates these inputs over time and produces a
“spike” on trials in which a threshold is reached (Fig. 8A, right).

In these simulations, we generated a set of 2–32 stochastic
spike patterns with statistics that mimic recorded pyramidal
cell activity. Patterns differed in that the mean firing phase for
each input unit was randomized between patterns. The mean
firing phase for each unit and pattern was selected from a
smoothed distribution based on observed data (Fig. 5D). The fir-
ing rate and variance for each unit were also randomly selected

Figure 7. Effects of suppressing inhibition on timing with respect to bursts. (A)

Burst-firing phase means (points) and ± 1 SD (shaded) for pyramidal cells. (B)

Same cells as in (A) but with SOM+ cells suppressed. Dotted line in (B) shows

the original firing phase means from (A). (C–D) Same as (A–B), but showing how

suppression of PV+ cells (D) altered the temporal sequence of firing. (E) Mean

firing phase of pyramidal cells relative to bursts. Suppression of PV+ cells

caused pyramidal cells to fire earlier in bursts and reduced phase diversity. (F)

Phase variability is not significantly affected by suppressing either interneuron

population.
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from a smoothed distribution based on recorded data (Figs 5A
and 7F), but these parameters were kept constant across pat-
terns. Burst durations were the mean burst durations from
experiments in Figure 6. Random training and testing trials
were generated using these simple statistics for each input
unit. Because of these parameter choices, patterns can be
thought of as arbitrary clouds of spike patterns in an N-dimen-
sional space, where N is the number of input units; a toy exam-
ple with 3 units is illustrated in Figure 8B. The size in each
dimension reflects the variance in firing phase for each unit,
creating an ellipsoid. Because the variances are constant across
patterns, but the mean firing phases are not, each pattern is
represented by an ellipsoid of constant shape but varying posi-
tion (four patterns are illustrated in the example of Fig. 8B).
“Correct” classification was deemed as “go” (i.e., the tempotron
should fire a spike) for half of the patterns and “no go” (i.e., no
spike) for the others (see Supplementary Fig. 5). Classifying
these patterns is difficult, because there is no predetermined
structure of those go/no go patterns in the N-dimensional
space nor any non-random similarity among the “go” patterns
or among the “no go” patterns, and because the variance of
each contributing input unit is large. (In Fig. 8B, we depict each
ellipsoid with semi-axes representing 1/10 of 1 standard devia-
tion so the patterns can be easily distinguished by eye.)

In Figure 8C (top), we show spike rasters for four example
patterns across all 100 input units under control conditions
(top four panels) and with PV+ suppression (bottom four
panels). The biggest effects of PV+ suppression on patterns
were that bursts were shorter and that activity was earlier
within the burst, resulting in temporal compression of patterns
in PV+-suppressed conditions (Fig. 8C, bottom).

The tempotron was trained by altering synaptic weights (see
Methods) according to responses to the patterned input
(Fig. 8D). As the number of input patterns increases, the classifi-
cation task becomes more complex, leading to poorer steady-
state performance (Fig. 8E). Training within the control-based
and PV suppression-based populations was completely
independent.

In these simulations, we tested the discriminability of pat-
terns generated by populations of units with different relative
temporal and rate statistics observed under control conditions
and with PV+ cells suppressed. We assayed the ability of the
control versus PV suppression-based populations to encode
temporal information by the performance of the tempotron
after 50 000 training trials for a range of pattern counts (i.e., dis-
crimination complexities). For a given pattern count, inputs
from control-based populations modestly outperformed those
from PV-suppressed populations (Fig. 8E). However, we also
found that there was a large impact on the potential complex-
ity that could be represented at a moderate performance level
(for example, 70%) (Fig. 8E; arrow depicts a leftward shift
toward less complexity). Therefore, we conclude that PV-
mediated inhibition may allow networks of pyramidal cells to
encode a greater number of distinct patterns by increasing the
duration of network bursts.

A further advantage of this modeling approach is that we can
assay the effects of individual parameter changes by choosing
which effects to incorporate into the model. The two effects of PV
suppression most likely to contribute to impaired discrimination
performance are the reduced duration of bursts (Fig. 6E) and the
reduced phase diversity across the pyramidal cell population
(Fig. 7D,E). These effects jointly contribute to the temporal

Figure 8. Decoding simulated patterns in bursts. (A) Input from 100 spike trains

(left) is summed by a leaky integrate-and-fire unit (center) called a tempotron.

On a given trial, this unit produces a spike if it reaches threshold (right, black),

otherwise it produces no spike (gray). (B) Input patterns depicted as 3D ellip-

soids, representing the mean (position) and phase variability (semi-axes of

ellipsoids) for three of the 100 total input units. The semi-axes represent only

1/10 of one standard deviation; the patterns are quite overlapped in three dimen-

sions compared with the simplified toy representation here, which is why many

inputs are necessary and why performance is not perfect. The “go” (light gray)

and “no go” (dark gray) patterns do not have any spatial organization in this

space. (C) Randomly generated input spike rasters for two example “go” and two

“no go” patterns, for simulations based on “no light” experiments (top) and based

on PV+-suppression experiments (bottom). Note that there are no obvious simi-

larities among the go versus no go patterns, and that the patterns based on PV

+-suppression data are compressed in time. (D) As the tempotron learns by

adjusting the weights of the input units (see Methods), performance increases

but eventually plateaus. These traces represent a single learning example. (E)

Mean performance (±standard error) after 50 000 trials for 100 unique model

runs at each point indicated. The number of unique patterns indicates the diffi-

culty of the classification. Simulations based on PV+-suppression underperform

compared with control results at all difficulty levels. Arrow depicts a leftward

shift toward lower potential complexity in the absence of PV cells.
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compression seen in Figure 8C. To determine whether one of
these factors was the dominant influence on impaired discrimi-
nation in the PV-suppressed population, we performed simula-
tions using PV-suppressed population statistics except we
substituted either control burst durations (while maintaining PV-
suppressed firing phase statistics) or control mean firing phase
distributions (while maintaining PV-suppressed burst durations)
into the model. Either manipulation partially relieved the tempo-
ral compression caused by PV suppression. We found that using
control burst durations only recovered the PV-suppression effect
slightly, but using control mean firing phase distributions
completely recovered the PV-suppression effect (Fig. 9A).
Therefore, we conclude that while both of these factors affect
encoding capacity, the reduced range of firing phases, i.e., the
concentration of mean firing phase early in bursts, played the
more critical role in the effect of suppressing PV+ cells on
impaired discrimination performance.

Although superficial and deep-layer cells can act in one
functional circuit in a cortical column, pyramidal cells are most
highly connected with other cells in the same layer, and popu-
lations of cells from different layers have different long-range
projection patterns. Differences in tuning properties and firing
density in superficial and deep pyramidal cells likely contribute
to differences in sensory coding (Barth and Poulet 2012). Our
simulation results emphasize the importance of firing rate dur-
ing bursts for population coding capacity. Thus, the tempotron
performed better with inputs whose firing statistics were based
on recordings from deep cells under control conditions than
with inputs based on superficial cells (Fig. 9B). However, there
was no longer a difference between populations if we sub-
sampled the deep cells to produce mean firing rates compara-
ble to superficial cells (Fig. 9C).

We also show in Figure 6 that PV- suppression appears to
have the most profound effects in the superficial layers.
Therefore, we also used the tempotron model to separate the
effects of PV-suppression on deep versus superficial cells. Our
simulation results suggest that the effects on population coding
of suppressing PV+ cells were manifested primarily in supra-
granular layers. We found that PV-suppression actually had
very little effect on tempotron performance using the deep pop-
ulation (Fig. 9D), but had a substantial effect using the superfi-
cial population (Fig. 9E). The differential effect was not due to
differences in firing rate, because the deep population was still
insensitive to PV-suppression when we resampled to match to
superficial firing rates (Fig. 9F). These simulations suggest that
PV+ cell-mediated inhibition in supragranular layers strongly
regulates the information encoding capacity of the local cortical
network, consistent with its greater effects on network activity
in supragranular layers and with reports suggesting that sparse
firing in supragranular cells contributes to their importance in
sensory information processing (Barth and Poulet 2012).

Discussion
Summary

We used burst activity induced by TC afferents in auditory cor-
tex as a model to study the spatial and temporal structure of
correlated network activity in the cortical column and its regu-
lation by local GABAergic interneurons. We note that in this
preparation, afferent stimuli served both to initiate network
activity and as a model for ascending sensory information con-
veyed to cortex on the background of ongoing activity during
the desynchronized state. Three distinct cell classes, pyramidal

Figure 9. Parameter and laminar influences on decoding. (A) Results from Figure 8E (solid lines) compared with models that used mostly PV+ suppression parameters

except for burst duration (dashed line) or mean distribution (dotted line). (B) Model performance using deep (solid line) versus superficial (dotted line) pyramidal cells

as inputs from no light condition. (C) Model performance using firing rates for deep cells matched to the firing rates of superficial cells. (D–E) Effects of PV+ suppres-

sion on model performance for models using only deep (D) or only superficial (E) inputs. (F) Effects of PV+ suppression on performance with deep cell inputs matched

to the firing rates of superficial cells. Error bars represent ± SEM for all panels.
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cells, PV+ cells and SOM+ cells, exhibited differences in density
and timing of spiking activity during these network bursts and
relative to patterned afferent stimulation. In contrast to our
expectations, spike timing in pyramidal cells was poor under
control conditions and improved upon optogenetic suppression
of PV+ cells. The results presented here detailing the organiza-
tion of spiking during network bursts are consistent with obser-
vations in vivo of population codes relying on packet-based
stimulus representation. Our data suggest that PV+ cells act to
regulate spike timing within these bursts by maintaining this
temporal structure. Simulation results suggest that the tempo-
ral sequence of activity within the pyramidal cell population is
important for producing population spike patterns that can be
categorized by downstream neurons. Suppressing PV+ cells
degrades the ability of the network to produce discriminable
activity patterns, an effect most pronounced for supragranular
pyramidal cells.

Spike Timing in Auditory Cortex

The ability of pyramidal cells to encode stimulus information
depends not only on firing rates but also on precision and reliabil-
ity of responses across trials (Mainen and Sejnowski 1995; Kayser
et al. 2010). Because PV+ cells have been shown to constrain pyra-
midal cell spikes to particular windows of time (Pouille and
Scanziani 2001; Wehr and Zador 2003; Gabernet et al. 2005;
Cruikshank et al. 2007; Rose and Metherate 2005; ; Zhu et al.
2015), we expected that suppressing PV+ cells would impair pyra-
midal cell timing. Furthermore, spiking responses to TC afferents
in PV+ cells were better timed than in other cell types (Fig. 3),
positioning them to precisely control spike timing.

These expectations were unmet in our observations in two
ways. First, pyramidal cell spiking responses to afferent stimu-
lation were not well timed (Fig. 3). The absence of precise tim-
ing in pyramidal cells relative to the stimulus train was
unexpected given the large and precise TC EPSPs observed in
these cells (Gil et al. 1999; Krause et al. 2014; Rose and
Metherate 2005) and the importance of timing information in
the ascending auditory pathway (Phillips and Hall 1990; Heil
and Irvine 1997; Elhilali et al. 2004; Rose and Metherate 2005).
This discrepancy may reflect a transition from timing/feature-
based coding to rate/object-based coding in auditory cortex
(Wang et al. 2008). Indeed, we have shown that spikes in pyra-
midal cells monosynaptically driven by TC afferents are rare in
auditory cortex, with most spiking occurring in the context of
network bursts induced by thalamic stimulation (Krause et al.
2014; Hentschke et al. 2017). On the background of this ongoing
activity, thalamic synaptic responses are less effective at driv-
ing precise spiking responses, and spike timing may be influ-
enced significantly by intrinsic cortical activity. This result is
consistent with degraded spike timing information in auditory
cortex compared with the periphery (Linden et al. 2003; Nelken
2004; Chechik et al. 2006; Ter Mikaelian et al. 2007), even though
first-spike precision persists in many cells (Phillips and Hall
1990; Heil and Irvine 1997).

Second, suppression of PV+ cells did not further degrade
spike timing in pyramidal cells. In fact, spike timing was
improved in the absence of strong PV+ cell-mediated inhibition
(Fig. 4). The basis for this improvement is not entirely clear. It is
possible that PV+ cell-mediated feedforward inhibition was ini-
tially strong enough and fast enough to prevent direct (mono-
synaptic) TC input from producing spikes in most cells. That is,
if we consider input to pyramidal cells as arising from either
the direct (monosynaptic) TC input or from cortico-cortical

inputs associated with the network burst, suppressing PV+ cells
could bias the pyramidal cells to respond to direct TC input due
to disruptions in the balance of excitation and inhibition (Wehr
and Zador 2003; Gabernet et al. 2005; Isaacson and Scanziani
2011; Vogels and Abbott 2009). Alternatively, it is possible that
changes in the properties of bursts themselves underlie this
effect. For example, there is a negative correlation between the
reduction in burst duration and the improvement in STTC and
a potential correlation with decreased variability (Fig. 4). This
suggests that briefer, more stereotyped bursts cause an appar-
ent increase in spiking precision. Whatever the basis for the
improvement, it is clear that we did not observe the expected
degradation in spike timing upon suppression of PV+ cells.

Network Activity in Auditory Cortex

The importance of correlated spiking activity in cortical net-
works that arises due to intrinsic connectivity and shared affer-
ent input has long been recognized (Panzeri et al. 1999; Kohn
et al. 2009). Data suggest that local cortical networks, and in
particular the cortical column, can operate as a unit with all-or-
none responses to afferent stimulation analogous to the behav-
ior of single neurons (Bathellier et al. 2012; Luczak et al. 2015;
Yuste 2015). Correlated spiking activity in neocortex arises in a
variety of circumstances, but is particularly prominent when
the TC network is in the “synchronized state”. The synchro-
nized state is most obviously observed in slow wave sleep and
under anesthesia, but can also be observed during quiet wake-
fulness, when the network can exhibit UP/DOWN transitions or
dwell in extended DOWN periods (Petersen et al. 2003;
McGinley et al. 2015; Mochol et al. 2015; Poulet and Petersen
2008). Upon sensory arousal and motor activation, the network
eschews synchrony in favor of an extended ON period (desyn-
chronized state), and, intracellularly, extended UP states. In
auditory cortex, the transition from quiet wakefulness to
arousal and especially locomotion has similar effects on net-
work activity, with cells moving from ON/OFF cycling to
extended ON periods (Zhou et al. 2014). However, evidence sug-
gests that optimal stimulus detection and discrimination
occurs during moderate arousal (McGinley et al. 2015). Here,
activity is low and bursts are inducible, in contrast to periods of
high arousal, when the network is depolarized and desynchro-
nized, or low arousal, when the network exhibits spontaneous
UP-DOWN state transitions. This is consistent with the intui-
tion that maximal sensitivity in audition occurs during quiet,
alert periods.

The spatio-temporal patterns of spiking activity (packets)
during network bursts in auditory cortex in vivo are preserved
across the synchronized-desynchronized state continuum
(Luczak et al. 2013), suggesting that the fundamental structure
of network activity can be elucidated by examining network
bursts in isolation. The structure of network events we observe
in auditory TC slices is similar in many regards to the structure
of activity observed during sensory processing in auditory cor-
tex in vivo. The firing rates of single cells during bursts (Fig. 2)
were comparable to those observed in auditory cortex in vivo
(Hromadka et al. 2008; Luczak et al. 2013). The duration of net-
work bursts we observe (Fig. 1), is similar to the ∼50–100ms
“packets” (Luczak et al. 2013) or ∼50ms “bumps” (DeWeese and
Zador 2006) observed in auditory cortex in vivo. Unlike in audi-
tory cortex, spontaneous and evoked bursts or “UP states” in
other cortical areas tend to last for hundreds of milliseconds to
seconds (Sanchez-Vives and McCormick 2000; Neske et al.
2015). These data suggest that the short duration of bursts in
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auditory cortical columns reflects the operation of auditory cor-
tical networks on rapid time scales, consistent with other tem-
poral specializations in the ascending auditory pathway
(Phillips and Hall 1990; Heil and Irvine 1997; Elhilali et al. 2004).
Furthermore, the spatio-temporal structure of network bursts
is similar in slices and in vivo in that burst activity originates in
layer 5 and spreads to other layers (Sakata and Harris 2009;
Chauvette et al. 2010; Beltramo et al. 2013; Wester and
Contreras 2012; Krause et al. 2014). Variable involvement of
supragranular cells, presumably due to their more hyperpolar-
ized resting potentials during DOWN states as well as strong
PV+-mediated inhibition, is also observed both in slices (Krause
et al. 2014) and in vivo (Sakata and Harris 2009).

Overall, these similarities suggest that the experimental
model used here to elucidate the role of inhibitory cells in regu-
lating network activity and spike timing in pyramidal cells has
direct implications for understanding cortical sensory proces-
sing in vivo. However, we note that reduced preparations
exhibit substantially different activity patterns from those
observed in vivo, likely reflecting the absence of subcortical
neuromodulators and reduced numbers of synaptic inputs in
the cortical column. Long-range connections especially are lost
in slice preparations, resulting in a significantly altered balance
between excitation and inhibition (Stepanyants et al. 2009).
These changes in connectivity result in reduced levels of spon-
taneous activity, and especially of spontaneous network burst-
ing, which may preclude observation of richly varied network-
level interactions observed in vivo (Seybold et al. 2015; Kato
et al. 2017).

GABAergic Regulation of Network Activity

Both PV+ and SOM+ cells are strongly activated directly by affer-
ent inputs and during network activity triggered by these inputs
(Fig. 2). Suppressing either cell type reduced burst onset latency
and increased the peak intensity of bursts (Fig. 6), but both of
these effects were much greater for PV+ cells than SOM+ cells.
These data suggest that PV+ cells exert far greater control over
network activity compared with SOM+ cells, consistent with pre-
vious studies of regulation by UP state activity by GABAergic cells
(Fanselow and Connors 2010; Neske et al. 2015). The opposite
effect on duration of suppression of SOM+ (increased duration)
versus PV+ cells (decreased duration) likely in part reflects differ-
ences in inhibitory tone during network bursts. That is, eliminat-
ing a major source of peri-burst inhibition by suppressing PV+
cells leads the network to burst intensely but dissipate at a faster
rate (e.g., due to depletion of vesicles), while suppressing a less
dominant form of inhibition in SOM+ cells allows burst activ-
ity to proceed for a longer period of time at only slightly ele-
vated intensity. These effects are also consistent with the
distinct temporal profiles of spiking activity of these cells dur-
ing bursts (Fig. 5): PV+ cells tended to be active before and
throughout bursts, while SOM+ cells were active late.

In somatosensory and entorhinal cortices, SOM+ cells are
less active than PV+ cells during bursts (Tahvildari et al. 2012;
Neske et al. 2015), though interestingly suppression of SOM+
cells substantially increases pyramidal cell firing rates in
somatosensory cortex (Neske and Connors 2016). We observed
substantial activity of SOM+ cells during bursts (Fig. 5). The
high level of SOM+ cell activity during bursts in auditory cortex
may be a specialization contributing to the brevity of network
bursts in auditory cortex, possibly via activation of GABAB

receptors (Mann et al. 2009; Urban-Ciecko et al. 2015).

Due to facilitating excitatory inputs from pyramidal cells,
SOM+ cells are well positioned to contribute to burst termina-
tion (Reyes et al. 1998; Melamed et al. 2008; Krishnamurthy
et al. 2012; Silberberg and Markram 2007), though evidence sug-
gests that activity-dependent potassium conductances are
more important than inhibition in terminating UP states
(Sanchez-Vives and McCormick 2000; Compte et al. 2003; Hill
and Tononi 2005; Neske 2016). Here, we observed that suppres-
sion of SOM+ cells modestly increases burst duration (Fig. 6).
Because SOM+ cells likely regulate feedback inputs to distal
dendrites of pyramidal cells (Gentet et al. 2012), the state-
dependent suppression of SOM+ cells by VIP+ cells observed
in vivo (Gentet et al. 2012; Lee et al. 2013; Fu et al. 2014; Pi et al.
2013; Reimer et al. 2014) could act to prolong sound-induced
network activity to facilitate integration of feedback input and
sensory information from other modalities.

One potential caveat in interpreting the effects of suppres-
sing SOM+ cells is that SOM+ cells, unlike PV+ cells, strongly
inhibit other interneuron types, including PV+ cells (Pfeffer
et al. 2013; Jiang et al. 2015; Xu et al. 2013), and activation of
SOM+ cells can have disinhibitory effects (Cottam et al. 2013;
Xu et al. 2013). Therefore, we may underestimate the effects of
SOM+ cell suppression on pyramidal cells because of disinhibi-
tion of PV+ cells and other interneurons. Similarly, the impor-
tance of SOM+ cells may be underemphasized in slices because
axonal projections of SOM+ cells tend to be more extended
compared with PV+ cells (Markram et al. 2004; Caputi et al.
2013). The importance of these types of network-level interac-
tions has been highlighted recently in two reports (Seybold
et al. 2015; Kato et al. 2017). We note another caveat as well:
because spiking in interneurons contributes to measured popu-
lation spiking activity, suppressing these cells will diminish
modestly the observed effects on total population activity.
Thus, although we observed increases in population activity
with suppression of inhibitory cells (Fig. 6), we may be underes-
timating those increases.

GABAergic Regulation of Spike Timing During Network
Bursts

Timing information may exist not only relative to external stimuli
but also relative to endogenous information packets or the phase
of ongoing oscillations (Kayser et al. 2009; Luczak et al. 2013,
2015). Stimulus-related variability in spike packets during net-
works bursts is postulated to underlie population codes for sen-
sory information (Luczak et al. 2015), while other neurons may
provide a reliable timing signal to mark actual temporal structure
(Brasselet et al. 2012). Our observation that pyramidal cells tend
to fire at particular moments during network bursts (Fig. 5) is con-
sistent with these results. Suppression of PV+ cells led to earlier,
briefer bursts of activity (Fig. 6), and disrupted the organization of
preferred firing phases of pyramidal cell during the burst (Fig. 7).
That is, with PV+ cell-mediated inhibition intact, activity within
the population of pyramidal cells unfolded over a particular tem-
poral sequence that spanned most of the duration of the network
event; with PV+ cells suppressed, that organization was severely
disrupted.

We used simulations to examine the consequences of this dis-
rupted organization for decoding of temporal activity patterns.
The tempotron model we employed was originally presented as a
simple implementation of a logic unit able to capture the spatio-
temporal input patterns characteristic of real nervous systems
(Gütig and Sompolinsky 2006). Theoretical approaches using the
tempotron model have allowed for estimates of how the
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encoding capacity of individual units varies with the spatio-
temporal statistics of the input and highlights how timing infor-
mation increases encoding capacity (Rubin et al. 2010). We used
an empirical implementation of the tempotron model to impose
biologically relevant integration timescales on a hypothetical
spatio-temporal discrimination task. We showed that when firing
phases are concentrated at the beginning of bursts, as observed
when PV+ cells are suppressed, different spike patterns are con-
fused at a higher rate and take longer to learn (Fig. 8), reducing
the repertoire of distinct network responses.

GABAergic Regulation of Infragranular Versus
Supragranular Layers

Suppressing PV+ cells had greater effects on burst latency and
burst peak in supragranular compared with infragranular
layers (Fig. 6). This observation suggests a role for these cells in
regulating the flow of activity through the cortical column.
Supragranular as well as infragranular pyramidal cells receive
direct inputs from thalamus in auditory cortex (Krause et al.
2014; Ji et al. 2015), as in other sensory areas (Constantinople
and Bruno 2013), but both spontaneous and stimulus-induced
activity often originate infragranularly and then spread to other
layers (Chauvette et al. 2010; Beltramo et al. 2013; Krause et al.
2014; Wester and Contreras 2012; Stroh et al. 2013).
Interestingly, when PV+ cells were suppressed, burst latency
was nearly the same in supragranular and infragranular layers
(Fig. 6). This result supports a model in which PV+-mediated
inhibition in the supragranular layers contributes to segregat-
ing the infragranular mechanisms generating network activity
from supragranular information coding (Sakata and Harris
2009). In this model, sensory stimulation activates the network
via dense-coding infragranular cells, with network activity
spreading subsequently to other laminae with variable proba-
bility. Bursts restricted to the infragranular layers (Sakata and
Harris 2009; Krause et al. 2014) could mediate motor responses
in the absence of higher-order processing (Harris and Thiele
2011), while more complex and informative representations are
revealed in the patterns of supragranular pyramidal cells that
participate during induced network activity (Bathellier et al.
2012; Luczak et al. 2013). These data are consistent with sugges-
tions that sparse coding in supragranular pyramidal cells
(DeWeese et al. 2003; Hromadka et al. 2008; Poulet and Petersen
2008; Crochet et al. 2011; Barth and Poulet 2012; Sakata and
Harris 2009) is likely regulated by inhibition (Bruno and Simons
2002; Haider et al. 2010; Crochet et al. 2011; Li et al. 2014).
Consistent with this model, our simulations show that the
effect of inhibition is greatest on spike patterns encoded by
supragranular cells (Fig. 9).

Functional Implications

Elucidating the roles of specific interneuron populations in reg-
ulating cortical network activity is central to understanding
sensory information coding and its disruption under pathologi-
cal conditions. Dysfunction of PV+-mediated inhibition is
implicated in numerous conditions and disorders (Marín 2012),
including schizophrenia (Lewis et al. 2012), autism (Hashemi
et al. 2017), and epilepsy (DeFelipe 1999; Ogiwara et al. 2007).
Consideration of spike timing with respect to informative pack-
ets of information can possibly resolve the ambiguity between
rate coding of time-varying stimuli at a high temporal resolu-
tion versus true temporal codes (Borst and Theunissen 1999).
Indeed, we show here that it is possible to preserve important

timing relationships in isolated cortical slices, and specifically
to dissociate temporal precision with respect to a stimulus and
with respect to internal cortical activity. Our results suggest
that PV+ interneurons have an important role in regulating the
temporal structure of cortical network activity, and that this
temporal structure should be considered as a potential target
when inhibition is affected by behavioral state, attention, phar-
macological interventions, or in cognitive disorders.
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