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ABSTRACT

Background: The prevalence of moderate or complex (moderate-complex) congenital heart defects (CHDs)

among adults is increasing due to improved survival, but many patients experience lapses in specialty care or

their CHDs are undocumented in the medical system. There is, to date, no efficient approach to identify this pop-

ulation.

Objective: To develop and assess the performance of a risk score to identify adults aged 20-60 years with un-

documented specific moderate-complex CHDs from electronic health records (EHR).

Methods: We used a case-control study (596 adults with specific moderate-complex CHDs and 2384 controls).

We extracted age, race/ethnicity, electrocardiogram (EKG), and blood tests from routine outpatient visits (1/

2009 through 12/2012). We used multivariable logistic regression models and a split-sample (4: 1 ratio) ap-

proach to develop and internally validate the risk score, respectively. We generated receiver operating charac-

teristic (ROC) c-statistics and Brier scores to assess the ability of models to predict the presence of specific

moderate-complex CHDs.

Results: Out of six models, the non-blood biomarker model that included age, sex, and EKG parameters offered

a high ROC c-statistic of 0.96 [95% confidence interval: 0.95, 0.97] and low Brier score (0.05) relative to the other

models. The adult moderate-complex congenital heart defect risk score demonstrated good accuracy with

96.4% sensitivity and 80.0% specificity at a threshold score of 10.

Conclusions: A simple risk score based on age, sex, and EKG parameters offers early proof of concept and may

help accurately identify adults with specific moderate-complex CHDs from routine EHR systems who may bene-

fit from specialty care.
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INTRODUCTION

Congenital heart defects (CHDs), the most prevalent of birth

defects, occur in approximately 1 newborn per 100 live births, com-

prising about 40 000 newborns per year in the United States.1 As a

quarter of these cases are critical (requiring surgery or life-saving

procedures in the first year of life) and have high mortality rates,

CHDs have long been viewed as primarily a pediatric disease. How-

ever, significant advances in surgical and medical care in the past 5

decades have greatly extended the lifespan of patients with CHDs.2

As a result, the vast majority of patients with both critical (69%)

and non-critical (95%) CHDs are now living to adulthood.3 This

new and aging adult population, already accounting for more than

half of the estimated 2-3 million CHD survivors,4 is projected to fur-

ther increase in the future,5 giving rise to unforeseen clinical and

public health challenges. Thus, more accurate and consistent identi-

fication of adults with undocumented CHDs is imperative and is the

overarching goal of our study.

Adults with CHDs face an array of cardiovascular and non-

cardiovascular complications, including heart failure and renal dys-

function, resulting in a higher rate of hospitalizations compared to

the general population, with most cases originating from emergency

departments and requiring cardiac surgeries.6–8 Therefore, clinical

guidelines from the American College of Cardiology/American

Heart Association Task Force on Practice Guidelines recommend

specialized care for adults with moderate or complex (moderate-

complex) CHDs, who make up approximately half of the adult pop-

ulation with CHDs.9 A population-based study demonstrated the

importance of these guidelines, with a resulting reduction in mortal-

ity.10 However, cross-sectional studies conducted in Canada and the

Netherlands estimated that a high proportion of young adults aged

18-22 years (47-60%) do not receive the recommended follow-up

care.11,12 Potential contributors are the “fixed for life” syndrome [a

1960s misnomer coined by the medical community that gave

patients an assurance of being surgically fixed for life13] distance

from specialized care centers, male gender, cost of care, cardiology

visits outside university settings, and lack of awareness or education

of the issues among patients, families, and care providers.11,12,14

While guidelines to address lifelong care for adults with specific

moderate-complex CHDs are needed, the first challenge is to locate

such individuals. The “fixed for life” syndrome and other factors

make this a particular challenge as many adults with CHDs experi-

ence lapses in specialty care or their CHDs are undocumented in the

medical system. However, a high proportion of young adults con-

tinue to receive primary care, and there is increasing utilization of

electronic health records (EHR) systems (electronic medical records)

that contain electrocardiogram (EKG) and other commonly col-

lected data. These factors present a unique and efficient opportunity

for potential identification of adults with moderate-complex CHDs–

ie those most likely to benefit from referral to specialty care.15,16

The objective of this study was to develop a risk score algorithm

based on routine EHR data for identification of adults with specific

moderate-complex CHDs. We validated the risk score internally with

hopes that it can be used by physicians to identify adults with undocu-

mented specific moderate-complex CHDs who may need specialty care.

METHODS

Data sources and study design
We extracted EHR data from Emory Healthcare, the largest multi-

specialty healthcare provider in the state of Georgia. We employed a

model validation study design to identify characteristics and factors

that distinguish people with and without specific moderate-complex

CHDs.

To develop and validate a risk score, we used a split-sample vali-

dation approach: study participants were randomly split into two

groups at a ratio of 4 to 1 between the model development and vali-

dation (ie holdout) groups, respectively. The split-sample approach,

especially the validation group, lends itself to the reliability and per-

formance evaluation of the “best” model in an independent sample

derived from the same population where new data are unavail-

able.17

The Institutional Review Board of Emory University (Atlanta,

GA, USA) approved this study protocol.

Study population
Study participants included adult outpatients, aged 20-60 years,

cared for in at least one of Emory Healthcare’s facilities, and who

had at least one EKG between January 2009 and December 2012.

Cases were defined as patients receiving care at the Emory Adult

Congenital Heart Center (ACHC) who had select moderate-

complex CHDs based on International Classification of Diseases,

Ninth Revision, Clinical Modification (ICD-9-CM) codes shown in

Supplementary Table S1. We selected these commonly occurring

moderate-complex CHDs to demonstrate a proof of concept as the

test case. A moderate CHD included at least one of the following:

common truncus, stenosis of pulmonary valve, or tetralogy of Fallot.

A complex CHD included at least one of the following: transposi-

tion of great arteries, tricuspid atresia and stenosis (congenital type),

hypoplastic left heart syndrome, or common ventricle. Since the use

of ICD-9-CM codes to define the cases limited the ability to distin-

guish CHD severity of each case, every case with a particular ICD-9-

CM code was included in just one severity category (eg all cases

with stenosis of the pulmonary valve were included in the moderate

CHD category although some can be severe, and mild cases are

likely to have resolved in childhood). We excluded adult cases of

mild CHDs (Supplementary Table S1)—specifically, isolated atrial

septal defect, isolated ventricular septal defect, and patent ductus ar-

teriosus. Patients with these CHDs have high likelihood of undergo-

ing resolution in childhood, and per current guidelines, they tend

not to require lifelong cardiac care. Additionally, mild CHDs are

highly misclassified due to diagnostic and data entry errors associ-

ated with such conditions.18

Cases with moderate-complex ICD-9-CM codes comprised 44%

of patients with CHD diagnoses cared for in the Emory ACHC.

Since Emory ACHC physicians verify and enter their own diagnosis

and billing codes, only patients with specific moderate-complex

CHDs followed in the Emory ACHC were included as cases in order

to increase diagnostic accuracy. Accuracy of ICD-9-CM CHD codes

used outside the Emory ACHC could not be verified. Therefore,

Emory Healthcare patients with any ICD-9-CM CHD code, who

had not attended the Emory ACHC, were excluded from the deriva-

tion and validation cohorts.

Control subjects were patients seen at any other Emory Health-

care facility, other than the ACHC, who did not have an ICD-9-CM

code for any mild, moderate, or complex CHD diagnosis. Figure 1

shows a flow chart of cases and controls that met inclusion/exclu-

sion criteria for the study population. Of the 33 660 patients with

EKG test results, 1362 received care at the Emory ACHC and

32 298 were cared for at other Emory Healthcare facilities. Emory

ACHC patients were excluded for missing ICD-9-CM code
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(n¼582) or age values (n¼17) and for not having an inclusive

ICD-9-CM code (n¼167). Among the Emory Healthcare patients

not attending the Emory ACHC, 485 were excluded, due to either

having an ICD-9-CM code for a CHD (mild CHD ¼ 84, moderate

CHD ¼ 41, and complex CHD ¼ 10) or missing age values

(n¼350). We randomly selected controls from the remaining

31 813 non-ACHC Emory Healthcare patients in a 1: 4 case: control

ratio. The final analysis dataset contained 2980 patients, which was

composed of 596 cases and 2384 controls. To validate the selection

process for controls and to ensure that there was not notable mis-

classification bias, we performed detailed chart review of those in

the derivation cohort who were identified by the final model as po-

tentially false positive.

Data collection and study variables
Data extracted from Emory Healthcare’s EHR system included age

and race/ethnicity, as well as EKG data and blood biomarker test

results for cardiac insufficiency (B-type natriuretic peptide (BNP)

concentration) and anemia (hemoglobin concentration) performed

Patients with EKG test results 
n = 33,660 

Missing ICD-9-CM code 
n = 582 

Adults seen at other Emory Health Care 
facilities 

n = 32,298 

Adults seen at Emory ACHC 
n = 1,362 

Adults seen at other Emory Health Care facilities 
unlikely to have a moderate to complex CHD 

after random selection  
 n = (4 x 596) = 2,384 

Adults seen at Emory ACHC with specific 
moderate to complex CHD diagnosis  

n = 596 

Adults seen at other Emory Health Care facilities 
n = 31,813 

Model validation cohort  
n = 596

Model derivation cohort 
n = 2,384 

Study population 
n = 2,980 

Adults seen at other Emory Health Care 
facilities with mild CHD diagnosis ICD-9-

CM code 
n = 84 

Missing age value 
n = 17 

Did not have inclusive ICD-9-
CM code
n = 167 

Adults seen at other Emory Health Care 
facilities with missing age value 

n = 350 

Adults seen at other Emory Health Care 
facilities with moderate CHD diagnosis 

ICD-9-CM code 
n = 41 

Adults seen at other Emory Health Care 
facilities with complex CHD diagnosis 

ICD-9-CM code 
n = 10 

ACHC = Adult Congenital Heart Center; CHD = congenital heart defect; EKG = electrocardiogram; ICD-9-CM = International Classification of Diseases, 
Ninth Revision, Clinical Modification 

Figure 1. Flow chart of patients who met inclusion/exclusion criteria for the study population.
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during routine outpatient visits between January 2009 and

December 2012.

Statistical analysis and model development
We performed analyses using SAS 9.4 (Cary, NC, 2014) and Vassar-

Stats Clinical Calculator 1 (Poughkeepsie, NY, 2015). We randomly

assigned four-fifths (n¼2384) of the study participants into the

model derivation cohort and reserved one-fifth (n¼596) for internal

validation. To ensure an even distribution of demographic and clini-

cal characteristics between the derivation and validation cohorts, we

estimated and compared frequencies (chi-square or Fisher’s exact

tests for categorical variables, and Student’s t-test for continuous

variables).

We first used bivariate logistic regression to examine relation-

ships between exposures and the presence of any of the specific

moderate-complex CHDs and identified those that showed a statisti-

cally significant association at p< .05. Collinearity diagnostics were

performed and effect modifiers were not considered to simplify and

facilitate the implementation of the algorithm and score.19

In a full multivariable unconditional logistic regression model,

referred to as the full model, we examined exposures that remained

independently associated with the outcome using backward stepwise

selection. In another model, referred to as the non-blood biomarker

model, we evaluated whether excluding the blood biomarker

(ie BNP) and the statistically significant predictors with small coeffi-

cient estimates was associated with any major change (an increased

or decreased predictive value). Similarly, we excluded various com-

binations of EKG parameters and BNP, which we referred to as sim-

plified A, B and C models.

To identify the “best” model—the one that best distinguished

cases with specific moderate-complex CHDs from controls—we cal-

culated two measures of model performance: receiver operating

characteristic (ROC) c-statistics and the Brier score. The c-statistic,

which varies between 0.5-1.0, shows how well the models discrimi-

nated between those with and without the outcome; higher values

indicate better discrimination. The Brier score, used to assess both

calibration and goodness of fit, estimates the expected squared dif-

ference between the outcome and predicted probabilities; the Brier

score ranges from 0 to 1 with lower scores indicating higher accu-

racy of predicted probability. In cases where it was difficult to dis-

cern the difference between models using the above criteria, we used

the Bayesian Information Criterion (BIC), a likelihood-based statis-

tic that penalizes models with higher numbers of variables; lower

BIC values indicate better fit.

We then explored how the “best” model performed in the valida-

tion dataset (n¼596). To evaluate performance, we calculated sen-

sitivity and specificity for both clinical and surveillance settings. The

clinical setting refers to model parameters that would best identify

potential high-risk individuals for further cardiology assessment

and, if identified with one of the specific moderate-complex CHDs,

provide the opportunity for those lost to follow-up to resume adult

CHD specialty care; this setting prioritizes sensitivity over specific-

ity. The surveillance setting refers to model parameters that would

best minimize false positive cases for producing a sample of individ-

uals with the specific moderate-complex CHDs, who are representa-

tive of the population in order to be able to evaluate basic

epidemiology and healthcare utilization, as well as national preva-

lence and distributions from cross-sectional surveys that include

EKG measures; this setting prioritizes specificity over sensitivity. We

calculated true positives and true negatives for the clinical setting.

For the surveillance setting, we calculated positive predictive value

(PPV) and negative predictive value (NPV) using an estimated popu-

lation prevalence of 16.9 per 10 000 live births for the specific

moderate-complex CHDs included in this study.1 Decisions for the

model were based on likelihood cutoff values from the ROC C-table

for the presence of specific moderate-complex CHDs of 0.15 and

0.35, respectively, for the clinical and surveillance settings. The

lower cutoff value was based on the need to have a model that is

more sensitive than specific for the aims of the clinical setting; the

larger cutoff is derived from the need for the model to be more spe-

cific than sensitive for surveillance purposes.

Development and determination of risk score threshold
After determining the final predictive model, a risk score was

developed to simplify the computation of patients’ total risk based

on the Framingham risk score approach.20 A score for each record

in the validation dataset and the predictive probabilities of the

scores were calculated using the risk score described above and

1/(1þ e(final model)). Predicted outcomes (having or not having one of

the specific moderate-complex CHDs) were assigned to records

based on whether the calculated risk scores were greater or equal to

the tested threshold scores, which were 10-12. These predicted out-

comes were then compared with the true/diagnosed outcome. The sen-

sitivity and specificity of the tested threshold scores were calculated

and compared using the VassarStats Clinical Calculator 1. The thresh-

old for the risk score to accurately identify patients with potentially

specific moderate-complex CHDs was determined by identifying the

threshold of optimal permutation of sensitivity and specificity for a

clinical setting, with the purpose of higher sensitivity to identify poten-

tial high-risk individuals for further cardiology assessment.

RESULTS

Descriptive characteristics of the model derivation cohorts are

shown in Table 1. In the model derivation cohort, compared to con-

trols, cases were more likely to be non-Hispanic white and were, on

average, a decade younger: 59.8% of cases vs. 12.6% of controls

were 20-34 years old; 40.2% of cases vs 87.4% of controls were 35-

60 years old. Cases had a considerably higher QRS duration (131.1

vs. 89.8 msec) on EKG. Cases were more likely than controls to

have enlarged right and/or left atria, right and left ventricular hyper-

trophy, right bundle branch block, left bundle branch block, and

BNP greater than 100 pg/ml. Similar distributions of these charac-

teristics and proportions of completeness (missing) for study varia-

bles were observed in the validation cohort, except that controls

were as likely as cases to be non-Hispanic white (See Supplementary

Tables S2 and S3, respectively).

After bivariate analysis, the full multivariable logistic regression

model, which contained age, sex, QRS duration, QRS axis, right

and/or left atrial enlargement, non-sinus rhythm, right ventricular

hypertrophy, left ventricular hypertrophy, right bundle branch

block, left bundle branch block, and BNP concentration, had a

ROC c-statistic of 0.96 (95% confidence interval (CI): 0.95, 0.97),

and a Brier score of 0.05 (Table 2). Removal of additional variables,

including QRS axis and BNP concentration, did not improve or

compromise the discriminative ability of the full model, as the ROC

c-statistics for the non-blood biomarker and simplified A, B and C

models (Supplementary Table S4) were similar to the full model at

0.96. The absolute differences in Brier scores among all models was

� 0.004. Because of the similarities in ROC c-statistics and Brier
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scores, we also compared the BIC. The BIC value for the non-

blood biomarker model (BIC ¼ 929.4) was larger than that of the

full model (BIC ¼ 924.9) but lower than all other simplified mod-

els. The non-blood biomarker model was selected as the final algo-

rithm, because it was the simplest model that maintained high

performance based on the combination of a high c-statistic and

low Brier score and BIC value relative to the full and simplified

models. Additionally, since BNP is not consistently obtained on

patients, this model was selected, because it did not contain a

blood biomarker variable.

Table 3 summarizes the performance of the models in the valida-

tion dataset for the clinical and surveillance settings. When assessed

for the clinical setting, the non-blood biomarker model had a high

sensitivity (94.6%), specificity (92.4%), and percent correctly classi-

fied (92.8%); the other models performed similarly. The perfor-

mance statistics of the non-blood biomarker model when examined

for the surveillance setting were also very high (sensitivity: 87.4%;

specificity: 97.7%), as were the other models.

Retrospective chart reviews of false positive controls showed

that none had the moderate-complex CHDs included in the study.

Six controls were identified as having structural CHDs: 5 were

mild (1 atrial septal defect, 2 bicuspid aortic valve, and 2 patent

foramen ovale) and 1 was a moderate-complex CHD not included

in the case group (total anomalous pulmonary venous return). The

remaining positive controls had either conduction defects (eg right

and/or left bundle branch block, complete heart block), rhythm

defects (eg arrhythmias, tachycardias, bradycardias), cardiomyop-

athies (hypertrophic, dilated, ischemic), pericarditis, or no cardiac

pathology.

The adult moderate-complex congenital heart defect (ACHD)

risk score, which was derived from the non-blood biomarker model,

is presented in Table 4. Predictors and their categories are shown in

the first two columns on the left. The third column contains point

values corresponding to each category. Only one category can be

chosen for each exposure and the total points for each indicator can

be recorded in the last column, “Points for each indicator.” Adding

the points of each predictor present provides each patient’s final

score.

An optimal threshold score of 10 was selected using the valida-

tion cohort dataset. This threshold was defined by a combination of

Table 1. Detailed demographic and clinical characteristics of study population in model derivation cohort (n¼ 2384)

Characteristics Cases ( n¼ 485) Controls ( n¼ 1899) P-value*

Means (6SD) or N (%)

Age (years) 34.00 (610.52) 46.90 (69.91) <.0001

20-34 290 (59.79) 239 (12.59) <.0001

35-49 139 (28.66) 761 (40.07) <.0001

50-60 56 (11.55) 899 (47.34) <.0001

Sex

Females 260 (53.61) 981 (51.66) .443

Race <.0001

Non-Hispanic white 322 (78.82) 845 (54.31)

Non-Hispanic black 77 (18.87) 643 (42.98)

Asian 4 (0.98) 30 (1.93)

Hispanic 4 (0.98) 31 (1.99)

Native American/Pacific Islander 1 (0.25) 7 (0.39)

PR interval (msec) 160.10 (651.48) 153.90 (630.49) .012

QRS duration (msec) 131.10 (632.64) 89.83 (614.99) <.0001

QRS axis (degrees) 59.24 (672.75) 38.49 (637.24) <.0001

Heart rate (bpm) 72.48 (611.58) 70.62 (613.08) .0022

Atrial enlargement, right, left or biatrial 116 (23.92) 134 (7.06) <.0001

Rhythm not sinus 131 (72.99) 61 (3.21) <.0001

RVH 100 (20.62) 11 (0.58) <.0001

LVH 68 (20.34) 86 (4.53) <.0001

RBBB 310 (63.92) 85 (4.85) <.0001

LBBB 73 (15.05) 38 (2.00) <.0001

BNP

BNP (pg/ml) 247.20 (6545.9) 435.7 (6722.60) .003

BNP (>100 pg/ml) 110 (22.68) 64 (3.73) <.0001

Abbreviations: BNP: B-type natriuretic peptide; bpm: beats per minute; LBBB: left bundle branch block; LVH: left ventricular hypertrophy; msec: milliseconds;

pg/ml: picogram per milliliter; RBBB: right bundle branch block; RVH: right ventricular hypertrophy.

*All tests were chi-square for categorical variables and Student’s t-tests for continuous variables at 0.05 significance level.

Table 2. Multivariable models using logistic regression backwards

stepwise approach in the model derivation cohort (n¼ 2384)

Models ROC c-statistic

(95% CI)

Brier

Score

BICa

Non-blood biomarker model 0.96 (0.95, 0.97) 0.05 929.4

Simplified model A 0.96 (0.95, 0.97) 0.05 931.8

Simplified model B 0.96 (0.95, 0.97) 0.05 941.9

Simplified model C 0.96 (0.95, 0.97) 0.05 937.1

Full model 0.96 (0.95, 0.97) 0.05 924.9

Abbreviations: BIC: Bayesian Information Criterion; ROC: receiver operat-

ing characteristic.
aLower BIC and Brier score values indicate better fit. Higher values of

c-statistic indicate better discrimination.
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slightly higher sensitivity than specificity in order to identify

potential high-risk individuals for further cardiology specialty care

assessment. This optimal threshold score was associated with a sen-

sitivity of 96.4%, specificity of 80.0%, and percent correctly classi-

fied of 83.1% for the outcome (Supplementary Table S5).

CONCLUSION

We developed an empirically-derived risk score using specific clini-

cal variables—age, sex, EKG parameters—found in EHRs to differ-

entiate between adults with and those unlikely to have specific

moderate-complex CHDs. The final algorithm (non-blood bio-

marker model) demonstrated good calibration and discriminatory

power in a randomly-generated split-sample internal validation co-

hort. The final model correctly identified adult patients with specific

moderate-complex CHDs with a 95% sensitivity and a 92% specif-

icity for the clinical setting and 87% sensitivity and 98% specificity

for the surveillance setting. The non-blood biomarker model was

subsequently used to develop the ACHD risk score tool for use by

clinicians to identify individuals with characteristics and EKG signs

suggesting the presence of one of the specific moderate-complex

CHDs; the risk score tool similarly demonstrated high sensitivity

(96%) and specificity (80%).

The primary premise for our model is that EKG abnormalities

have long been reported as associated with post-surgical repair of

CHDs, particularly with conduction issues, such as elongated QRS

duration and bundle branch block. EKG anomalies, such as tall R-

waves that could result from right ventricular pressure overload and

wide QRS duration of over 180 msec predicting sudden death in

patients with tetralogy of Fallot,21 are examples of how EKG

parameters have been guiding clinicians in identifying and monitor-

ing patients with CHDs. The high sensitivity and specificity results

of our model further demonstrate the accuracy of EKG readings in

identifying patients with specific moderate-complex CHDs.

The ACHD risk score tool, developed from the algorithm for the

clinical setting, has helpful clinical applications. Most contemporary

EKG machines provide an automated “read” with flags to alert pro-

viders to potential specific conditions. Examples of flags include

“pulmonary disease pattern” or “acute myocardial infarction.” As

many adults with specific moderate-complex CHDs are seen in

emergency rooms and primary care offices, the addition of an EKG

flag to alert providers to potential “probable CHD” would create

opportunities to improve care. These would include flagging poten-

tial high-risk individuals for further cardiology assessment, bringing

some of those lost to follow-up back into adult CHD specialty care,

Table 3. Performance characteristics of the non-blood biomarker, simplified, and full models in the identification of adults with specific

moderate or complex CHDs for the clinical (A) and surveillance (B) setting, validation cohort (n¼ 596)

Aa Sensitivity (%) Specificity (%) TP (%) TN (%) CC (%)

Non-blood biomarker model 94.6 92.4 73.9 98.7 92.8

Simplified model A 94.6 92.0 72.9 98.7 92.5

Simplified model B 94.6 92.6 74.5 98.7 93.0

Simplified model C 94.6 92.4 73.9 98.7 92.8

Full model 93.7 92.8 74.8 98.7 93.0

Ba Sensitivity (%) Specificity (%) PPV (%)b NPV (%)b CC (%)

Non-blood biomarker model 87.4 97.7 6.0 100.0 95.8

Simplified model A 87.4 97.7 6.0 100.0 95.8

Simplified model B 87.4 97.5 5.6 100.0 95.6

Simplified model C 86.5 97.5 5.5 100.0 95.7

Full model 87.4 97.7 6.0 100.0 95.8

Abbreviations: CC: correctly classified; CHDs: congenital heart defects; NPV: negative predictive value; PPV: positive predictive value; TN: true negative; TP:

true positive.
aROC C-table cutoff value for the clinical (A) and surveillance (B) settings were 0.15 and 0.35, respectively.
bPPV and NPV were calculated using an estimated population prevalence of 16.9 per 10 000 for the specific moderate or complex CHDs and a standard popu-

lation of 10 000.

Table 4. Adult moderate or complex congenital heart defect

(ACHD) score tool

Indicator Categories Points

for Each

Category

Points

for Each

Indicator

Demographics

Age 20-29 7 Points:

30-39 5

40-49 3

50-60 0

Sex Male 0 Points:

Female 2

Electrocardiogram

QRS duration Points:

Against <80 0

Neutral 80-119 3

Support 120-149 6

Likely �150 10

Atrial enlargement right,

left, or biatrial

Absent 0 Points:

Present 3

Rhythm not sinus Absent 0 Points:

Present 4

Right ventricular hypertrophy Absent 0

Present 3

Left ventricular hypertrophy Absent 0 Points:

Present 2

Right bundle branch block Absent 0 Points:

Present 4

Left bundle branch block Absent 0 Points:

Present 2

Total¼ a

aThreshold score is 10.
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and avoiding misclassification with other cardiac pathology, for ex-

ample, myocardial infarction, thus preventing unnecessary testing.

Like other initiatives that use EHR data to establish multicenter

research cohorts (eg the Electronic Medical Records and Genomics

[eMERGE Network]),22 the algorithm that uses the surveillance set-

ting to distinguish adults with and without the specific commonly

occurring moderate-complex CHDs could be employed to establish

multicenter surveillance of adults with these CHDs who might be re-

ceiving care outside of cardiac care specialty clinics. Identifying indi-

viduals through the use of this algorithm could lead to improved

understanding of health services utilization, morbidity, mortality,

and healthcare disparities in this population, more so than what can

be gleaned from a potentially-biased sample of patients attending a

cardiac care specialty clinic. Such population-based samples could

additionally aid in studying the impact of secondary prevention on

clinical outcomes and quality of life in this expanding population.

Our algorithm might also aid the estimation of basic epidemiologic

measures of patients with moderate-complex CHDs, such as na-

tional prevalence and distributions from cross-sectional surveys that

include EKG measures (eg National Health and Nutrition Examina-

tion Survey).

Given the high costs associated with hospitalizations and sur-

gery, and the high proportion of adults with specific moderate-

complex CHDs not receiving specialized care, it is in the financial

interests of public health, insurance companies, and healthcare pro-

viders in the United States to identify adults with specific moderate-

complex CHDs. This could ensure timely provision of care and edu-

cation to prevent expensive cardiac interventions.23

Although administrative data are regularly used to estimate dis-

ease incidence and prevalence, EHR systems provide added value as

they incorporate structured clinical data, including test results,

which facilitate accurate identification of patients.24–26 Administra-

tive algorithms that rely on billing codes (specifically ICD codes) re-

quire a number of patient encounters with providers to ascertain the

condition of interest, and the codes are not always available or accu-

rate.18,27,28 Indeed, in our study, we used the lack of ICD-9-CM

codes to define controls without the specific moderate-complex

CHDs, which may have misclassified a few cases as controls. How-

ever, we did not find any such misclassification in our retrospective

chart review. Therefore, algorithms based on combined administra-

tive and clinical data may be the most accurate and informative for

identifying adults with the specific moderate-complex CHDs and

tracking outcomes.29 Although success of such algorithms depends

on the quality of data stored in EHR systems, the combination of

clinical and administrative data are likely the most viable option for

identifying adults with both high sensitivity and specificity.30–32

As the population of adults with specific moderate-complex

CHDs ages, the number of patients in the above 40 age-group will

also increase, leading to dilution of our model’s use of age for cate-

gorizing patients with and without specific moderate-complex

CHDs, leaving sex and EKG variables as the sole identification

parameters. Therefore, incorporating a single test (ie EKG) into the

identification algorithm becomes logical since such an abbreviated

algorithm has the potential to provide an easy screening modality in

clinical settings that lack the ability to identify adults with specific

moderate-complex CHDs.

Other scoring systems have been developed for assessing out-

comes for patients with CHDs. For example, several surgical risk

scoring systems for the prediction of mortality, major adverse

events, and prolonged lengths of stay among pediatric-aged patients

with CHDs have demonstrated good predictive ability among adults

with CHDs undergoing congenital heart surgery.33 However, to the

best of our knowledge, our model is the first proof of concept that

one’s likelihood of having one of the specific moderate-complex

CHDs can be identified based on age, sex, and EKG parameters

obtained from an EHR system. Moreover, the performance statistics

of our algorithm suggest high potential for wider use. In addition to

flagging adult patients with specific moderate-complex CHDs dur-

ing routine visits when programmed in EKG machines and, poten-

tially, recommend them specialized care, this algorithm, which

defines a set of data elements and logical expressions, can serve as

the bases for the development of a computable phenotype.34 This

phenotype can be programmed into EHR systems, validated across

research centers and deployed to establish multi-center registries to

better measure prevalence and understand the health needs and out-

comes of patients with specific moderate-complex CHDs to improve

care and services.22

BNP, which is not obtained routinely, did not provide added predic-

tive value in the algorithm, despite its statistical significance. This finding

was consistent with conclusions from other studies that report increases

in BNP concentration can be associated with complex CHDs but are

best used for specific clinical reasons, such as guiding therapy.35,36

There are some limitations to our work. We selected a limited

number of CHDs compared to the full spectrum recorded in the

Emory EHR system. However, our selection is based on commonly

occurring CHDs in order to demonstrate proof of concept. The non-

blood biomarker algorithm and the ACHD risk tool that were devel-

oped are not yet generalizable to populations outside the Emory

Healthcare setting as external data validation must follow.37 The

use of ICD-9-CM codes to exclude controls who might have a CHD

is a potential source for disease misclassification, resulting in an

overestimation of the model, especially since providers who may not

be familiar with CHD diagnoses are tasked with entering ICD-9-

CM codes in EHR systems.18 Furthermore, longitudinal studies that

utilize clinical characterization of adults with and without specific

moderate-complex CHDs will be important to verify the accuracy of

the ACHD risk score.

The algorithm that was developed to distinguish adults with and

without specific moderate-complex CHDs—composed of only age,

sex, and EKG markers—provided within a validation cohort either a

95% sensitivity and 92% specificity, or an 87% sensitivity and 98%

specificity, for use in a clinical or surveillance setting, respectively.

Although the EHR-based algorithm requires further external valida-

tion before incorporation into EKG machines, it has the potential to

identify patients lost to cardiology follow-up, establish multicenter

population-based surveillance and epidemiologic assessment of

adults with specific moderate-complex CHDs, and flag potential

high-risk individuals for further cardiology assessment.
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