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Abstract

The age of “big data” in health has ushered in an era of prediction models promising to forecast 

individual health events. While many models focus on enhancing the predictive power of medical 

risk factors with genomic data, a recent proposal is to augment traditional health predictors with 

psychosocial data, such as personality measures. In this paper we provide a general overview of 

the medical risk prediction models, then discuss the rationale for integrating personality data. We 

suggest three principles that should guide work in this area, if personality data is ultimately to be 

useful within risk prediction as it is actually practiced in the health care system. These include a) 

prediction of specific, priority health outcomes; b) sufficient incremental validity beyond 

established biomedical risk factors; and c) technically responsible model-building that does not 

overfit the data. We then illustrate the application of these principles in the development of a 

personality-augmented prediction model for the occurrence of Mild Cognitive Impairment (MCI), 

designed for a primary care setting. We evaluate the results, drawing conclusions for the direction 

an iterative, programmatic approach would need to take to eventually achieve clinical utility. 

While there is great potential for personality measurement to play a key role in the coming era of 

risk-prediction models, the final section reviews the many challenges that must be faced in real-

world implementation.
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Introduction

Based on at least three decades of work demonstrating relationships between personality and 

health outcomes, interest is now coalescing around how personality data could be practically 

used to improve people’s health. When a set of risk factors is discovered, the most common 

instinct is to seek to modify them. This thinking underlies recent considerations of how 

health-relevant personality traits might be targeted via intervention, as other papers in this 

special issue describe. While strong arguments exist for that prospect, there are also some 

scenarios in which trait change may be less tractable (Chapman, Hampson, & Clarkin, 2014; 

Mroczek, 2014) and literature on the predictive power of personality for health outcomes 

predates that calling for interventions. Some traits may be less amenable to change, some 

persons unable or unwilling to change, available time frames too short for meaningful trait 

change, and external (lack of a supportive environment) or internal (neurodegenerative 

disease) circumstances may preclude the desired changes. In yet other cases, it may be 

possible to change a trait, but such change may not alter the likelihood of the focal health 

outcome. These cases take one of two forms: first, the health damaging effects of a particular 

trait have already accumulated, particularly if it has been operating over the better part of a 

person’s lifespan. A sensation-seeking extravert who takes up smoking at a young age and 

continues it for decades may see a reduction in these traits, naturalistic or otherwise, in 

middle or later life. Neither the cessation of smoking nor the remediation of years of 

accumulated lung damage may result. Second, a personality trait may not be causally related 

to an outcome, but instead may proxy another etiologic factor, such as a genetic disposition 

or environment.

In light of these considerations, should we abandon hope of utilizing personality information 

to improve health outcomes? We think not, and in this paper describe an alternative way in 

which personality can be practically used to improve health outcomes. The alternative to 

direct intervention hinges on leveraging the long-term predictive power of personality 

measures for health outcomes (Roberts, Kuncel, Shiner, Caspi, & Goldberg, 2007) in tools 

of potential use within health care clinics. These tools, variously called risk prediction 

models, risk scores, risk calculators, prognostic models, and prediction models, are 

empirically based forecasts of the likelihood a given patient will experience a particular 

health outcome over some defined time horizon. The first part of this paper provides an 

overview of health prediction models, including their place within the recent precision 

medicine movement. The rationale for augmenting these models with personality measures 

is laid out, and three principles are proposed to determine whether or how personality data 

might be usefully integrated into such models. The second section of the papers features a 

concrete illustration of how a standard health risk model based on demographic and medical 

data could be augmented by personality measures. The third and final portion of the paper 

focuses on the challenges inherent in the idea, or indeed in any effort to integrate personality 

into actual health care practice.

Health Risk Prediction

There are several advantages to quantitative prediction tools that accurately foretell the 

occurrence of a disease, its prognosis or course, or an individual’s likelihood to respond to a 
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certain treatment. Such tools a) enable patients and their families to make more informed 

decisions about treatment and prevention (for instance, balancing the side-effects of a 

prevention regimen against the individual’s likelihood of experiencing that outcome); b) help 

clinicians precisely tailor care by planning treatment and prevention; and c) aid health care 

systems in allocating resources to patients most at risk for an outcome. The latter process is 

known in medicine as risk stratification, or the ordering large numbers of patients in strata 

reflecting increasing levels of risk for the health outcome.

Prediction models in clinical medicine are not new. For instance, one of the most widely 

used prediction models is the Framingham Risk Score (FRS). The FRS takes data on 

cardiovascular factors such as smoking or obesity, and based on a validated logistic 

regression model a cardiovascular outcome such as stroke or myocardial infarction, produces 

a probability of that outcome (available at http://www.cvriskcalculator.com/). This 

probability then informs treatment. For instance, The American College of Cardiology and 

American Heart Association recommend that statin treatment be initiated if a risk score of > 

7.5% chance of stroke or myocardial infarction in the next ten years is achieved for 40–75 

year patients free from cardiovascular disease (Goff et al., 2013).

However, predictive medicine has entered a new age of potential due to the advent of “Big 

Data,” which involves a tidal wave of novel biomarkers and the burgeoning architecture of 

information management systems such as electronic medical records (EMRs). Classic 

approaches to data-driven prediction have appeared under the headings of “prognostic 

models” or “prognostic medicine”1 (Royston, Moons, Altman, & Vergouwe, 2009). Those 

models typically employed information readily available to health professionals in their 

clinics, such as demographics and medical factors assessed in the office. The goal of any 

prediction model is to combine available data on risk factors into a single index, usually 

called a risk score, which conveys some information about the likelihood of experiencing an 

outcome (see Royston et al., 2009). To achieve sufficient predictive validity for use in actual 

health care clinics, successful risk models typically go through many iterations of validation 

and revision in independent samples reflecting their target population.

The concept of a risk-score from a medical prediction model is not unlike that of a score 

from a multi-item psychological scale: several relevant measurements (for instance the 

presence of diseases or health risk behaviors) are added up, possibly using weights. The 

weights must be based on some reliable empirical analysis of relevant data if the risk score is 

to be at all useful. Health care decision support software, either free-standing or integrated 

directly into EMRs, can now computes risk scores automatically if the relevant input data 

has been collected at the point of clinical care. There are many databases of “risk 

calculators” for the practicing physician to use. For example, one popular web site is 

MDcalc (www.mdcalc.com), a subscription-based web warehouse of predictive models (and 

other clinical tools). Health care providers can search for risk models relevant to any given 

patient, input the relevant information, and receive an immediate score (as well as other 

1The term prognostic literally suggests predicting the course of a disease once it has been diagnosed. However, the intent is to predict 
any health outcome, e.g. a incidence of a disease that has not yet been diagnosed, so the term tends to be used synonymously with 
“predictive”.
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information on the particular prediction model, including its supporting studies). This has an 

indirect benefit of permitting more sophisticated statistical prediction models, since there is 

no need to over-simplify the resulting formula of the risk score for hand calculation2.

The advent of genomics produced a more widely recognized application of predictive 

models known as “personalized medicine” (Hamburg & Collins, 2010). Much of the early 

work in personalized medicine involved identifying patient genetic markers predicting 

response to particular forms of cancer treatment. The term expanded quickly to encompass 

individualized approaches to patient care based on genomic assessment of disease risk. 

Predictive models of disease incidence in this arena have generally been based on culling 

through a large number of single nucleotide polymorphisms (SNPs) to identify a small, 

highly predictive subset which are then combined into a single estimate of genetic risk, 

called a polygenic risk score (e.g., Peterson et al. 2011). This process of constructing such a 

risk score involves quantitative methods suited to large numbers of predictors, known as 

machine learning (more aptly called statistical learning; see Hastie, Tibshirani, & Friedman, 

2009). The branch of machine learning used for prediction models can be thought of 

conceptually as a regression-modeling framework tailored to deal with a large or 

complicated predictor set.

Modifiability and Causality

Polygenic risk scores illustrate a key point of prediction models—that risk factors need not 

be modifiable to be incorporated into patient care, prevention, and treatment planning. That 

point is particularly relevant for personality traits, the plasticity of which may vary across 

different persons, periods of life, and traits. The reason is that modifiability is irrelevant in 

the question of whether some measurement in the present, be it genotype or phenotype, 

predicts something in the future. The causal status of a risk factor is also irrelevant from this 

prediction perspective, since the risk factor is simply a measurement that conveys 

information about the likelihood of a future outcome—the proverbial “canary in the coal 

mine”. The measurement may be an easily attainable proxy for some other truly causal 

factor, an amalgam of causal and non-causal factors, or an indirect or distal factor on a 

complex causal chain. For instance, a particular personality trait score may be the result of 

one or more genetic and/or environmental factors that are also causes of a disease outcome. 

In this case, the trait score does not cause the outcome, but is an easily measurable 

epiphenomenon of an underlying cause of the outcome and therefore provides predictive 

leverage. Of course, if one is to move a step beyond the “early warning” goal of risk 

prediction and wishes to use a component of a risk score as an intervention target, then that 

component ought to be causally linked to the outcome.

From a clinical perspective, it is paramount to first identify who is at risk for an outcome. 

Without accurate predictions, it is not even possible to know in whom to undertake an 

intervention with established effectiveness or target pathways known to be causal. Of course, 

these are not “either/or” issues: modifiable causal predictors provide immediate hints to risk 

2For instance, many models simply rounded the regression weights needed for specific components of the risk score to simple integer 
values, to make hand calculation by busy clinic staff easier.
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reduction, and the causality and modifiability of many predictive factors is often not entirely 

known.

Precision Medicine and Personality

The expansion of prediction models to include many levels and types of information 

underlies the new precision medicine movement of the US National Institutes of Health 

(NIH). Precision medicine is defined as “an emerging approach for disease treatment and 

prevention that takes into account individual variability in genes, environment, and lifestyle 

for each person" (NIH, 2016). A decade earlier, personality was pinpointed as an 

“intermediate phenotype” at the nexus of these three domains (Institute of Medicine, 2006). 

These considerations have given rise to suggestions that personality traits be studied as 

adjunctive markers in health prediction models, as a phenotypic complement to genotypic 

data (Chapman, Roberts, & Duberstein, 2011; Chapman, Hampson, & Clarkin, 2014).

That notion is predicated on three findings in the literature. First, the predictive power of 

personality for consequential life outcomes (including health) has been repeatedly 

demonstrated, and is on par with other factors such as IQ or socioeconomic status (SES; 

Roberts, et al. 2007). It stands to reason that a construct touted for its predictive power 

would be a prime candidate for consideration in medical risk prediction models. Second, the 

personality traits and facets encompassed by the Big Five framework tap propensities toward 

health behaviors, physiological processes relevant toward health, and indeterminate genetic 

factors that may have health consequences. Some of this information will encompass 

specific risk factors—for instance, Conscientiousness is linked to better diet and lower 

likelihood of smoking, which lead to lower blood pressure (Bogg & Roberts, 2004)—but 

some of the information contained in personality measures will provide unique, incremental 

predictive value beyond specific risk factors. If an individual’s risk score is high because of a 

particular profile of elevations (or decrements) in key personality facets, then this 

information also may provide some insight on tailoring prevention or intervention (for 

instance, anxiolytics when trait anxiety drives up risk for an outcome). Third, studies 

prospectively predicting health outcomes are nearly all based on patient self-report scales of 

personality3. Personality items with predictive value can thus easily be incorporated in 

patient health history questionnaires (paper and pencil or tablet-based), online patient 

portals, or in similarly expedient, non-invasive, and inexpensive means. Formal testing by 

licensed psychologists (cost and time prohibitive in most medical settings) is not required.

Incorporating Personality Information in Medical Prediction Models

Exactly which health outcomes might be better predicted with the assistance of personality 

data is largely an open question. The use of personality data in a prediction model is best 

justified when there is at least some literature documenting basic associations in traditional 

research designs (i.e., studies that do not specifically develop or validate a prediction 

model). In a recent proof of concept study, we identified a small set of specific personality 

scales and SES markers that enhanced the performance of the Charlson Comorbidity Index, 

3This is not to discount the importance of informant report or other forms of personality measurement—indeed, such information may 
be extremely predictive—but studies of health outcomes incorporate these forms of measurement only rarely.
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a classic risk model for all-cause mortality based on demographics and chronic disease 

(Chapman, Weiss, & Duberstein, 2015). That study focused on facet level scales rather than 

broad, composite scores on domains such as Neuroticism and Extraversion, as narrower trait 

measurements offer better predictions under some conditions. Another approach has been to 

construct predictive scales from the item level itself (Chapman, Weiss, & Duberstein, 2016; 

Weiss, Gale, Batty, & Deary, 2013). Working directly at the item level treats personality 

inventories as a so-called “SNP chip” or measurement of a large number of SNPs. 

Describing this approach, Weiss and colleagues (2013) coined the term “Questionnaire-wide 

Association Study” (QWAS) as an analogy to the Genome Wide Association Study 

(GWAS). The item- or QWAS level of analysis trades the advantage of conceptual trait 

constructs, represented by narrow trait scales, for the greatest level of granularity possible in 

personality measurement. Depending on the context, either may be defensible. In our 

example illustration below, we identify a middle ground between pure item-analysis and 

pure facet-scale analysis, based on items and item parcels that have known mappings to 

distinct trait constructs. We now review three key principles for personality-informed 

prediction models.

Three Principles For Personality Informed Prediction Models

1) Clinically Relevant Endpoints—First, the prediction model itself must provide risk 

estimates for an endpoint of clinical relevance. Most of clinical endpoints of interest have at 

least some recognized prevention and early intervention strategies, and are thus the focus of 

health care providers in clinics. Because health conditions require formal definitions, they 

are often categorical in nature. For instance, systolic and diastolic blood pressures are 

continuous measures, but hypertension is defined by a threshold ratio of the two (140/90). 

Thus, models could be constructed producing a predicted amount of increase in blood 

pressure (a continuous outcome), but that increase might or might not exceed the defined 

threshold for hypertension. This issue is not so much over whether it is statistically better to 

use continuous or categorical measures, as a matter of working within the discrete endpoints 

around which healthcare decision-making, research, and treatment is centered.

2) Added Value Over Biomedical Information—Efforts to integrate personality 

information into medical prediction models must similarly work within the confines of 

established health risk factors, and existing models based on those risk factors. No medical 

practice would use a risk score for Myocardial Infarction, for instance, based solely on 

personality items when lipids, body mass index, and other relevant biomedical data is 

routinely available. Thus, the goal is to identify personality measurements that enhance 

prediction beyond the components found in existing risk models. If a personality measure 

provides no added predictive power beyond information already available, it is unlikely to be 

of any practical use.

Improvement of a model can come in different forms (Steyerberg et al., 2010). Calibration 

refers to whether the model systematically over or under-predicts the outcome in general, or 

within certain regions of the risk spectrum. For instance, the existing model may be highly 

accurate at extremely low and high risk, but poor between. Discrimination refers to how well 

the model distinguishes “cases”, or those who experience the outcome, from non-cases or 
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“controls” who do not. It is based on the separation of the risk scores across these two 

groups, and may be good even if calibration is bad. For instance, cases may always have a 

higher risk score, but miscalibration may lead to systematic overestimation of everyone’s 

risk. Overall measures of model performance combine information on calibration and 

discrimination.

In practice, risk scores will be categorized to abet decision making about whether to refer 

patients for further testing, initiative interventions, and so forth. Thus, it is also useful to 

consider whether added data improves false positive or false negative rates at cut-points 

likely to be used in clinical practice for a given screening strategy. One common screening 

strategy is to set a very low cut-point, to catch as many of those who actually experience the 

outcome, or cases, as possible (Gordis, 2005). Setting a low cut-point to maximize 

sensitivity (the proportion of true cases identified) but will necessarily bring with it false 

positives, and one would want added information to reduce the number of false positives at a 

given sensitivity. The opposite strategy would be to set a very high cut-point. This would 

capture nearly everyone who doesn’t eventually experience the outcome, or non-cases 

(Gordis, 2005). Of course, maximizing specificity (true non-cases identified as non-cases) 

would also miss those who truly experience the outcome, or false negatives. If a risk 

prediction program prioritizes specificity, one would want added information such as 

personality data to reduce false negatives at a given specificity level. The cost of a single 

missed case (false negative) vs. false positive, as well as the total number of each (a function 

of the base rate of the outcome) will influence whether a health care system prefers to 

maximize sensitivity or specificity in a given risk-screening initiative. Any new marker 

considered in the risk model may facilitate one, both, or neither of these practical goals.

3) Technical Soundness—Just as the evaluation of whether or not personality 

measurements improve an existing prediction model is complex, so is the construction of the 

model itself. This is a statistical task, and there are many places it can go wrong. A 

predictive model must produce risk scores that have predictive value beyond the sample in 

which the model was developed. This is a universal imperative for prediction models, but 

one that is sometimes neglected. The technical term for a model that performs poorly out-of-

sample, and is thus not generalizable or useful, is “overfitting.” Overfitting occurs when too 

many predictors are included, or parameter estimates that are too larger, or parameters are 

too complex (i.e., many non-linear terms and interactions). Such a model looks like it 

predicts the outcome well in the data at hand, but that performance is partially driven by 

idiosyncrasies of that sample. The same model may predict the outcome quite poorly in a 

different sample lacking those idiosyncrasies. Many machine-learning algorithms are 

designed specifically to prevent this. Conceptually, these algorithms work by “underfitting” 

the model in the development sample, using internal cross-validation (see Hastie et al., 2009 

for technical exposition, Chapman et al., 2016 for an introduction for psychologists). Of 

course, one does not want to underfit the data at hand too much, or this too could result in 

poor prediction. Ideally, a completely independent external validation sample is used for a 

final assessment of model performance. This is rare in practice, and in fact even the use of 

internal cross-validation or other low-cost strategies to prevent overfitting is rather scant 

(see, e.g., Royston et al., 2013).
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Cross-validation and other techniques in machine learning are generally not based on p-

values. This does not mean that they fail to distinguish between useful predictors and non-

useful predictors; quite the contrary. Machine learning algorithms are simply designed to 

build the best generalizable prediction from the predictor set, not perform null-hypothesis 

tests on individual predictors. One might think of the regression weights they produce as 

measures of “effect size.” Typically, if a variable is not useful, it will be discarded entirely or 

receive a very small weight. Certain methods, such regularization (utilized in the example 

below), shrink coefficients to a degree roughly proportional to their standard error. Machine 

learning methods are generally quite different from traditional methods such as mediation 

models, but can be thought of as efforts to estimate the total association between a predictor 

and outcome, whatever pathways or mechanisms might be responsible for it. Classical 

methods such as logistic regression have also been employed in model construction for years 

(Royston et al., 2009). Their advantages are familiarity and some idealistic statistical 

properties of maximum likelihood estimates (MLE). Ultimately the choice of approach for 

any given application depends on a variety of factors, but the end goal is a model with 

generalizable predictive validity.

In the next section, we illustrate the application of these three criteria—clinically meaningful 

outcomes, incremental prediction accuracy, and strategies to avoid overfitting--in an 

example. We then conclude with a general discussion of the promises and pitfalls inherent in 

efforts to translate personality research in clinically useful healthcare tools.

Predicting Mild Cognitive Impairment

Dementia and Early Risk Prediction

Dementia is a general term that refers to a variety of cognitive disorders. Alzheimer’s 

Disease and related dementias are officially listed as the sixth leading cause of death in the 

US (Centers for Disease Control [CDC], 2015), but may in fact be as high as the third or 

fourth: mortality burden is underestimated because they are often not recorded or recorded 

only as contributing causes on death certificates (James, Leurgans, Herbert, Scherr, Yaffe, & 

Bennett, 2014). Economic burden is also extraordinarily high, and dementia incidence is 

projected to increase in coming decades (CDC, 2015). Although the development of 

treatments for AD and related dementias is a major priority, no therapies exist which can 

alter the gradual progression of the disease. Therefore it has become imperative to predict 

signs of dementias as early as possible, to provide ample lead-time for preparation, planning, 

and efforts to slow progression.

Mild Cognitive Impairment (MCI) is a condition for which different sets of diagnostic 

criteria exist (Albert et al., 2011). Common features across all classification schemes include 

a) the maintenance of everyday activities of daily living, combined with b) a change for the 

worse in one or more domains of cognitive functioning, such as memory or executive 

function. Another common feature of the condition is self- reported cognitive decline, 

although there is no consensus that this should be a required diagnostic feature. Because it 

reflects less severe impairment, MCI is not the same as dementia, but can progress to 

dementia. Although different subtypes of MCI are not always distinguished in practice, 

amnestic MCI (aMCI) is a common variety of MCI involving memory impairment. The term 
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“non-amnestic MCI” is used to refer to cases in which cognitive impairment in other (non-

memory) domains is evident. For instance, “executive MCI” (eMCI) involves deficits in 

executive function (Reinvang, Grambaite, & Espeseth, 2012). Different varieties of MCI 

may presage different forms of dementia. Ultimately, the transition from normal cognitive 

function to possible MCI a very early prediction target. An ideal risk-prediction paradigm 

would identify persons who are as yet without cognitive deficits, but who evidence a higher 

than average probability of developing some type of MCI in the future.

Few formal risk models exist for MCI or for its subtypes. Most risk prediction models focus 

on dementia itself (Stephan et al., 2010), with reported models for MCI based on age, 

education, and health factors—in particular, vascular risk factors such as hypertension, and 

hypercholesterolemia (Pankratz et al., 2015; Unverzagt et al., 2011). A second kind of MCI 

risk model focuses on Magnetic Resonance Imaging (MRI), cerebrospinal fluid (CSF), and 

other more specialized biomarker measurements such as Apolipoprotein E (Heister et al., 

2011; Kantarci et al., 2013). Biomarkers offer a promising means of predicting the onset of 

cognitive deficits at preclinical phases of diseases (Sperling & Johnson, 2013), but typically 

involve referral to specialty clinics and/or more expensive or invasive procedures.

Current possibilities for MCI risk prediction consist of a) “first-line” risk models that could 

be computed in general medical settings based on standard health data and demographics; 

and b) models based on more expensive and nuanced information such as brain imaging. A 

comprehensive early detection initiative would ideally leverage both layers. For instance, a 

serial prediction program might maximize sensitivity at an initial screening stage with 

widely available data in general practices, capturing the largest number of potential cases. 

Those deemed at risk in this stage could then be referred to specialty clinics for more 

expensive and invasive biomarker data, which could then be used to rule-out false-positives 

from the initial stage.

The first criterion for personality-informed risk prediction models—an endpoint of major 

public health importance—is therefore satisfied in MCI. In this example application, the 

cognitive battery is more sensitive to possible eMCI, though cannot fully distinguish 

between subtypes. Were the models to be iteratively refined, the next study would probably 

attempt to define the endpoint with a more extensive battery. Criterion two, that personality 

adds some predictive utility beyond established risk factors, presupposes as a start that 

personality prospectively predicts cognitive outcomes. Such a base of evidence exists, with 

meta-analyses linking personality traits to both formal dementia (Low, Harrison, & 

Lackersteen, 2013) and cognitive decline (Luchetti, Terracciano, Stephan, & Sutin, 2016). 

Existing prediction models based on standard health (Pankratz et al., 2015; Unverzagt et al., 

2011) as well as imaging data (Heister et al., 2011; Kantarci et al., 2013; see also Stephan et 

al., 2010) also appear to perform modestly, suggesting that there is “room for improvement” 

from auxiliary forms of data. Therefore, a plausible basis exists to suspect that personality, 

in this case, might successfully augment biomedical risk factors in outcome prediction.

Why look to non-cognitive data, rather than traditional cognitive screening instruments? The 

entire point of using information other than cognitive screens is to anticipate or predict the 

very change captured by screeners. In other words, a screener is a case-finding tool for 

Chapman et al. Page 9

Personal Disord. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



identifying potentially existing deficits. The goal of predictive models is to forecast the 

appearance of these deficits, before they actually occur and are detected by screeners. This is 

the crux of the difference between predictive models and screening procedures. As an 

analogy, carriers of the BRCA gene are at heightened risk for breast cancer, and this 

knowledge is useful in identifying elevated risk of potential future disease. Waiting instead 

for a suspicious mammogram result (a screening test) detects possible cases of breast cancer 

that have actually occurred. In general, the tasks of predicting onset, assessing severity of an 

existing condition, and quantifying its likely course or progression are distinct and often 

require complementary sources of information. The utility of different forms of any data is 

tied to what one hopes to find out. For instance, the type and rate of personality change 

occurring after a dementia diagnosis may be a marker of progression and prognosis (i.e., 

whether behavioral disturbance will occur or worsen). In the present context, we focus 

exclusively on whether personality information in cognitively intact older individuals can 

predict the incidence of potentially significant cognitive change over a relatively short (2–3 

year average) time span. The third criterion involves steps to reduce model overfitting, and is 

described below.

Participants and Procedure

Primary care clinics represent the first (and often only) point of contact for persons 

presenting with dementing disorders, and have been an increasingly popular site for early 

detection or risk-prediction efforts. Such settings also tend to have data available on a variety 

of general health factors and demographics potentially useful in MCI prediction. We thus 

utilized a large longitudinal sample of persons 65 and older presenting at primary care 

clinics in the Rochester, NY area. The sample and study procedures are described in detail in 

Chapman, Roberts, Lyness, and Duberstein (2013) and all procedures were approved by the 

local institutional review board. Briefly, older persons were recruited from the waiting 

rooms of primary care clinics, with consenting individuals interviewed at home visits by 

research assistants at baseline and then yearly thereafter throughout the duration of study 

funding, which spanned five years. Under rolling enrollment, an individual recruited in the 

first year could have up to four yearly follow-up assessments, while a person recruited in the 

fourth year would be eligible only for a one-year follow-up. Of individuals at baseline, 67% 

(N = 508) completed the NEO-Five Factor Inventory (NEO-FFI) of personality. A total of 

385 persons with personality data scored in the unimpaired range on all three measures of 

cognition (see below) and represented the cognitively normal baseline cohort for which 4-

year possible eMCI risk prediction models were developed. This sample was 61% female, 

with a mean / standard deviation (M / SD) age of 74.4 / 6.3, 14.5 / 2.3 years of education, 

and was roughly 96% white.

Measures

MCI—For the purposes of this demonstration, we defined an endpoint of possible MCI 

based on normative criteria for impairment on at least one of three cognitive measures. A 

one SD deficit relative to normative data is one suggested cutoff used to establish 

impairment in MCI (Cook et al., 2013). The first test was the Mattis Dementia Rating Scale 

(MDRS) Initiation-Perseveration (IP) scale (Mattis, 1988). The MDRS-IP test involves 

spontaneous verbal generation and accurate phoneme repetition, as well as production of 
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prescribed graphomotor and motor patterns. The MDRS-IP primarily tests executive 

function, requiring also verbal, visual, and motor function. A score of 32 corresponds to one 

standard deviation (SD) below the Mayo Older Americans Normative Studies normative 

data (a score of ranging from the 11–18th percentile depending on exact age; see Lucas et 

al., 1998). Second, the Trail Making Tests (TMT) parts A and B (Reitan, 1958) were 

administered. The TMT is one of the most well-known and widely used neuropsychological 

tests, requiring planning and sequencing, set-shifting, and visuomotor skills. While the raw 

A and B scores have been commonly used, they are heavily influenced by processing speed 

declines seen in normal aging and more recent studies suggest that the ratio of TMT B / 

TMT A better reflects actual impairment (e.g., see Lamberty & Axelrod, 2006 for a review). 

The B/A score provides within-person standardization for visuomotor processing speed, and 

is also less sensitive to education (Christidi, Karaizou, Triantafyllou, Anagnostouli, Zalonis, 

2015; Lamberty & Axelrod). An initial B/A score of 3 or higher was suggested to indicate 

impaired executive function, although other normative data suggest that this may be low 

(Drane, Yuspeh, Huthwaite, & Kingler, 2002). Scores of 4 or higher, however, correspond to 

about one SD or more above the mean in age 60+ normative samples (Drane et al., 2002, 

Hester, Kinsella, Ong, & McGregor, 2005), as well as the average score in several impaired 

samples (see Lamberty & Axelrod), and were thus used here to define impairment. Finally, 

the Mini-Mental status Exam (MMSE) is a well-known assessment of general cognitive 

function, with scores of 24 used to indicate impairment (Folstein, Folstein, & Hugh, 1975). 

MCI and dementia classifications are often qualified as possible, probable, etc. In this case, 

impairment in one or more of these measures is best regarded as possible MCI.

Demographic factors—Age, gender, and education were assessed at baseline via self-

report. Demographic factors were coded so that zero represented a meaningful (and non-

sample dependent) reference value, in order to interpret risk scores on the relative hazard 

metric of the Cox model (see below): Age was centered at 75, education at 14 years (an 

associate’s degree), and men were coded zero and women one. Demographic factors were 

included in all risk scores, given their importance in cognitive outcomes and availability for 

use in any health setting.

Medical Risk Factors—A core set of health risk factors such as hypertension and tobacco 

use form the backbone of recent consensus reviews on dementia risk (Deckers et al., 2015), 

as well as appearing in most risk scores used in dementia prediction such as the Framingham 

Stroke Profile (Unverzagt et al, 2011), Framingham Vascular Risk Score and Cardiovascular 

Risk Factors, Aging, and Dementia Score (Kaffashian et al., 2013). In the current study, the 

American Heart Association’s Cerebrovascular Risk Factor (CVRF) scale was completed 

based on medical records, including diabetes, hypertension prescription, cardiovascular 

disease (CVD), current and former smoking, atrial fibrillation, left ventricular hypertrophy 

systolic blood pressure, total cholesterol, and HDL cholesterol. The latter three are assigned 

ordinal categories of increasing severity (see Supplement, Table S1), with zero representing 

a healthy reference category; others were coded as present (one) vs. absent (zero). In 

addition to CVRFs, organ system ratings from the Cumulative Illness Rating Scale (CIRS; 

Linn, Linn, & Gurell, 1968) were also considered in developing the biomedical risk score. 

The CIRS quantifies an individual’s overall state of health based on an analysis of organ 
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systems, rated by a physician (JML) based on chart reviews as free from disease (0), mildly 

(1), moderately (2), severely (3), or extremely severely (4) burdened. CIRS ratings correlate 

with blind pathologist autopsy report (Conwell, Forbes, Cox, & Caine, 1993). We 

considered ratings from the respiratory, eyes/ears/nose/throat (EENT), upper gastro-

intestinal (UGI), hepatic, endocrine, muskuloskeletal, and neurologic divisions of the CIRS. 

Cardiac, respiratory, and renal (closely connected to diabetes) scores were not used due to 

overlap with specific CVRFs.

Personality—The Big Five composite domains of Neuroticism, Extraversion, 

Conscientiousness, and Openness appear to be potent predictors of dementia and MCI, the 

specific facet traits within these domains appear to be differentially related to the outcome 

(Manning, Chan, & Stephens, in press; Terracciano et al., 2013; Williams, Suchy & 

Kraybill, 2013). Even more recently, arguments for the assessment of differential item 

relations within specific facet scales have emerged (Mottus, 2016). On the NEO-FFI, at least 

1 item is present from 26 of the 30 NEO-PI R facet scales (NEO-PI R facets with no 

representation included N5 (Impulsiveness), A5 (Modesty), C1 (Competence), and C6 

(Deliberation)). This collection of 26 items or item parcels was used in order to afford the 

specificity of single items (or small item clusters), while retaining a theoretical mapping to 

the constructs of the NEO-PI R facets. Supplement Table S2 lists the items / parcels 

corresponding to NEO-PI R facets. All items and item parcels were centered on the five-

point Likert scale midpoint so that zero reflected an average Likert response of Neutral, with 

one point reflecting the shift between two Likert categories (e.g., agree to strongly agree) for 

the item or average item in a parcel.

Analyses

Cox Proportional Hazard models were employed, as the outcome was event occurrence at a 

particular follow-up point in the presence of censoring. All predictors were screened prior to 

analysis for proportional hazard violations and non-linearity in the log hazard. Separate risk 

scores were developed from prediction models based on a) only demographic factors and b) 

demographic factors and candidate health risk factors, and c) model b + personality items / 

parcels. A risk score of this type indicates the log of the individual’s hazard, or probability 

of experiencing the event, relative to a theoretical person scoring zero on all risk factors in 

the model4. An initial demographic-only risk score was estimated based strictly on the three 

demographic factors, with weights shrunk by ridge-penalized Cox models (see Hastie et al. 

2009, or Chapman et al., 2016 for discussions of penalization-based shrinkage estimation to 

prevent overfitting). A second demographic/medical risk score was then developed by an 

elastic-net penalized Cox model, which selected the most predictive health factors, 

controlling for demographics. Weights for these health factors and demographics were then 

estimated with ridge-penalized cox models. A similar approach was taken for a third risk 

score adding personality items/parcels (selection with elastic net models, controlling for 

demographics and previously selected health risks, followed by weight estimation based on 

ridge-penalized Cox models). Tuning parameters governing selection and shrinkage were 

4Taking the exponent of the linear predictor provides the relative hazard, with values above 1 indicated increased probability, relative 
to a theoretically risk-free person, and values below 1 indicating reduced probability of the outcome.
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determined here by jack-knife cross-validation, as those resulting in the least shrinkage 

needed to achieve cross-validation error within one standard error of the minimum 

achievable cross-validation error5. Risk scores were then estimated from each of these three 

models using leave-one out cross-validation to afford some approximation to out-of-sample 

prediction. The degree of shrinkage was evaluated later by calibration slopes in ML-

estimated Cox models; values over one would indicate some degree of protection against 

overfitting.

Performance was assessed by two overall measures, Nagelkerke’s pseudo R2 and the Brier 

score (Steyerberg et al., 2010). The former was based on Royston’s (2006) adaptation for 

survival models (here abbreviated R2
NR). Discrimination was assessed by the AUC, 

supplemented with Royston’s (2006) discrimination R2, or R2
D, which reflects explained 

variation in survival outcomes. All of these measures range from zero to one, with one 

reflecting better model performance. Calibration was assessed by calibration in the large (the 

deviation between model predicted average incidence and actual incidence of the outcome), 

and the Hosmer-Lemeshow (HL) statistic (over- or under- prediction of the outcome across a 

given range of risk scores). Higher values of each measure indicate worse calibration. 

Finally, we examined the number of cases and non-cases that would be correctly and 

incorrectly identified per 100 patients in a hypothetical screening program interested in 

maximizing sensitivity in general medical settings, so that possible cases could be referred to 

specialty clinics for more detailed assessment with imaging. That strategy in general 

(regardless of the prediction model used) assumes that false positives are less costly than 

actually missing real cases who will go on to develop MCI. However, any auxiliary data that 

could reduce the number of false positives at a given high sensitivity might be viewed as 

clinically valuable, since MRI scans and other imaging tests are often very expensive.

Results

Of 386 persons free from impairment at baseline contributing a total of 786 person-years of 

follow-up time, 78 individuals met possible MCI criteria over the follow-up, a 4-year 

incidence rate of roughly 20%. Table 1 shows the estimated weights for the demographics 

only model (model A). These values indicate that each year of age above 75 increases the 

log relative hazard of possible MCI by .057, each year of education above an associate’s 

degree decreases it by around this much, and being female decreases it substantially more. 

The next column, model B, shows weights for health factors identified as the most potent 

risks by elastic net models. Most cerebrovascular factors and burden in some organ systems 

increase risk. A few decrease risk, possibly because they proxy helpful treatment or 

increased medical attention in a primary care population (for instance, high cholesterol may 

indicate treatment with statins). The final column shows the weights for model C, which 

augments model B components with the NEO-FFI items and parcels evidencing the 

strongest predictive power in elastic net selection. Associations are in the same direction as 

those reported in NEO-PI-R wide facet- analyses for full-blown dementia in a community 

5Conventionally, the most shrinkage producing cross-validation error within one SE of the minimum is used (see Hastie et al., 2009). 
This informal rule was developed for classification and regression trees, and can induce extreme underfitting of the data. Our approach 
is anti-conservative compared to this, seeking to achieve modest protection against overfitting in an initial model-development 
application, without severe underfitting.
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sample (Terracciano et al., 2013), as well as Openness (Williams et al., 2013) and 

Neuroticism (Manning et al., 2017) facet analysis for lesser degrees of cognitive impairment 

in other populations. The positive emotions item parcel is an exception, with an average shift 

of one Likert scale point corresponding to a log hazard increase of .30. Calibration slopes for 

the risks scores from cross-validated predictions were all over 1, and indicated that the 

weights in Table 2 were on average were 25% to 35% smaller than their MLEs. Thus, the 

selection and shrinkage procedures reduced MLE overfitting to some degree.

Figure 1, panels A-C show the distribution of the risk scores from these models. The values 

of the scores represent log relative hazards of possible MCI over the four-year follow-up, 

compared to a hypothetical person with zero on all factors (i.e., for model C, a 75 year old 

man with an associate’s degree, perfect health, and responding “neutral” to all personality 

items). Graphically, model A shows potential bimodality. Adding health risk factors affords 

more variability compared to demographics only, with the addition of personality items and 

parcels increasing variability and normalizing score distributions still more. Separation 

between case and control distributions also appears to increase across the three models, with 

Cohen’s D for differences in risk scores being .5 (95% Confidence Interval [CI]) = .29, .80) 

for model A, .68 (95% CI = .40, .90) for model B, and .84 (.60, 1.08) for model C.

Table 2 shows the performance measures for each set of risk scores. In terms of overall 

performance, the R2
NR is improved by adding medical factors to demographics, but not 

significantly so (p = .12, bootstrapping standard errors for this and all other differences). The 

scaled Brier score is actually worse when biomedical factors are added (p = .001). Adding 

the NEO items / parcels in model C results in significant improvement in overall 

performance, compared to the demographics and medical risk model (p = .009 for R2
NR and 

p < .001 for the scaled Brier).

A similar pattern is apparent for the primary measure of discrimination, the AUC: non-

significant improvements are achieved by the medical risk factors over the demographics 

only risk score, with larger and significant increments when NEO items are added (p < .

001). Figure 2 shows the AUC for the three risk scores. Model C, incorporating NEO items, 

shows gains in sensitivity particularly over false positive rates ranging from about .2 to .5. A 

sensitivity of .75 is achieved at a false positive rate of around .35 for the full model, with 

false positive rates of .45 to.5 needed to reach a .75 sensitivity in models A and B. The 

supplementary R2
D mirrors this pattern, showing a trend toward improved discrimination for 

model B over A (p = .09) and larger, significant improvements when personality 

measurement is added in C vs. B (p = .001). Royston (2009) reports that values of .4 on this 

measure are typical in prognostic models in oncology settings.

For calibration in the large, Model A scores show an average probability of about .10 higher 

than the actual outcome prevalence of .2 over the 4 year follow-up period. Model B over 

predicts the outcome rate significantly more (p < .001), being .15 too high on average of 

suggesting about 15% too many cases. Evidence of this can be seen in the score distributions 

of Figure 1, which are shifted slightly to the right on the x-axis. Adding NEO items results 

in an average probability very near the actual outcome incidence, as indicated by a deviation 

of near zero in Table 2 (a substantial improvement over Model B, p < .001). A similar 
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picture appears in the HL statistic, reflecting misfit. Adding medical factors alone to 

demographics renders misfit worse (a higher HL value), owing to disproportionate over 

prediction in the highest two quintiles of risk scores. Model C, however, shows a greatly 

reduced and non-significant HL value (p = .742), suggesting that NEO-items have mitigated 

the systematic over prediction.

Under a clinical scenario in which the cut-point for deciding potential cases is set at a 

sensitivity of .90, and assuming the observed 4-year incidence of possible MCI of .20, the 

biomedical risk score, score B, predicts about 75 cases per 100 patients. Of the 20 actual 

cases per 100 patients at this incident rate, 18 are captured by a cut-point with .90 sensitivity. 

That same cut-point produces a high number of false positives as expected, in this case 

declaring 57 out of 80 normal patients as cases. The addition of NEO items in Model C, 

maintaining a cut-point with .90 sensitivity to capture the same 18 out of 20 true cases, 

results in a 53 false positives, with 4 error shifted to correct negative predictions. This is a 

single scenario based on one cut-point strategy and an assumed base rate empirically 

determined from the sample. Other scenarios lead to differing shifts across categories, and 

can generally be determined using the false positive rate for a given sensitivity in Figure 1 

and an assumed base rate. Still other approaches weight false negatives and false positives 

differently, depending on the relative costs of mistakes (Steyerberg, 2010).

Summary and Discussion of Illustration

In this section, we presented a possible implementation of personality data in medical risk 

prediction models. We examined whether NEO-FFI items could improve upon a standard 

health and demographic risk score, for 4-year incidence of possible MCI among older 

persons in primary care clinics. Results indicated modest improvements overall, which could 

be broken down into both discrimination improvement and more substantial calibration 

improvement. To take one possible implementation scenario, these risk scores would be 

computed in a general medical setting as a first line prediction erring on the side of 

sensitivity, and referring those testing positive to specialty clinics that could collect more 

costly and detailed data, such as MRI scans. Using a cut-point in all risk scores that would 

capture 90% of the true cases, with the 20% incidence rate in this cohort, NEO items move 

false positives from 57 / 80 (71%) patients who will not develop possible MCI to 53 / 80 

(66%), or reduce about four unneeded MRIs in 57, a significant potential cost savings. In 

general, dementia risk prediction models tend to have AUCs in the .7’s in the samples in 

which they are developed (and without protection from overfitting; Stephan et al., 2010), a 

figure approximated by the personality-integrated model. From the standpoint of the criteria 

we outlined, this application of personality data to prediction models would appear modestly 

successful as a starting point. However, standards for clinical use are far higher (for instance, 

AUCs in the .9s), so the results would represent only an initial foundation in need of 

considerably more development. In future development of personality-augmented predictive 

models in this specific example area, several other lines of work are also needed. These 

include whether personality change prior to cognitive decline is a predictor itself or 

compromises the predictive value of self-reports, whether informant reports of personality 

might be helpful, and whether item (vs. facet) level data represent better levels of analysis.
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In the following section, we take a contrarian perspective, playing devil’s advocate in an 

effort to highlight the resistance that actual implementations such as this may face. Our goal 

is not undue negativity, but merely to point out the real-world challenges that exist in 

attempting to implement an idea from one area (personality psychology) in a different 

context (health care).

Challenges Moving Forward

Stakeholder Attitudes

Healthcare Provider Attitudes Toward Risk Models—Physicians do and will likely 

continue to have varying attitudes toward the utility of risk prediction models. Thus, before 

even considering whether or when personality may be of use, a fundamental question is to 

what extent existing models are used, and in what cases, and how they inform clinical 

decision-making. Answers will likely vary drastically across different contexts. Some classic 

risk models, such as the Framingham family of cardiovascular outcome models have a 

substantial evidence base and thus appear to inform clinical practice at least somewhat. In 

other areas, the accuracy of risk models lag far behind standards for clinical practice. These 

are precisely the areas where the most work is needed. The prospects for personality 

augmentation are thus probably best at the nexus of outcomes for which personality has 

demonstrated predictive power, and for which existing models are not already strong.

Biomedical Biases—It is quite possible that even if a personality item index works as 

well or better than a polygenic risk score, personality measurement may be deemed 

unacceptable by some physicians. Some within health care have been trained within a 

heavily biomedical tradition. Even in those trained or practicing in a biopsychosocial model, 

implicit biomedical bias is powerful and pervasive. Such bias can range from beliefs that 

personality cannot be studied scientifically, to assumptions that it cannot be measured with 

any degree of accuracy, to incredulity that it could hold any relevance for a given health 

outcome. Appeals to the biological bases of personality occasionally remediate these biases, 

although they can also create the impressions that a trait measurement is merely a stand-in 

for some genotype. Other physicians are quite open-minded or even in some cases actively 

aware of personality research in their field. There have also been secular shifts in attitudes 

toward non-biological determinants of health. Recent changes to medical school curricula 

now duly acknowledge behavioral and social determinants of health (American Association 

of Medical Colleges, 2011), which will likely result in greater receptivity among younger 

physicians and in coming years. The key point is not that biomedical bias is all-pervasive 

and insurmountable, but rather that it may at times be encountered.

Medical administrators and management represent another set of key stakeholders. These 

individuals are business people focused on maximizing the profit of a practice or health care 

system. If it could be demonstrated that any auxiliary risk prediction measurements 

ultimately improve outcomes and reduces costs, such persons might be supportive of 

implementation. In the example above, if the procedure is to utilize a highly sensitive cut-

point and refer those testing “positive” for expensive imaging procedures, reducing 4 

unneeded MRIs in 100 might be deemed noteworthy cost-savings. On the other hand, if 
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providers and or patients bridled so much at the idea that business was lost and bottoms lines 

damaged, the chances of any real implementation are greatly reduced. It would be helpful, 

moving forward, to examine issues around provider and administrator attitudes toward any 

efforts to concretely implement personality measurement within real-world health care 

settings.

Patient Attitudes—Patients themselves may or may not accept the administration of 

personality inventory when they arrive for a medical appointment. Acceptance is likely to 

depend in part on the presence of a face-valid rationale. For instance, an individual arriving 

for a mental health appointment would likely view personality assessment as a plausible or 

justified request for psychological information. A self-regulation questionnaire presented at 

a weight loss clinic might similarly appear logical to patients. A patient arriving for a 

cardiology consult asked to fill out a hostility questionnaire might cooperate, given an 

explanation that this trait has been linked to cardiovascular outcomes. But a patient arriving 

at a primary care appointment for an annual check-up, confronted with a 300-item trait 

questionnaire without a clear rationale provided, might perceive the request as irrelevant, 

invasive, or both. Willingness to provide personality data might even be linked to trait levels 

themselves. A disagreeable person might oppose the request, while one prone to anxiety 

might worry about how the information will be perceived or whether it will be kept 

confidential. If any traits affecting measurement refusal are also important in predicting the 

outcome, the resulting prediction models will be compromised. On the other hand, some--if 

not many--individuals are heavily influenced by the trappings of medical authority, and 

would likely comply with requests for personality data. Yet another concern is whether valid 

information would be provided on a questionnaire viewed in the same category as health 

history, and thus subject to evaluation by unknown authority figures such as doctors or 

insurance companies. Patient response and acceptability therefore requires careful 

consideration in efforts to integrate personality into health improvement. One line of work 

that may provide some guidance involves the evolution of anxiety and depression screening 

in primary care. Questionnaires measuring those constructs progressed from unwelcome 

assessments of stigmatized constructs to relatively common pieces of health information in 

many health systems, thanks to a focus on implementation research.

Logistics—Even if providers, management, and patients are amenable to completing 

personality measures in a given health care clinic, there is still the matter of how the data 

should be collected, stored, and used. Paper-and-pencil depression and anxiety screens that 

staff can hand-score quickly and enter into EMRs have been in use for some time. The 

Patient-Reported Outcomes Measurement Information System (PROMIS; Cella et al., 2010) 

and similar initiatives of the NIH have been developed with computerized data-collection 

and linkage to EMRs in mind. From a technological standpoint, it would not be difficult in 

principle to administer a personality measure within a waiting room or remotely via an 

online patient portal.

The question of what personality items or scales to collect is an entirely different matter. The 

Grid Enabled Measures initiative of the NIH (https://www.gem-beta.org/Public/Home.aspx) 

is an effort to delineate the most useful psychosocial measures for healthcare settings. A 
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specialty clinic might be interested only in a focal set of items related to their outcomes of 

interest. In the above example, for instance, administering only the 13 items showing 

incremental validity over biomedical risk factors would be expedient, but would prevent the 

calculation of descriptive scores on the Big Five domains themselves. Administering an 

entire instrument such as the NEO FFI has the appeal of being able to provide a general 

description of the patient, in addition to yielding a larger item pool from which to construct 

predictive models for several different health outcomes.

The downside to this, of course, is that instrument length becomes a key factor in the 

feasibility of real-world implementation. Even nine-item depression measures like the 

Patient Health Questionnaire (PHQ-9) have been deemed “long” and reduced to 2 item 

screeners (Kroenke, Spitzer, & Williams, 2003). The PROMIS platform offers computerized 

adaptive testing that can provide valid scores for an entire scale based on response patterns 

to key subsets of items. Most psychologists, however, know that there is “no free lunch” in 

psychometrics, particularly when the success of personality-augmented predictive model 

program likely depends on a wider item pool. Standards in the length of time considered 

acceptable for measurement vary between psychometrics and biometrics. A set of over 

20,000 SNPs is far quicker to collect than responses to 20,000 personality items. On the 

other hand, the single blood draw required for genetic data or other biomarkers requires the 

patient to go to a clinic, wait in line, and receive a venipuncture. The total time and effort of 

completing the NEO-FFI’s 60 self-report items may be less. Another consideration is that a 

personality inventory collected for health prediction purposes would typically be collected 

once when a new patient enters a health system, while biomarkers, PROMIS scales and 

depression and anxiety screens are administered repeatedly because they are considered 

outcomes that need to be tracked. That is not to argue that personality does not change, but 

merely to draw a distinction between the likely real-world frequency with which traits would 

be measured and that of other measurements common within health care. Whatever one’s 

perspective on these issues, the logistics of data collection require careful consideration if 

personality measurement in healthcare is ever to reach implementation.

Third Party Abuses—We assume that information collected will be stored in EMRs, 

which can simply apply formulas for risk-scores and provide them as needed to health care 

personnel. While EMRs offer great potential, larger concerns revolve around misuse of the 

personality data by private and public parties who access health data. Despite the advent of 

the Health Information Portability and Accountability Act (HIPAA) of 1996, these entities 

can easily obtain sensitive health data. Insurers—be they government agencies like Medicaid 

and Medicare, or private companies--receive data directly from health care visits and make 

benefits contingent on them. This opens up the possibility of insurance discrimination, 

particularly among private insurers, against patients evidencing high risk on personality 

measures. Concerns over insurance discrimination already exist for some high-profile 

genetic tests. For example, those who pursue testing for the APOE polymorphism implicated 

in late-onset Alzheimer’s Disease are advised to purchase long-term care or other insurance 

policies prior to testing (Rahman et al., 2012). It is not difficult to envision “pre-existing 

conditions” clauses being stretched to low Conscientiousness scores to limit or deny 
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coverage. Private insurers will not care whether academics or ethicists would consider such a 

decision justified if it is a profitable one.

Another concern arises out of extending mental health stigma to those with socially 

undesirable trait profiles. While personality trait data is fundamentally different than a 

mental health diagnosis, a number of people capable of accessing health records do not have 

the training to make such a distinction. The line between a formal “personality disorder” and 

a personality trait is important to the readership of this journal, but to regrettably few others. 

The outcome of life goals and events ranging from adoption, to child custody cases, to civil 

proceedings, to firearm purchases, to employment and disability programs can hinge on 

psychological data in medical records. Attorneys, policy makers, and bureaucrats are often 

third party consumers of medical records data, but ill-suited for rendering important 

judgments about their contents. Efforts to integrate personality into healthcare will therefore 

need to consider how to prevent unintended consequences from the inclusion of such data in 

EMRs.

Conclusion

In this paper, we have laid out the rationale for an alternative use of personality information 

to improve health. Rather than attempt to modify health-damaging traits directly, it is also 

possible to leverage the long-touted predictive power of personality to improve the formal 

health-prediction models that are proliferating within medicine. We then illustrated how this 

could be done, in an example predicting the emergence of possible MCI over 4 years within 

asymptomatic older primary care patients. A risk model based on demographic and 

biomedical factors was improved by 13 personality items or item-clusters. We then 

concluded by discussing the challenges that lay ahead in efforts to include personality 

measurement within health care. These involve patient, physician, and health system 

leadership reactions to the notion of assessing personality in healthcare contexts. To the 

extent that demonstrable improvements in the prediction of important outcomes can be 

wedded to low costs, various stakeholders may be more or less amenable to the idea. The 

potential for misuse and abuse of personality measurement by outside entities also exists, 

just as it does for high-risk genotypes or other sensitive health data maintained in EMRs. 

Moving forward, each of these issues requires considerable and systematic attention if the 

literature on personality and health is to realize practical impact in everyday health care 

settings.
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Figure 1. 
Distribution of risk scores from three prediction models of Mild Cognitive Impairment. Log 

relative hazard metric. Model A = demographics only, Model B = Model A + health factors, 

Model C = Model B + personality items/ facets.
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Figure 2. 
Area under curve for three prediction models of Mild Cognitive Impairment. Model A = 

demographics only, Model B = Model A + health factors, Model C = Model B + personality 

items/ facets.
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Table 1

Weights for Risk Models of Four-Year MCI Incidence

A B C

Demographics

Age 0.057 0.055 0.05

Female −0.256 −0.244 −0.16

Education −0.050 −0.053 −0.03

Health Factors

Diabetes 0.146 0.11

Current Smoker 0.548 0.48

Cardiovascular Disease 0.173 0.25

Atrial Fibrillation 0.342 0.36

Left Ventricular Hypertrophy 0.144 0.24

Former Smoker 0.053 0.07

Total Cholesterol −0.103 −0.11

HDL Cholesterol −0.013 −0.01

CIRS Respiratory 0.032 0.00

CIRS Urinogenial 0.156 0.10

CIRS Gastrointestinal 0.244 0.21

CIRS Neurologic −0.063 −0.06

CIRS Endocrine −0.080 −0.10

Personality Item/Parcels

N1 Anxiety 0.18

N2 Angry Hostility 0.06

E1 Warmth −0.15

E6 Positive Emotion 0.30

O2 Aesthetics −0.22

O3 Emotions −0.13

A6 Tendermindedness −0.05

C3 Dutifulness −0.23

C5 Self-discipline −0.18

Notes: N = 358, log hazard rates from regularized Cox models. HDL = High Density Lipoprotein, CIRS = Cumulative Illness Rating Scale. Items 
or parcels from NEO-Five Factor Inventory corresponding to facets from NEO-Personality Inventory, Revised; N = Neuroticism, E = Extraversion, 
O = Openness, A = Agreeableness, and C = Conscientiousness. Model A = demographics only, Model B = Model A + health factors, Model C = 
Model B + personality items/ facets.
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Table 2

Performance of Three Risk Models of Four-Year MCI Incidence

A B C

Overall Fit

Nagelkerke / Royston R2 .164 (.053, .297) .247 (.113, .384) .374 (.226, .502)

Scaled Brier Score .278 (.239, .313) .226 (.164, .280) .375 (.326, .417)

Discrimination

AUC .647 (.576, .718) .680 (612,.748) .741 (.677, .805)

Discrimination R2 .164 (.053, .297) .247 (.113, .384) .374 (.226, .502)

Calibration

Calibration in the Large .101 (.090, .112) .155 (.040, .171) .002 (−.013, .01)

Hosmer-Lemeshow Statistic 18.90 (p = .0003) 41.89 (p < .0001) 3.11 (p = .742)

Notes: Measures of model performance with 95% Confidence Intervals in parentheses for Table 2 models. AUC = Area Under the Curve. Model A 
= demographics only, Model B = Model A + health factors, Model C = Model B + personality items/ facets.
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