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Abstract

Purpose of Review—Increased arterial stiffness, an abnormal structural and functional change 

in the vascular wall, is a precursor for hypertension, coronary heart disease, stroke, and associated 

cardiovascular disease (CVD). The aim of this paper is to review the etiology of arterial stiffening 

and potential therapeutic approaches to modulate arterial fibrosis and stiffness.

Recent findings—The Framingham Heart Study demonstrated that arterial stiffness is an 

independent predictor of CVD and related morbidity and mortality. Dysfunction of endothelial 

cells, vascular smooth muscle cells, extracellular matrix, and other functional elements of the 

vessel wall contribute to underlying pathophysiology of increased arterial stiffness. An activated 

renin-angiotensin-aldosterone system, oxidative stress, abnormal peri-vascular adipose tissue, 

inflammation, and increased sympathetic nervous system activity are associated with the 

development and progression of arterial fibrosis, stiffening, and associated CVD.

Summary—In this review, we will discuss the structural and function changes and mechanisms 

of the vessel wall in arterial stiffness and provide potential therapeutic strategies.
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Introduction

Physiological arterial elasticity is an important vascular property for maintaining normal 

blood pressure. In individuals with increased arterial stiffness due to obesity, diabetes, aging, 

and atherosclerosis, this elasticity is compromised. With increased pulse wave velocity 

(PWV) reflected waves return faster and merge with the forward wave in systole, resulting in 

augmentation of systolic blood pressure and pulse pressure [1]. The excessive arterial 

stiffening ascertained by an increased PWV is a consequence of structural and functional 

changes in the vascular wall [1], and diverse variables such as genetic determinants, obesity, 

insulin resistance, diabetes, and aging are important risk factors in the pathogenesis of 

excessive arterial stiffening [1]. Therefore, due to the importance of arterial stiffness in CVD 

and its association with significant risk factors, in 2015 the American Heart association 

(AHA) Council for High Blood Pressure Research recommended carotid–femoral PWV 

(cfPWC) as the appropriate method to measure arterial stiffness [2•]. Here, we will focus on 

recent studies investigating the pathophysiological processes and mechanisms promoting 

arterial stiffening as well as the contemporary understanding of potential therapeutic 

strategies.

Arterial stiffness and hypertension

Excessive arterial stiffness is associated with damage to target organs such as the arteries, 

heart, and kidney [3]. The Framingham Heart Study found that increased arterial stiffening 

is an independent predictor of CVD in the general population, the elderly, and hypertensive 

patients [4]. A 1 m/s increase in PWV increased the occurrence of CVD events by 14%, 

CVD mortality by 15%, and all-cause mortality by 15% [5]. Importantly, there is an 

important interaction bewteen arterial stiffness and hypertension. In this regard, arterial 

stiffness has been associated with brachial blood pressure in pregnant women [6]. There are 

increases in forearm vascular resistance in young men with first-degree relatives suffering 

from essential hypertension [7]. Hypertension is associated with arterial dysfunction 

characterized by changes in cytoskeletal organization, cell calcification, inflammation, 

collagens and arterial fibrosis [8]. These pathophysiological abnormalities induce arterial 

remodeling and reduce nitric oxide (NO) mediated vasodilator capacity [7]. Increased 

arterial stiffness may exist prior to the development of hypertension. Recent research has 

shown that diet induced obesity is associated with increased aortic stiffness prior to 

development of hypertension [9, 10].

Dysregulation of vascular cells and extracellular matrix in arterial stiffness

The arterial endothelial cells (ECs) provide a barrier between the elements of blood and the 

vessel wall and play an important role in maintaining arterial homeostasis and normal 

physiological function partly through actions of EC derived vasodilatory or vasoconstrictory 

substances including NO, prostacyclin, and endothelin 1. Recent research has underscored 

the role of activated EC Na channels (EnNaC) in promoting a stiff endothelium and 

associated impaired endothelial NO synthase (eNOS) activation in aortic and mesenteric 

arteries [11•, 12]. RAAS-mediated activation of EnNaC induces serum and glucocorticoid-

regulated kinase 1 (SGK1) activation which impairs ENaC ubiquitination/degradation, 
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leading to its accumulation in the plasma membrane, and a net increase in Na+ channel 

activity [11•]. Increased EnNaC expression and membrane abundance in ECs leads to 

enhanced Na+ influx, polymerization of G-actin to F-actin, reduced EC eNOS activity and 

NO production, and the development of arterial stiffening [13•, 14•] (Fig. 1). Consistent with 

this notion, our recent research in obese mice indicated that inhibition of ENaC with very 

low doses of amiloride, an EnNaC inhibitor, decreases oxidative stress, endothelium 

permeability, inflammation, arterial fibrosis, aortic stiffness, as well as cardiac diastolic 

dysfunction without affecting blood pressure or Na+ retention [11•, 12].

Vascular smooth muscle cells (VSMCs), which are the major cellular component of the 

arterial wall are also involved in the genesis of arterial fibrosis and stiffness. Vascular flow 

mediated NO diffuses into neighboring VSMCs and activates guanylyl cyclase/cyclic 

guanosine monophosphate signal pathways, resulting in vascular relaxation (Fig. 1). This 

process is compromised in conditions of obesity, aging and insulin resistance. For example, 

VSMCs in Zucker obese insulin resistant rats manifest greater concentrations of reactive 

oxygen species (ROS), impaired activation of the NO/cyclic guanosine monophosphate/

protein kinase G pathway, and increased cell stiffness [15]. VSMCs are capable of osteoblast 

trans-differentiation by promoting alkaline phosphatase activity, the formation of 

mineralized nodules, and osteocalcin expression in VSMCs [16]. Thus, VSMC calcification 

is another important contributor in the development of excessive arterial stiffness.

Changes in extracellular matrix (ECM), composition and arterial structure play an important 

role in reduction of arterial compliance and increased arterial stiffness. Transforming growth 

factor beta 1 (TGF-β1)/Smad signaling can stimulate synthesis of ECM proteins including 

collagens and fibronectin [17]. Increased TGF-β1 increases synthesis and accumulation of 

ECM proteins partly by associated increases in matrix metalloproteinases (MMPs) [18], 

which degrade elastin. [18]. Excessive arterial stiffening is a complex property that is also 

mediated by abnormal ECM and matrix-cell interactions [19]. For instance, VSMC 

dysfunction changes the adhesive interactions with the ECM during active relaxation and 

contraction. Moreover, modulation of the elasticity of the cortical cytoskeleton occurs in 

parallel with changes in VSMC adhesion properties [20, 21]. Further, modulation of the 

elasticity of the cortical cytoskeleton occurs in parallel with changes in VSMC adhesion 

properties [20, 21]. Angiotensin II (Ang II) induces VSMCs to synthesize collagen, 

fibronectin, ECM proteins, as well as activation of the ECM-modifying MMPs [16]. These 

data underscore the importance of interactions between cellular components and the ECM in 

the pathogenesis of arterial stiffening.

Pathological mechanisms of excessive arterial stiffness

Activated RAAS

Enhanced systemic and tissue RAAS activation induce arterial stiffening. Cell-specific 

RAAS signaling in ECs, VSMCs and macrophages are involved [22]. Evaluation of the role 

of vascular RAAS signaling has been facilitated recently by the availability of vascular cell-

specific knock out (KO) rodent models [23-25]. Indeed, both Ang II and aldosterone directly 

induce abnormal arterial stiffening by activation of nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase (NOX) and inhibition of NO bioavailability [26]. Importantly, 
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regulation of RAAS in the vasculature is increased by consumption of western diets, which 

contribute to arterial fibrosis and increased arterial stiffness [1]. Recent research indicates 

that aldosterone and diet-induced obesity increase EnNaC expression and activation, leading 

to reduced NO production that is associated with increases in EC cortical stiffness [11•, 12]. 

There is also an interaction between specific interactive components of the RAAS. For 

instance, improvement of Ang II-induced arterial stiffness by mineralocorticoid receptor 

(MR) antagonist and suppression of aldosterone- induced arterial dysfunctional by inhibition 

of Ang II receptor 1 (AT-1R) are consistent with the notion of arterial cross-talk between the 

Ang II and aldosterone signaling [27, 28]. Recent research suggests that the RAAS is 

involved in regulating parathyroid hormone, which increases the concentration of calcium in 

the blood and promotes arterial stiffening [29]. Ang II is likely an acute modulator of 

parathyroid hormone and directly induces release of parathyroid hormone via the AT-1R, 

whereas aldosterone is thought to be a chronic modulator of parathyroid hormone via 

indirect and direct mechanisms [29].

Oxidative stress

Elevated oxidative stress promotes arterial stiffening and CVD. For example, in 386 elderly 

patients with essential hypertension superoxide dismutase and antioxidant status are 

significantly reduced with an increased branchial-ankle artery PWV [30]. Chronic 

supplementation with a mitochondrial antioxidant (MitoQ) represses oxidative stress and 

improves vascular function in healthy aging individuals [31]. NOX is one of the important 

enzymes and plays a key role in the generation of ROS in arterial tissue. For instance, 

aldosterone induces expression of p47phox through both MR-dependent and AT-1R-

dependent mechanisms, and expression of the p22phox subunit and the NOX2 isoform is 

MR-dependent in vascular tissues [32]. The signaling pathways of the mitochondrial 

monoamine oxidase, cyclooxygenase 2, and p66Shc signaling are also involved in Ang II-

induced activation of NOX induction and oxidative stress in arterial tissues [33]. Some other 

sources of ROS include peroxisomal β-oxidation of fatty acids, arachidonic acid 

metabolism, xanthine oxidase, microsomal P-450 enzymes, and pro-oxidant heme molecule 

that have been recognized to contribute to arterial stiffening and hypertension [18]. 

Therefore, increased ROS and oxidative stress impair deoxyribonucleic acid, lipid, protein, 

as well as mitochondrial function. Recent data further support that increased ROS decreases 

bioavailable NO and thus impairs arterial relaxation [34]. Recent research has also shown 

that enhanced EC specific MR activation promotes oxidative stress, vascular fibrosis, 

increased arterial stiffness, and impairment of flow-mediated mesenteric artery relaxation 

[25].

Peri-vascular adipose tissue and inflammation

Peri-vascular adipose tissue (PVAT) is a special local deposit of adipose tissue and has 

functions in mechanical protection and controlling vessel tone [35]. Data from the 

Framingham Offspring and Third Generation cohorts found that elevated PVAT volume is 

associated with increased thoracic and abdominal aortic dimensions and abnormal increased 

arterial stiffness even after adjusting for age, sex, and body mass index [36]. Indeed, adipose 

tissue is an endocrine organ and releases various biological activities including adipokines 

[37]. PVAT produces some protective substances such as adiponectin, which helps maintain 
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normal physiological arterial function [38, 39]. However, in individuals with obesity and 

insulin resistance there is increased release of pro-inflammatory adipokines including 

interleukin-6, interleukin-8, tumor necrosis factor alpha, as well as toll-like receptor-4 [18]. 

Activated nuclear factor kappa B (NF-κB) is regarded as an important mechanism on 

increased arterial stiffening. While p50 and p65 subunits of NF-κB are maintained in the 

cytoplasm, phosphorylation of NF-κB promotes translocation of the heterodimer to the 

nucleus and release of pro-inflammatory cytokines [18]. Macrophages are an important 

driver of vascular inflammation and associated increased arterial stiffness. Typically, 

macrophage polarization is traditionally dichotomized into M1 phenotypes (F4/80+ CD11c+) 

and M2 phenotypes (F4/80+ CD11c− CD301 + Arg1+ CD206+) [18]. Proinflammatory M1 

phenotypes are associated with an increase of vascular inflammatory responses, while 

macrophage M2 phenotypes are involved in anti-inflammatory responses and tissue repair 

[40]. Interestingly, cell specific macrophage MR KO display an increase in M2 polarization 

and CV protective effects [41]. Our recent data show that diet-induced obesity causes an 

increase in macrophage infiltration, M1 phenotype polarization and associated increased 

aortic stiffness. Importantly, cell specific ECMR KO prevents these pathophysiological 

changes [25].

Sympathetic activity

The role of increased sympathetic nervous system activity in arterial stiffness and 

hypertension is increasingly recognized. Elevated sympathetic outflow is associated with 

increases in circulating catecholamines, urinary norepinephrine, muscle sympathetic nerve 

activity in obese non-hypertensive individuals [42]. Autonomic ganglionic blockade 

decreases aortic augmented pressure and PWV in women [43]. Sympathetic activation can 

be mediated by reflex mechanisms including arterial baroreceptor impairment, oxidative 

stress, inflammation, psychological stress, as well as obstructive sleep apnea [18]. There is 

an interaction between activated RAAS and sympathetic nervous system activation. For 

example, elevated Ang II induces permeability of the blood-brain barrier and sympathetic 

activation that increases renin secretion and Na+ retention [44]. Aldosterone infusion 

increases muscle sympathetic activation and impairs baroreflex responses [45], whereas 

inhibition of MR with spironolactone prevents chlorthalidone-induced sympathetic 

activation in individuals with hypertension [46].

Assessment methods of arterial stiffness

There are three noninvasive measurements for measuring arterial stiffness including 

assessment of pulse transit time, analysis of wave contour in the arterial pulse, and, direct 

detection of arterial geometry and pressure. Aortic PWV is widely regarded as the gold 

standard in detecting arterial stiffness. cfPWV is recommended as an appropriate method to 

measure arterial stiffness as established in 2015 by the American Heart association (AHA) 

Council for High Blood Pressure [2]. New technologies such as atomic force microscopy 

also provide a powerful investigative tool in detecting cell’s and tissue’s stiffness at the 

nano-scale as shown in our recent studies [11, 25]. The European Society of Hypertension 

(ESH)/European Society of Cardiology (ESC) further suggest that a threshold value (12 m/s) 

in PVW is recommended as an indicator of increased arterial stiffness [47].
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Therapeutic strategies in excessive arterial stiffness

Life style modifications comprising exercise, consumption of low sodium and better dietary 

habits are effective methods for the prevention and management of increased arterial 

stiffness and hypertension but patient compliance is one of the concerns in long term 

management [48, 49]. Although several studies have shown suppression of arterial stiffness 

with antihypertensive medication, the magnitude of lowering arterial stiffness is variable 

among antihypertensive drugs [50-52]. In this regard, inhibition of RAAS using angiotensin 

converting enzyme (ACE), AT-1R and MR antagonists appears to be superior compared to 

other antihypertensive medications [53-56]. Targeting the MR is emerging as a useful 

approach in combination therapy that reduces arterial stiffness [57-59]. This is also 

supported by studies showing reversal of the increased arterial stiffness in chronic kidney 

disease patients after undergoing renal transplantation [60] and in subjects with aldosterone 

producing adenomas after adrenectomy [61]. These beneficial effects on arterial stiffness are 

independent of blood pressure lowering effects [52]. These findings suggest that reversibility 

of arterial stiffness by blood pressure independent effects may also be attributable to local 

remodeling effects of these drugs on large artery stiffening [62]. A combination of ACE 

inhibitors and AT-1R antagonists caused significant decrease in PWV in chronic kidney 

patients [63]. Calcium channel blockers, diuretics and beta blockers are less effective in 

reducing arterial stiffness compared to ACE inhibitors and AT-1R antagonists perhaps 

because of less impact on fibrosis and vascular remodeling [64-68]. In this regard, targeting 

EnNaC is an attractive strategy. Indeed, very low doses of amiloride, an ENaC inhibitor can 

substantially decrease dietary obesity related vascular and cardiac fibrosis [11•, 12]. In 

addition, deletion of ECMR decreases arterial stiffness in an amiloride sensitive manner 

[25]. Preliminary studies also support a role for Ang II in development of arterial stiffness in 

mice through stimulation of EnNaC. We have also observed that xanthine oxidase inhibition 

reduces diet-induced increased aortic fibrosis and stiffness [69]. The clinical relevance of 

these finding is supported by studies demonstrating greater effectiveness of a combination of 

low dose amiloride and spironolactone but not by the use of individual drugs [70]. One of 

the limiting factors of amiloride is an increase in potassium levels. The development of 

amiloride analogues [71, 72] with effectiveness at lower concentration with more specificity 

towards ENaC in preventing arterial stiffness is being pursued.

Conclusions

Increased arterial stiffness is an important precursor and risk factor for hypertension and 

CVD. Dysregulation of structure and function of ECs, VSMCs and ECM contribute to the 

pathogenesis of arterial stiffening and fibrosis. Activation of RAAS and sympathetic nervous 

activity, increases in oxidative stress, abnormal PVAT, tissue inflammation, and sympathetic 

outflow are all associated with the development and progression of arterial fibrosis, 

stiffening and CVD. A better understanding of the underlying mechanisms increasing 

arterial stiffness should provide new insights for future therapeutic strategies for CVD.
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Fig 1. 
Schematic diagram illustrating EC and VSMC dysfunction in arterial stiffness. Risk factors 

such as RAAS activation induce activation of SGK1 that increases EnNaC expression and 

membrane abundance in ECs, leading to enhanced Na+ influx, polymerization of G-actin to 

F-actin, reduced eNOS activity, NO production, and the development of arterial stiffness.
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