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Several methodological challenges affect the study of typical brain development based on resting 

state blood oxygenation level dependent (BOLD) functional MRI (fMRI). One such challenge is 

mitigating artifacts such as those from head motion, known to be more substantial in younger 

subjects than older subjects. Other challenges include controlling for potential age-dependence in 

cerebrospinal fluid (CSF) volume affecting anatomical-functional coregistration; in vascular 

density affecting BOLD contrast-to-noise; and in CSF pulsation creating time series artifacts. 

Historically, these confounds have been approached through incorporating artifact-specific 

temporal and/or spatial filtering into preprocessing pipelines. However, such paths often come 

with new confounds or limitations. In this study we take the approach of a bottom-up revision of 

fMRI methodology based on acquisition of multi-echo fMRI and comprehensive utilization of the 

information in the TE-domain to enhance several aspects of fMRI analysis in the context of a 

developmental study. We show in a cohort of 25 healthy subjects, aged 9 to 43 years, that the 

analysis of multi-echo fMRI data eliminates a number of arbitrary processing steps such as 

bandpass filtering and spatial smoothing, while enabling procedures such as T2* mapping, BOLD 

contrast normalization and signal dropout recovery, precise anatomical-functional coregistration 

based on T2* measurements, automatic denoising through removing subject motion, scanner-related 

signal drifts and physiology, as well as statistical inference for seed-based connectivity. These 

enhancements are of both theoretical significance and practical benefit in the study of typical brain 

development.
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Introduction

The study of functional brain connectivity using blood oxygenated level dependent (BOLD) 

resting state fMRI is highly promising (Biswal et al. 1995). This approach enables the in 
vivo and non-invasive MRI assessment of functional brain organization in high detail with 

the subject at rest, i.e. not performing experimental task during the scan. For its relative 

safety and potential experimental practicality, resting state fMRI is highly attractive for the 

study of functional brain organization. Notably, the current standards of resting state 

methodology have been developed based on the study of healthy adult brain function and 

structure. However, recent applications of resting state fMRI methodology to the study of 

pediatric brain organization in the context of typical development has highlighted significant 

limitations in this approach (Power et al. 2011). These limitations pertain to robustness of 

analysis against artifacts such as those from head motion, which is known to be more 

significant in younger subjects. However, many other confounds have long been known 

regarding the developmental study of functional brain organization. One such confound is 

the varying effectiveness in co-registration of functional MRI and anatomical MRI images 

due to changes in brain volume with age. In particular, the poor contrast difference between 

cerebrospinal fluid and gray matter signals in functional images and concurrently greater 

cerebrospinal fluid in older subjects (Murphy et al. 1992) leads to variable performance of 

anatomical-functional coregistration with age. In other words, cerebrospinal fluid signals of 
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functional images may overlap with gray matter in anatomical images more in older than 

younger subjects. Another important variable in the analysis of functional BOLD data across 

ages is vascular density. Younger and older brains differ in gray matter vascular density, 

which yields varying fMRI contrast (Vigneau-Roy et al. 2014), and ultimately affects 

experimental sensitivity to BOLD fluctuations across the age range in such a way that results 

may be biased to a particular age-range.

Historically, two general approaches have been taken to handle these various confounds. The 

first and most common route has been to buttress image processing pipelines with various 

procedures to attenuate various confounds, as they are identified. For example, to mitigate 

the deleterious effects of subject head motion artifacts, the six rigid-body parameters of head 

motion (three translation, three rotation) are summarily regressed out of functional time 

series (Hajnal et al. 1995). However, it is recognized that this procedure is insufficient for a 

resting state study, so the first derivatives of motion parameter time courses are also included 

as nuisance regressors (Satterthwaite et al. 2013). Further studies have indicated, 

unfortunately, that even this procedure is suboptimal in removing the effects of subject 

motion. More recently, it has been proposed that functional time points most likely affected 

by uncontrolled motion artifacts should be censored (Power et al. 2011). This strategy not 

only suffers the question of what defines high motion at a time point relative to subject 

motion during the rest of a scan, but this approach is more generally questioned for its 

necessity and its purported effects (Carp 2013). While these mass-univariate approaches to 

fMRI denoising are widely applied, multivariate decomposition using independent 

components analysis (ICA) followed by noise component rejection is gaining prevalence as 

a standard preprocessing step. For example, an algorithmic component rejection procedure, 

FIX, extends the application of ICA in fMRI, which was originally used to detect networks 

at subject and group-level, with a classification framework trained with prior information on 

noise component properties (Salimi-Khorshidi et al. 2014). Given that such classifiers can be 

adequately trained to remove noise, ICA-based denoising is a promising application. 

Another route has been to change the experimental approach starting at the MRI pulse 

sequence, for example going from gradient-echo (single TE, echo planar imaging; EPI) 

image time series followed by extensive statistical analysis, to a more sophisticated 

acquisition such as arterial spin labeling (ASL) and quantitative analysis of signals to 

estimate regional blood perfusion, flow, and oxygenation (BOLD) (Wong et al. 1997). ASL 

is also more robust to certain imaging artifact such as signal drifts due to gradient heating. 

However, ASL suffers lower temporal resolution, limited coverage, a more involved 

acquisition procedure and potentially lower signal-to-noise ratio. It also suffers sensitivity to 

motion artifacts, and does not offer a direct route to solving anatomical-functional 

coregistration issues that affect studies of typical development. In summary, both the 

analysis route and the acquisition route may be taken to enhance the robustness and efficacy 

of the study of functional brain organization, but each approach does suffer its own 

shortcomings.

Recently our group has proposed a novel approach to increase the robustness of resting state 

fMRI study by combining an advanced MRI pulse sequence, multi-echo fMRI, with a 

procedure involving independent component analysis (ICA) (Hyvrinen and Oja 2000; 

Beckmann and Smith 2004) that altogether produces a pipeline of highly effective signal 
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denoising as well as robust estimation of connectivity (Poser et al. 2006; Kundu et al. 2013). 

A multi-echo fMRI sequence is attained through a relatively small modification to standard 

gradient-echo EPI fMRI, where instead of acquiring signal images at just a single TE, 

images are acquired at multiple TEs (Speck and Hennig 1998). The TE-domain is critical 

since it enables functional BOLD signal changes to be validated through the signature NMR 

T2* decay of signal amplitude with TE, called TE-dependence (Bandettini et al. 1994). Of 

equal importance, artifactual signal changes such as from subject motion and scanner drift 

do not show this decay, indicating TE-independence, and can identified therein (Glover et al. 

1996). Acquiring each slice at multiple TEs in the course of acquiring slice stacks (i.e. fMRI 

volumes) produces an fMRI volume for each TE, at each time point. When assembled into 

volumetric time series, each voxel is assigned a time series for each TE. NMR signal decay 

analysis can then be conducted over the set of multi-echo time series at a given voxel 

(Gowland and Bowtell 2007). The TE-dependence of time-frequency components of time 

series can also be analyzed (Peltier and Noll 2002). Importantly, the analysis of TE-

dependence and TE-independence can be conducted for the spatiotemporal components 

from statistical decomposition of ME datasets (Kundu et al. 2012). ICA performs the 

function of isolating signal sources in the form of statistical components, be they functional 

networks or artifacts, and TE-dependence analysis classifies these components into BOLD 

and non-BOLD categories. This approach is called multi-echo independent components 

analysis (ME-ICA). Removing non-BOLD components from the data is a powerful 

denoising procedure, leading to up to 4-fold gains in temporal signal-to-noise ratio (tSNR) 

of time series throughout the brain by comprehensive removal of motion artifacts, drifts, and 

some cardiopulmonary physiology -without requiring explicit modeling of these nuisance 

time series (Kundu et al. 2013). Moreover, multi-echo fMRI enables other analysis 

procedures that are generally useful for fMRI study. These include the capability to map the 

T2* tissue parameter based solely on the ME functional data, and synthesize the T2* weighted 

average of multi-TE data to interpolate an estimated signal with optimal functional contrast-

to-noise ratio TE ≈ T2*  (Posse et al. 1999). Importantly, this T2* weighted optimal 

combination compensates for signal dropout in orbitofrontal and inferior temporal cortex, by 

producing synthetic time series that have weighting towards earlier TEs (because these 

regions have shorter T2*). By the same principle, optimal combination makes contrast-to-

noise ratio similar across voxels throughout the brain. Through the procedure of weighted 

averaging, optimal combination also produces time series with substantially increased 

temporal signal-to-noise ratio compared to (unaccelerated) single-echo fMRI scans of 

comparable resolution of equivalent preprocessing (Bhavsar et al. 2014). These multi-echo 

fMRI methods have been in development for over a decade, and the more recently developed 

ME-ICA technique is being applied to a growing number of studies that have been 

traditionally considered to be challenging, such as ultra-high field animal fMRI (Kundu et 

al. 2014) and ultra-slow neuronally-related BOLD changes via removing non-BOLD signal 

drifts (Evans et al. 2015).

In this paper, we introduce the application of multi-echo methods as implemented in ME-

ICA and its associated tools towards the study of resting state functional connectivity in the 

context of typical development. A number of ME-ICA capabilities are demonstrated for a 

Kundu et al. Page 4

Brain Imaging Behav. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cohort of 25 subjects representing the developmental age range from adolescence to 

adulthood, using 5 representative subjects to demonstrate the steps of multi-echo processing. 

Firstly, baseline T2* mapping and subsequent optimal combination is shown to compensate 

for signal dropout in orbitofrontal and inferior temporal regions comparably across the age 

range. Then, we introduce a novel anatomical-functional coregistration approach that 

exploits the T2* differences between gray matter and CSF to drive coregistration that 

distinguishes those compartments with equivalent performance across datasets representing 

varying subject age. Next, we demonstrate the application of ME-ICA time series denoising 

to remove a wide variety of artifacts from subject motion, cardiopulmonary pulsatility, 

scanner drift, and other poorly characterized effects in a single step. Lastly, we demonstrate 

an emerging approach to seed-based connectivity analysis that is uniquely enabled by ME-

ICA, called ME independent coefficients regression (ME-ICR). Connectivity estimates are 

based on inter-voxel correlation of BOLD ICA coefficients, which are approximately 

independently distributed, so that interregional connectivity estimates are less affected by 

global correlations (e.g. associated with vascular physiology or global BOLD processes), 

without explicit modeling and removal of the global signal. Using this estimator, we 

demonstrate consistent and robust detection of the default mode network over the age range 

using a seed-based functional connectivity approach.

Methodology

Overview

Here we describe methods of processing fMRI data from multi-echo EPI acquisition that 

mitigate artifacts that can covary with subject age. The fundamentals of these methods have 

been previously developed and validated in data from healthy young adults (Kundu et al. 

2012; Kundu et al. 2013), and here we extend this work to a developmental sample (9–43y). 

We describe the use of multi-echo data in four methodological domains that are key to the 

study of functional brain development: BOLD contrast homogenization (via T2* weighted 

combination), anatomical-functional coregistration (T2* weighted coregistration), signal time 

series denoising to remove motion artifacts and other nuisance signals, and finally seed-

based connectivity analysis. The latter domain, connectivity, exemplifies the net 

improvement in resting state analysis after that leverage the benefits of multi-echo EPI 

acquisition.

Subjects

Data from 25 subjects are presented here (mean age 22.4y; standard deviation 11.1y, 13 

females). Representative processing outcomes are shown for 5 subjects (ages 9.3, 16.5, 23.8, 

31.5, 43.2; 2 females).

Data acquisition

Data were acquired on a GE MR750 3T scanner using a 32-channel GE receive-only head 

coil (Waukesha, WI). Each imaging session first involved acquiring a whole-brain 

anatomical MPRAGE scan with 1mm isotropic resolution. The resting state fMRI scan was 

10 min long and involved acquisition with multi-echo time course EPI using the following 
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parameters: 240mm field of view (FOV), 64×64 matrix size yielding 3.75mm isotropic 

resolution, in-plane SENSE acceleration factor 2, flip angle (FA)=77 degrees, repetition time 

(TR)=2.0s, and echo times (TEs)=12.8,28,43ms. The multi-echo fMRI sequence utilized 

vendor EPI excitation and a modified EPI readout, and utilized online reconstruction. Each 

TR resulted in the acquisition of 3 volumes, one for each TE. These volumes are rearranged 

to yield one volumetric time series dataset for each TE.

Computing a T2* parameter map

A map of estimated T2* parameters can be generated voxel-wise from the time course means 

of different TEs. MRI signal from the BOLD contrast is generated by a the BOLD contrast 

is generated by a T2* mediated signal mechanism, whereby the amplitude of acquired signal 

varies with TE according to a simple monoexponential decay:

S(TE) = S0exp −R2*TE (1)

where S0 is the initial signal intensity reflecting the voxel’s spin-density and R2* is the 

susceptibility-weighted transverse relaxation rate. The parameters S0 and R2* can be 

estimated by the log-linear transformation of Eq. 1. T2* is computed as 1/R2*. Representative 

T2* range for different tissue classes were computed via a preliminary segmentation analysis 

(see Appendix). Gray and white matter were estimated to have T2* values of 25 − 60ms, CSF 

CSF T2* > ≈ 100ms or greater than double the median of gray/white matter T2*, and other 

tissues (i.e. meninges, skull, muscle, etc.) T2* ≈ < 25ms. Notably, T2* estimates from log-

linear fitting assumes monoexponential decay and does not account for through-plane 

dephasing, which has a sinc dependence on TE. This leads to underestimation of T2*, 

particularly in areas of high susceptibility artifact (Yip et al. 2006).

T2* weighted optimal combination

Different voxels across the brain have distinct T2* as a function of their vascular density, 

partial volume of tissue (notably, varying as a function of gray matter-to-CSF ratio), as well 

as local magnetic field homogeneity. Optimal BOLD MRI signal contrast for a given voxel 

is achieved when the TE acquired is equal to the voxel’s T2* TE ≈ T2* . Given a conventional 

single-echo fMRI acquisition, T2* is inevitably higher than TE for some voxels, and is lower 

than TE in other voxels. In other words, signals across the brain and across subjects are not 

optimally comparable in amplitude or contrast-to-noise ratio because different combinations 

of TE and T2* represent different signal contrasts. When acquiring multi-echo fMRI, 

however, at each voxel the time series of the different TEs can be averaged with weights to 

produce a new voxel time series with signal contrast better approximating TE=T2*. In 

essence, multi-echo fMRI can be utilized to implement a match-filtered or “high-dynamic 
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range” fMRI acquisition. Each voxel’s multi-TE time series are averaged with normalized 

weights corresponding to the respective BOLD contrast contributions at the different TEs:

ω T2, υ*
n

=
TEn ⋅ exp −TEn/T2, υ*

∑n
N TEn ⋅ exp −TEn/T2, υ*

(2)

See Posse et al. (1999) and Poser et al. (2006) for more detailed review of multi-echo 

combination schemes.

T2* weighted anatomical-functional coregistration

Anatomical-functional image coregistration is relevant to the study of younger individuals in 

developmental cohorts due to high likelihood of subject movement (especially for patients), 

intra-session repositioning, or multi-day scanning. Coregistration performance may vary in 

an age-dependent way. Because CSF volume increases with age (Salat et al. 2004), and CSF 

and gray matter signals are more difficult to distinguish in functional images than in 

anatomical images, there is increased likelihood of misregistration between CSF in 

functional images and gray matter in anatomical images of older subjects. Such 

misregistration can occur, for example, if rigid-body rotation aligns high-intensity CSF in 

the arachnoid space (i.e. near gray matter) with a gray matter region in anatomical image 

due to the overall computational optimality of this solution. Standard affine coregistrations 

may be even more susceptible to these misregistration errors due to more degrees of freedom 

than required for optimization. Tuning imaging parameters (flip angle, TE, TR) to obtain 

better gray-CSF contrast in EPI images can trade off signal stability (measured as temporal 

signal-to-noise ratio), which is problematic for studying the unconstrained fluctuations in 

brain activity associated with the resting state. EPI images acquired with multi-element head 

coils (the current standard) can also have intensity non-uniformity or “shading” artifacts due 

to greater proximity of some brain areas to some head coil elements, resulting in local 

brightness. The confounds accumulate and result in poor differentiation of gray matter from 

CSF across the brain and across the age range, potentially resulting in spurious overlay of 

brain activation patterns on anatomical CSF compartments or vice-versa.

An opportunity for more robust anatomical-functional coregistration is found after acquiring 

multi-echo fMRI data, through the use of T2* parameter maps to drive coregistration. Unlike 

EPI images, which have arbitrary signal magnitude, T2* is an NMR tissue property, a signal 

decay (i.e. relaxation) time in the units of milliseconds. T2* is quantitative, and varies less as 

a function of acquisition parameters than raw signal-intensity maps. T2* maps are not affected 

by shading artifacts, as that effect is captured in the S0 parameter in the fit in Eq. 1, and is 

independent of T2*. T2* also differentiates tissues. T2* is significantly longer for CSF than 

brain tissue (gray and white matter), while the T2* of miscellaneous tissues (large darning 

veins, skull, muscle, skin) is shorter than brain T2* (except for T2* in dropout areas). For a 
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given field strength, ranges of T2* for the respective anatomical compartments are broadly 

comparable. Here we estimate generally that

T2CSF* > 2 × median T2image* (3)

By creating a new thresholded T2* image that assigns 0 to voxels that satisfy Eq. 3, an image 

is created with step-function intensity difference between gray matter and CSF more like in 

a [magnetization-prepared] anatomical image than in a conventional EPI image, where CSF 

and gray matter are more similar in signal intensity. Reference T2* values of brain tissues 

(gray and white matter, CSF, other) as imaged at the present EPI resolution were computed 

as average T2* within the respective anatomical compartments from FreeSurfer segmentation 

of MPRAGE scans, downsampled to EPI resolution, are presented in the Appendix A.3. 

Alignment of the CSF-thresholded T2* image to an anatomical image was expected to yield 

better gray matter coregistration across anatomical and functional images. In this process we 

also attempted to enhance the difference in T2* between gray and white matter, which are 

typically are more similar to each other in value than are other compartments. The 

thresholded T2* map is segmented into 3 tissue classes (AFNI 3dSeg), and the posterior 

probability map of the class corresponding to highest T2* is used as a gray matter weight 

image to drive coregistration. Finally, we used AFNI 3dAllineate to compute coregistration 

via an optimization approach, utilizing its “local Pearson correlation” (LPC) cost function. 

LPC uses small patches of voxels from all over the image to drive coregistration, and is thus 

suited to accurate alignment of local image features (a gray matter cortical fold, for 

example) across anatomical and functional images (Saad et al. 2009).

Multi-echo independent component analysis

The central step of the ME-ICA pipeline was decomposition of optimally combined ME data 

into approximately spatially independent components, then denoising by removing non-

BOLD components. This procedure is conducted in 4 steps, detailed in Kundu et al. (2012), 

(2013). The steps are briefly summarized here and presented in more detail in the Appendix. 

The first step is dimensionality estimation and reduction, through multi-echo principal 

components analysis (ME-PCA) applied to the optimally combined dataset. ME-PCA 

involved principal components analysis (PCA) of the optimally combined time series 

dataset, followed by reduction to dimensions with high eigenvalue, component-level BOLD 

weighting (κ), or non-BOLD weighting (ρ); both of the latter statistics are pseudo-F 

statistics. Essentially, this approach uses a deterministic approach to select all signals 

resembling correlated phenomena or MR signal for ICA decomposition while excluding 

thermal noise. ME-PCA resulted in dimensionally reduced datasets (of known 

dimensionality). FastICA in the spatial dimension (i.e. spatial ICA) was then executed to 

find components. κ and ρ were computed for each ICA component, and along with related 

assessments of component-level TE-dependence (see 5.3), components were classified as 
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BOLD or non-BOLD. Lastly, to denoise datasets, non-BOLD components were projected 

out of the optimally combined time series datasets.

Conventional resting state fMRI analysis

Conventional functional-anatomical coregistration was implemented as intensity-weighted 

LPC co-registration between the masked anatomical and masked optimally combined 

functional images (AFNI align_epi_anat.py). Conventional denoising was applied to data 

after optimal combination of echoes and involved signal “de-spiking,” regressing out 

“nuisance” models for motion and bandpass filtering to a range of 0.01 − 0.1Hz. Regression 

models for motion artifact included the rigid-body parameters of translation and rotation in 3 

spatial dimensions for the alignment of all fMRI volumes to a reference volume (the first 

volume after T1 equilibration). The first derivatives of motion parameters were also included 

to better model instantaneous signal changes due to subject motion. Functional connectivity 

was estimated as Pearson correlation R of denoised time series.

Group analysis

Conventional time series correlation and ME independent coefficients regression (ME-ICR) 

were compared in terms of group-level connectivity. To better accommodate differences in 

brain morphology across subjects of different ages when performing this group-level 

analysis, resting state datasets were mapped into so-called “gray-ordinates” space. This 

involved: subject-level ME-ICA denoising in native space; mapping each subject’s cortical 

time series into cortical voxels of a template brain in MNI space via a normalized cortical 

mesh; mapping subcortical time series into MNI space via a nonlinear warp (AFNI 
3dQwarp); and finally merging cortical and subcortical time series datasets (AFNI 3dcalc). 

Cortical mesh mapping involved computing a FreeSurfer cortical mesh for each subject’s 

brain and the MNI template brain (FreeSurfer recon-all), mapping all cortical meshes to a 

standard icosahedron (linear depth 60; SUMA MapIcosahedron), then copying time series in 

voxels of native-space subject brains into their mapped voxel locations in the template brain 

(using linear interpolation). The resulting normalized subject datasets retained cortex, 

subcortex, brainstem and cerebellum signal time series, excluding white matter.

Connectivity was assessed in terms of mean correlation (Z) maps thresholded according to 

1-sample T-test. The 1-sample T-test estimated significant difference between the population 

mean Z and 0, voxelwise, separately for conventional and ME-ICR connectivity Z-values. A 

threshold of p(T)<0.001 (uncorrected) was applied.

Results

T2* Mapping

The present analysis of multi-echo fMRI data begins with the computation of S0 and T2*

parameter maps for each resting state run, based on log-linear fitting of multi-echo time 

course means to the canonical mono-exponential decay in Eq. 1. This mapping is 

demonstrated in Fig. 1. In Fig. 1a, three axial EPI signal images of the different acquired 

TEs - all corresponding to one multi-echo volume - are shown. Each of these EPI signal 
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images is equivalent to a conventional fMRI signal image of the corresponding TE. Images 

of early TEs have less inter-tissue contrast than images of later TEs, and all images have 

shading artifacts at the front and back of the head. After fitting S0 and T2* parameters voxel 

wise, two respective parameter maps are generated, as shown in Fig. 1b. The S0 parameter 

map captures not only anterior and posterior shading artifacts, but also the signal intensity 

bias of outer tissues (including cutaneous) versus inner tissues (due to coil element 

proximity). The T2* parameter map, on the other hand, highlights: CSF as having longest T2*; 

much of gray matter as having intermediate T2* and white matter having slightly lower T2*; 

and finally cutaneous tissues as having lowest T2* of the four. The differences in T2* generally 

indicate differences in tissue homogeneity, such that CSF has the longest T2* by being most 

homogeneous, while cutaneous tissues (skin and subcutaneous fat) have the least. 

Altogether, compared to the other images, the T2* image is superior for the purpose of 

binning different tissue types into different image intensity ranges.

T2* maps computed from datasets representing the age range are shown in Fig. 1c. T2* maps 

vary across individuals. T2* values are generally homogeneous across gray matter, and 

importantly indicate high T2* values in CSF compartments such as the fourth ventricle. T2*

maps representing ages 16 and 23 (the latter is emphasized in A and B) show some spatial 

heterogeneity of gray matter T2* values, with the latter subject showing relatively lower T2* in 

posterior regions. This spatially varying T2* is likely due to ineffective shim, and leads to 

anterior-posterior BOLD contrast-to-noise variation if the corrections enabled by multi-echo 

fMRI (see below) are not applied. As BOLD contrast is best imaged at TE=T2*, these results 

indicate that the fixed TE measurements of single-echo fMRI may create an uncontrolled 

source of variability in the contrast-to-noise of functional time series within and across 

datasets. While this variability is less of an issue in task-activation mapping given large 

enough activation magnitude (i.e. effect size), this variability can become more problematic 

for whole-brain, model-free resting state studies that assume homogenous BOLD signal 

quality across the brain.

T2* weighted anatomical-functional Coregistration

The high levels of tissue-type information in T2* maps suggested its use as a basis for 

functional-anatomical coregistration. This mode of use is particularly convenient since the 

T2* map is derived from the ME functional data, and thus it is exactly representative of the 

functional time series, and independent of any separately acquired and/or resampled T2*

maps. Figure 2 demonstrates the application and outcome of T2* weighted coregistration. 

Figure 2a demonstrates the procedure of transforming a brain-masked T2* map to a CSF-

thresholded T2* map and finally to a gray matter weight mask. By thresholding CSF based on 

the criteria in Eq. 3, the fourth ventricle (and other ventricles) signal is nulled. By computing 

a three-class segmentation of that image, a gray matter posterior probability map 
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corresponding to the image segment with highest intensity is obtained, which is used as the 

T2* weight mask. This weight mask captures major gray matter features of the cortex, as well 

as the brain stem.

Figure 2b underlays the functional weight mask with anatomical images of the same subject 

after anatomical-to-functional coregistrations of three modes: T2*-weighted LPC, native 

coregistration (only removing scan-specific obliquities), and standard intensity-weighted 

LPC. For demonstration, the weight mask is thresholded to show values above the second 

mean absolution deviation (MAD), which emphasizes the most salient features. The native 

alignment of functional and anatomical images before coregistration (middle image) is 

already fair in this dataset, but some mismatch is apparent in the hippocampus area (black 

arrow). Standard intensity-weighted affine coregistration over-scales the brain for this 

dataset, pushing the hippocampus in the anatomical image into a region without gray matter 

weight, in effect localizing the T2* intensity corresponding to the hippocampus into a CSF 

region in the anatomical image. In contrast, T2*-weighted affine coregistration leads to a 

more accurate alignment where hippocampus in the anatomical is matched to a region with 

gray matter weight in the functional, while the rest of brain including middle cingulate is 

correctly scaled and shows good coregistration.

Axial, sagittal, and coronal views of the final functional-to-anatomical affine coregistration 

compare intensity-weighted vs. T2*-weighted functional-anatomical coregistrations for the 

dataset of Fig. 2b. Coronal views of coregistration for the other subjects are also shown. 

Comparing boundaries of functional images (colored overlays) to boundaries of anatomical 

images (grayscale under-lays), shows variability in alignment and coverage for the intensity-

based coregistration weighting. Anatomicals are over-stretched in the dorsal-ventral 

direction for 4 out of 5 subjects, and even in a diagonal direction in the case of the 23-year 

old subject dataset. In contrast, the T2*-weighted coregistrations align anatomical and 

functional edges closely, consistently across subjects.

T2* weighted optimal combination

The variability of T2* indicates potentially uneven functional contrast-to-noise ratio within 

and between fMRI datasets when analysis uses images based solely on a fixed TE, as it is 

the case for conventional resting state fMRI studies. However, T2* weighted averaging of 

multi-echo time series combines, for each voxel, time series of different echoes to obtain 

synthetic time series with a contrast that better approximates TE ≈ T2* for every voxel. One 

important consequence of this procedure is compensation of signal ordinarily lost to the 

“signal dropout” of susceptibility artifact, demonstrated in Fig. 3. In Fig. 3a, a slice stack of 

an EPI volume representing a standard TE for 3T (TE≈ 30ms) is compared to the 

corresponding slice stack from the same dataset after T2* weighted combination of TE time 

series. While dorsal slices are broadly comparable, ventral slices that suffer the usual 

orbitofrontal and temporal signal dropout in the standard fixed TE volume have signal 

compensation in the respective regions of the weighted image based on the early TE data. 
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Signal dropout occurs because of short T2* in regions with greater magnetic inhomogeneity, 

due to magnetic field perturbation around regions of tissue-air and tissue-bone interface. 

Optimally combined images compensate for signal dropout through weighted averaging of 

echoes, with the weight for each echo (2) determining its fractional contribution to a linear 

combination that estimates the signal expected from acquisition at TE ≈ T2*. In other words, 

optimal combination interpolates signal amplitudes across a set of fixed TEs in order to 

estimate the signal amplitude for TE ≈ T2*. Notably, over-weighting of the earliest TE data is 

possible due to through-plane sinc dependence. Signal compensation in ventral brain areas is 

demonstrated for 5 representative subjects in Fig. 3b. Across subjects, the earliest TE has the 

least signal dropout, the middle (i.e. conventional) TE has the typically observed level, and 

the latest TE expectedly the highest level of signal dropout. In comparing the image from the 

optimal combination to the middle TE image, it is apparent that the signal dropout in 

orbitofrontal and inferior temporal regions is substantially reduced after optimal 

combination, for all subjects.

Data denoising with multi-echo independent components analysis

For further gains in signal fidelity for resting state fMRI analysis atop those from optimal 

combination of ME data, ME-ICA is applied to differentiate functional BOLD from non-

BOLD fluctuations. The ME-ICA pipeline decomposed and denoised datasets across the age 

range, stably and with fast convergence, with the ICA step explaining 95–98 % of total data 

variance as automatically determined by ME-PCA. This performance is consistent with that 

previously reported, as total explained variance is much higher than the roughly 75 % of 

explained variance by non-ME dimensionality reduction and ICA decomposition routines 

(Kundu et al. 2013). In part because ME-ICA is based on spatial ICA, its denoising 

functionality is not dependent on time course filtering parameters. This led to the ability of 

ME-ICA in to automatically remove : non-BOLD signal drifts due to gradient heating; 

signal spikes related to motion or scanner artifact; bulk motion artifact; and physiological 

noise with flow components (which is S0 weighted).

ME-ICA signal time course denoising is demonstrated in Fig. 4 for the 23-year old subject’s 

dataset that featured larger ventricles compared to the other datasets, which indicates a 

possibility of greater physiological artifact from CSF pulsation and flow. From inspecting 

the “raw” time series after alignment and optimal combination only (black time course), 

scanner drift is apparent in regions such as the insula, motor areas, and cerebellum. 

Pulsatility is most prominent for the anterior insula and ventromedial pre-frontal cortex. 

Step-like signal modulations due to subject head motion are also apparent in cerebellum and 

dorsomedial prefrontal areas. After splitting “raw” signals using ME-ICA into functional 

BOLD (green) and artifactual signal (red) subspaces, each raw time course can be explained 

as the sum of a functional BOLD and an artifact time course. A variety of artifacts are 

represented in non-BOLD time courses, and in fact effects such as drifts and pulsatility are 

seen more clearly than when intermixed with TE-dependent signal, such as in the “raw” 

optimally combined data. On the other hand, BOLD signal time courses are broadly 

comparable to each other, even when “raw” time courses were dominated by artifacts, such 

as time courses of the dorsomedial prefrontal cortex. Importantly, ME-ICA denoising has 
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good specificity. In regions such as the motor cortex or superior parietal lobule, “raw” time 

courses are essentially only corrected for drifts of amplitudes around 0.5 % signal change, 

which is smaller than the amplitudes in the corresponding BOLD time course. Higher 

amplitude step modulations, such as in the cerebellum, are also corrected without wholesale 

change to the spectral properties of the time course, as would be done by an operation such 

as high pass filtering. In other regions such as in the anterior insula or ventromedial 

prefrontal cortex, pulsatility artifacts have amplitudes that are substantially higher (1.0 %) 

than the corresponding BOLD time courses. Altogether, resting BOLD time courses 

extracted by ME-ICA from optimally combined data have amplitudes on the order of 0.5 %, 

except in the motor cortex and superior parietal lobule, which show amplitudes closer to 

1.0 %. Non-BOLD artifactual time courses vary in amplitude more substantially, exceeding 

1.0 % signal changes in many voxels.

Figure 5 further demonstrates further the performance of ME-ICA in differentiating 

functional BOLD signal time courses from artifacts due to motion, drift, and physiology 

based on voxelwise maps of time course standard deviation. In Fig. 5a, BOLD signal time 

series standard deviation maps from before and after regression of motion parameters 

(middle column) show little difference. This indicates that the respective nuisance effects 

explain little variance in the BOLD time series. Notably, essentially all gray matter is 

associated with high values of BOLD signal standard deviation, meaning that the ME-ICA 

decomposition comprehensively identified BOLD fluctuations throughout the brain. Figure 

5b shows standard deviation maps of MEICA artifact time series before and after regressing 

out motion parameters and drifts that, in contrast, shows a substantial difference. This 

indicates that the non-BOLD time series identified by ME-ICA effectively captured motion 

artifacts based on component-level TE-dependence and TE-independence analysis. 

Furthermore, ME-ICA captured nuisance artifacts that motion and drift regression could not. 

The non-BOLD datasets captured physiological artifact in regions of high vascular density 

and draining veins (Vigneau-Roy et al. 2014), which is not attenuated by drift correction or 

bandpass filtering, and is consistent with spatial patterns of end-tidal CO2 fluctuation (Birn 

et al. 2006). Figure 5c shows example artifact components that may be ambiguous in origin 

to non-expert human reviewers or inadequately trained classifiers, but are clearly identified 

as non-BOLD effects by ME-ICA in having disproportionately high ρ values relative to κ 
values and percentage of data variance explained. Two components associated with signal 

drifts and low frequency modulations show striated spatial patterns of high and low intensity 

over gray matters areas that may be confused as functional activity. A third component 

isolates a cardiopulmonary pulsation of the middle cerebral arteries.

Subject-level seed-based functional connectivity analysis

Seed-based functional connectivity analysis of the default mode network (posterior cingulate 

cortex seed) was conducted in three modes: conventional (intensity-based coregistration, 

time series correlation based on middle TE data); ME-ICA time series correlation (T2*

weighted coregistration and optimal combination); and ME-ICR. These three types of 

connectivity analysis are compared in Fig. 6 for 5 datasets representing the age range, with 

each dataset analyzed in each analysis type. Notably, since time course correlation of resting 

state fMRI data is not well conditioned for statistical inference, both middle TE and ME-
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ICA denoised time series correlation maps are thresholded R >0.5. In contrast, since ME-

ICR computes correlation between vectors (i.e. sets) of coefficients that are distributed 

approximately independently of each other, the canonical Fisher transform including the 

standard error term was applied to transform R values to a potentially well-conditioned Z 

values allowing subject-level correlation thresholded based on p-value. None of the datasets 

had FWHM spatial smoothing applied, as the tSNR increase ordinarily sought by smoothing 

was achieved natively by acquiring images with larger voxels (3.75 mm isotropic) and not 

smoothing.

Connectivity mapping approaches involving conventional and multi-echo methods were 

evaluated on the reproducibility across subjects of thresholded connectivity maps of the 

DMN pattern (posterior cingulate seed), in particular on the consistent delineation of the 

DMN nodes of anterior and posterior cingulate cortices and bilateral temporo-parietal 

cortices. Conventionally denoised middle TE data do not show the anterior cingulate node of 

the DMN consistently across datasets. While all subjects show correlation to this area with 

some magnitude, specificity is poor and the extent of correlation varies considerably across 

these subjects representing the age range. Correlation of ME-ICA denoised time series 

shows the anterior cingulate node more consistently in all 5 representative subject datasets. 

The use of the middle TE data may be suboptimal for detecting the anterior cingulate and 

other DMN regions due to residual noise in time series as well as suboptimal anatomical-

functional coregistration, and in some cases (16.5 y and 31.5 y) the effect of a strong global 

signal in amplifying whole-brain connectivity is apparent. In contrast, ME-ICR seed-based 

functional connectivity shows the canonical DMN pattern consistently across subjects, with 

subject connectivity patterns appearing remarkably similar to each other, even in the 

temporo-parietal nodes.

Group-level seed-based functional connectivity analysis

Time series correlation and ME-ICR functional connectivity estimators were compared in 

the context of group analysis of seed-based connectivity in the default mode network. This 

assessment relates to how the conditioning of subject-level correlation distribution affects 

group-level connectivity inferences. 1-sample T-tests of functional connectivity values 

across subjects is shown in Fig. 7a–b, separately for conventional and ME-ICR. The one-

sample T-test of conventional time series correlation after non-BOLD noise removal appears 

extremely dense despite a p < 0.001 threshold. This result is not unexpected, however, as it 

has been shown in prior studies that subject-level correlation distributions have strong right 

shifts and variable distributions (Schölvinck et al. 2010; Kundu et al. 2013) suggesting 

violations of the normality, homoscedasticity and exchangeability assumptions in the 1-

sample T-test. The aspects of variable distribution centering and spread may be worse for the 

developmental cohort than for a cohort of healthy adults of a given age range due to 

developmental variation of functional connectivity properties with age. In contrast to the 

conventional connectivity result, the 1-sample T-test of ME-ICR (Fig. 1b) cleanly localizes 

cortical and subcortical correlates of the default mode network, including hippocampus, 

anterior cingulate, and cerebellar tonsil (Habas et al. 2009). This result is interpreted as 

MEICR being a less biased estimator of seed-based connectivity than time series correlation, 

as subject-level ME-ICR involves computation of inter-regional correlation R on the basis of 
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independently distributed values followed by normalization using a accurate subject-specific 

standard error term.

Discussion

The study of functional brain organization using resting state fMRI has unique potential to 

shed light on the changes in brain organization that take place in typical development. The 

challenges in this line of research are substantial but ultimately related to the design of fMRI 

methods based on data from normal adult controls, acquisition of single-echo time course 

EPI, and analysis using pipelines of seemingly reasonable signal processing steps such as 

nuisance time course regression or spatial smoothing. In the assessment of increasingly 

complex phenomena such as resting functional connectivity or processes such as typical 

development, however, increasingly problematic nuisance effects have required successive 

methodological “patching,” focusing mainly on the analysis phase (Carp 2013). For 

instance, the recently advocated step of time point censoring (i.e. scrubbing) for attenuating 

strong motion artifacts in pediatric connectivity datasets leads to uncontrolled variability in 

degrees of freedom for analysis, culminating in decreased interpretability of connectivity 

results regarding typical development (Dosenbach et al. 2010; Power et al. 2011). Generality 

of acquisition and analysis such as required in the study of brain development is benefitted 

by the opposite strategy - of minimizing the number of processing steps. In recognizing a 

wide variety of artifactual processes, however, this minimalist strategy requires that the 

chosen analysis steps be richly informed and ideally be both physically and statistically 

principled. In terms of increasing information content, acquiring “more” data in spatial or 

temporal domains is certainly one approach, for example by scanning for longer time 

periods or at higher temporal resolution. With respect to the acquisition step, multi-echo 

fMRI is implemented by a relatively small modification of the gradient-echo EPI pulse 

sequence. Regarding the analysis step, the multi-echo acquisition enables a number of 

analysis procedures, as pertaining to contrast normalization, coregistration, denoising and 

statistical inference for connectivity. In the present paper, we demonstrate the theoretical 

significance and practical benefit of the multi-echo fMRI approach in the context of studying 

typical brain development.

The key capabilities enabled by acquisition of multi-echo fMRI and analysis with ME-ICA, 

as relevant to the study of typical development, includes optimization of T2* contrast for 

voxels throughout the brain based on T2* weighted optimal combination, anatomical-

functional coregistration based on T2* maps that is robust to age-dependent variability in 

brain morphology (Salat et al. 2004), sensitive and specific removal of time course artifacts, 

and estimation of seed-based functional connectivity that is valid for statistical inference and 

thresholding. The removal of smoothing from fMRI analysis or compensation of signal 

dropout based on T2* weighted optimal combination, which are independent of the 

decomposition steps in ME-ICA, may themselves better support the study of hypotheses 

pertaining to the typical development of brain organization. In addition, ME-ICA enables a 

number of capabilities geared towards utilizing the information available from multi-echo 

fMRI acquisition towards simplifying resting state analysis while concurrently increasing its 
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sensitivity, specificity, and robustness. High-dimensional spatial ICA decomposition of 

optimally combined data is a key analysis block. Multi-echo information is utilized here first 

to obtain a comprehensive dataset decomposition through examining TE-dependence within 

the principal component analysis dimensionality estimation step, which deterministically 

produces high dimensionality estimates that consistently lead to stable ICA decompositions. 

This differs from a conventional spatial ICA application, which requires user-dependent 

assessments of component number (often requiring trial-and-error assessment) or 

probabilistic automated dimensionality estimates based on random noise models. The former 

may be over or under-determined dependent on subject age, and the latter produces run-to-

run variability in dimensionality estimates, which compounds on variability due to the 

probabilistic characteristic of ICA algorithms. The second and critical application of TE-

dependence information in the decomposition block is in the classification of the BOLD and 

non-BOLD components based on assessments of component-level linear TE-dependent 

scaling or “TE-independent” signal scaling, respectively. This two-step strategy results in 

removal of time course artifacts of a wide variety, including subject motion, 

cardiopulmonary pulsation, and scanner drift, which manifest with a wide range of time and 

frequency-domain characteristics, and does so without referencing templates of canonical 

ICA “networks” or expected temporal signal properties. While spatial and temporal BOLD 

properties change with age due to brain shape and age-dependent variability in 

neurovascular coupling, TE-dependence as a basic NMR property of BOLD signals does 

not. The ability of ME-ICA to remove artifacts from subject motion or other sources using 

decomposition and a physically principled analysis and without referencing spatial or time 

course templates marks an important capability in the context of developmental studies.

It is important to note that ME-ICA is one of a number of ICA-based denoising strategies for 

resting fMRI data. Indeed, denoising was one of the first proposed applications of ICA to 

fMRI. However, component selection is a considerable problem for ICA denoising. 

Component selection methods relevant to denoising include the ICASSO method of repeated 

ICA with varying initialization (Himberg and Hyvarinen 2003) to enable a search for 

components with highest reproducibly. A component selection technique more specific to 

subject-level analysis of conventionally acquired fMRI data is ICA fingerprinting (De 

Martino et al. 2007), which uses classification of temporal and spatial frequency metrics of 

components to differentiate “network” components from artifacts, assuming that network 

and artifact components have differentiable frequency properties. Most recently, the FIX 

method of ICA component selection has been proposed, based on a hierarchical 

classification on component spatial localization relative to brain network templates as well 

as spatial and temporal frequency characteristics (Salimi-Khorshidi et al. 2014; Griffanti et 

al. 2014). Both fingerprinting and FIX have been reported to have high classification 

accuracy for their validation data. However, these methods depend on accurate prior 

information and/or training steps. For the study of normative adult controls, especially for 

datasets of high statistical power (i.e. long scans and large cohorts), normative parameters 

for classification may be sufficient and slight misspecification of parameters may have only 

nominal effects on findings. Further study can include methodological comparison of ME-

ICA to template-based component identification and removal techniques for fMRI of 

normative and developmental cohorts. In addition, while ME-ICA has been shown to remove 
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physiological noise in prior work (Kundu et al. 2012) and in this manuscript, further work is 

required to assess its capability to remove BOLD-like physiological artifacts such as end-

tidal CO2 fluctuation. However, in a study where functional brain organization as manifest in 

fMRI signal or network spatial properties may change over an experimental parameter, such 

as for brain development (e.g. subject age), template or prior-based classification may 

require more extensive parameterization that could lead to circular logic, or otherwise incur 

bias towards the training data. When a wide range of application is important and template 

representations of expected functional brain organization are not available, ME-ICA 

represents a compelling approach, since its denoising is based on a property of fMRI signal 

that is invariant to functional brain organization. In fact, ME-ICA has been shown to 

robustly identify brain networks in anesthetized rodent at ultra-high field without 

modification of the main decomposition and selection procedure (Kundu et al. 2014). We 

demonstrated in this study that ME-ICA is appropriate in applications of signal denoising 

and connectivity analysis in both pediatric and adult cohorts. Importantly, this demonstration 

was conducted using relatively short 10 min. resting state datasets, which may be practical in 

fMRI experiments given propensity of younger individuals to become uncomfortable over 

long scan sessions, which in turn may lead to altered mental state and increased subject 

movement.

The ME-ICA implementation discussed here has some limitations. The multi-echo approach 

utilizes imaging time to sample echoes beyond peak BOLD contrast (TE= 30ms at 3T) to 

optimize BOLD contrast, improve coregistration, and implement T2* model-based 

densoising. As an alternative approach, that imaging time could be spent in increasing 

spatial and temporal resolution. Importantly, increasing spatial resolution is itself a way to 

reduce signal dropout (by attenuating in-plane dephasing), improve anatomical-functional 

coregistration, and better support component classification towards denoising. Other 

imaging approaches may also address the challenges of developmental neuroimaging as 

presented here. For example, sequences less susceptible to distortions and signal dropout 

include spiral EPI (Glover and Law 2001) and spin-echo EPI (Norris et al. 2002). Future 

work will focus on optimizing the ME approach to improve spatial as well as temporal 

resolution. Importantly, the approach of simultaneous multi-slice EPI with multi-band 

excitation has emerged as an important advance for increasing fMRI imaging resolution and 

speed (Setsompop et al. 2012). Its implementation for single-echo fMRI is core to functional 

and diffusion imaging in the human connectome project (HCP), and is being utilized by 

several groups to achieve fMRI at TR 1s with in-plane resolution of about 2 mm (Van Essen 

and Ugurbil 2012). This fast imaging approach further supports template or prior-based 

denoising by significantly improving the sampling of noise (Tong et al. 2014). The multi-

band approach can incur acceleration-related artifacts, however, such as slice leakage, which 

so far has required ICA FIX for correction (Kelly and Miller 2013). Our ongoing work has 

demonstrated an MESMS-ICA approach at the spatial resolution reported in this paper that 

reduced TR to 0.8s based a simultaneous 3-slice acquisition and eliminated slice leakage 

artifacts as non-BOLD effects (Kundu et al. 2014; Boyacioglu 2014). Ongoing work will 

incorporate distortion correction, potentially utilizing dropout-free spin-echo images, 

towards further improvements in anatomical-functional coregistration as well inter-echo 

alignment (Glasser et al. 2013). Other directions include the use of spectral-spatial pulses in 
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the ME approach, which may further reduce distortion and dropout (Frayne et al. 2003). 

Further study of ME configurations will better characterize trade-offs between acceleration 

factors, imaging resolution, speed, and echo acquisition.

Appendix

A.1: Multi-echo independent components analysis and denoising

The central step of the ME-ICA procedure was decomposition of optimally combined ME 

data into approximately spatially independent components, then denoising by removing non-

BOLD components. This procedure is summarized here in 4 steps based on Kundu et al. 

(2013):

1. For dimensionality estimation and reduction, multi-echo principal components 

analysis (ME-PCA) was applied to the optimally combined dataset. This first 

involved principal components analysis (PCA) of the optimally combined time 

series dataset. Time series were masked, mean-centered and variance normalized, 

creating a voxel × time data matrix. PCA was then implemented as singular 

value decomposition (SVD, Eq. 4) with partial matrices

X = USV (4)

where X is the variance-normalized data, U and V are left and right singular 

vectors, and S is the vector of singular values. The amplitude of each principal 

component at each voxel for each TE was computed by multiple least squares fit 

of the PCA time courses (V, the right singular matrix) to the preprocessed signal-

unit time series of each TE.

2. Component-level TE-dependence analysis was applied to PCA components in 

order to detect data dimensionality, as the second step of the ME-PCA procedure. 

For each component at each voxel, the principal component signal amplitudes at 

different TEs were fit to linear TE-dependence and TE-independence models, 

and corresponding F-statistics for goodness of fit were computed. The TE-

dependence and TE-independence models are Eqs. 5a and b

Δ STE /STE = Δ S0/S0 (5a)

Δ STE /STE = − Δ R2*TE (5b)

where ΔSTE is signal change from mean for a fluctuation at a TE (i.e. its β 
weight from least squares fit), and STE is the signal mean at a TE, Δ R2* is 

change in susceptibility-weighted transverse relaxation time that is solved for in 

the TE-dependence BOLD model, S0 is initial signal intensity (i.e at TE=0), and 
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ΔS0 is the change in initial signal intensity that is solved for in the TE-

independence non-BOLD model. The respective F-statistics are then determined 

(6a and b):

FR2*
=

α0 − αR2*
αR2*

d . f .0 − d . f.R2*
d . f.R2*

(6a)

FS0
=

α0 − αS0
αS0

d . f .0 − d . f.S0
d . f.S0

(6b)

where α0 is the null variance ∑ βc, υ, T E
2 , αR2*

 is the variance explained by the fit 

to the TE-dependence model, αS0
 is the variance explained by the fit to the TE-

independence model, d.f.0 is total number of degrees of freedom for TE-

dependence models (equal to number of echoes, 3), and d . f .R2*
 and d . f .S0

 are the 

degrees of freedom used in the respective fits (1 each). The statistics κ and ρ 
were computed to indicate overall component-level weighting of TE-dependence 

and TE-independence, as an intensity-weighted average of the respective F 
values for each component:

κc =
∑υ

V zc, υ
p Fc, υ, R2*

∑ zc, υ
p (7a)

ρc =
∑υ

V zc, υ
p Fc, υ, S0

∑ zc, υ
p (7b)

where c is component index, υ is voxel index, V is the total number of voxels, z 
is normalized signal power, p is a power factor (default 2). Dimensionality 

reduction was based on thresholds for κ, ρ, and eigenvalue as determined after 

sorting respective values from the inflection points of the respective Scree plots 

(i.e. using an elbow-finding routine). Optimally combined time series were 
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dimensionally reduced to the principal components with above-threshold κ, or ρ, 

or eigenvalue (i.e. isolating any correlated signal associated with MR contrast), 

followed by re-centering and re-normalizing the time series, then the full data 

matrix.

3. FastICA of dimensionally reduced data using the tanh contrast function produced 

a time-domain independent component mixing matrix (variance normalized). 

The mixing matrix was fit using multiple least squares to the separate TE time 

series data, in order to compute per-voxel TE-dependence and TE-independence 

model fits for ICA components, in addition to respective F-statistics and 

component-level κ and ρ values that indicated BOLD and non-BOLD weighting, 

respectively. This involved application of Eqs. 5–7 for ICA component β 
weights.

4. After computation of component-level TE-dependence and independence 

statistics, components were classified into BOLD and non-BOLD categories. TE-

dependence and TE-independence are robust assessments of the physical 

mechanism of signal generation, such that artifactual components could be 

definitively identified in having any one of the following signatures, which 

indicate that artifactual ρ or FS0
 weighting is more substantial than the κ or FR2*

weightings :

a. ρ > κ

b. number of significant (F > F (ne, 1)p<0.05) S0-weighted voxels greater 

than the number of significant R2*-weighted voxels

c. greater overlap of p < 0.05 thresholded FS0
 maps and rank-thresholded 

signal change maps than of thresholded FR2*
 maps

d. greater FR2*
 in component spatial noise versus clustered voxels, based 

on a two-sample T -test TR2* − clustering  after F − Z transformation.

e. After ranking above metrics (κ, ρ, Dice for FR2*
 and FS0

 maps, 

TR2* − clustering, and significant FR2*
 and FS0

 voxel counts) in ascending 

order towards greater artifact weighting or lesser BOLD weighting, a 

rank-sum test was used to identify and reject components that 

approached several of the above rejection criteria. Data were denoised 

by projecting the spatial ICA components that were classified as non-

BOLD out of the data. This produced separated volumetric time series 

datasets for “isolated” non-BOLD fluctuations on the one hand, and 

BOLD denoised time series on the other.
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A.2: ME-ICR seed-based functional connectivity analysis

For individual datasets, ME-ICR seed-based functional connectivity maps were computed 

for a given subject-dataset using the BOLD component basis extracted from ME-ICA 

decomposition and component selection. After selecting a seed voxel a, the vector of BOLD 

independent coefficients from that voxel was extracted and used to compute Pearson 

correlation with BOLD independent coefficient vectors from every other voxel, each 

represented as b. This produced a map of correlation values based on the computation:

Ra, b =
Ia
Ia

⋅
Ib
Ib

(8)

where Ra,b is the Pearson correlation of coefficient vectors Ia and Ib. Next, each correlation 

value was converted to a standard score (Z) using the canonical Fisher R − Z transform, 

using the standard error term for normalization:

Za, b = arctanh Ra, b ⋅ Nc − 3 (9)

The DOF for standard error was the number of BOLD independent components (Nc). The 

significance (p) value for this standard score (Z) was computed from the standard normal 

cumulative distribution function, and statistically significant Z-values were anatomically 

mapped.

A.3: Reference T2* values

Table 1 shows T2* values for tissue types as computed from means of multi-echo EPI time 

courses of a 31.5 year old subject. These values satisfy Eq. 3 towards the creation of a T2*-

based weight map for anatomical-functional coregistration. Note for gray and white matter 

compartments, the expected trend T2 gray* > T2 white*  is reversed and variance of gray matter 

T2* is increased, in part due to inclusion of orbitofrontal “dropout” area in calculation. The 

75th percentile T2* values reflect the expected trend.
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Fig. 1. 
T2* mapping. a shows three multiecho EPI images of three echo times. b shows maps of the 

S0 and T2* parameters. c shows T2* parameter maps across subjects of varying age
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Fig. 2. 
T2* weighed vs. EPI intensity-based coregistration. a shows the process of thresholding CSF 

from the original T2* map to create a gray matter weighted map. b shows the improvement 

from the standard coregistration to T2* weighted co-registration, with arrows pointing to a 

specific improvement in gray-matter overlap. c demonstrates a comparison of standard 

intensity weighting (left) versus T2* weighted co-registration versus (right), across 5 subjects 

of varying age
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Fig. 3. 
Signal dropout recovery after optimal combination of multi-echo time series datasets across 

the age range. a shows the benefit of using an optimally combined slice stack over a typical 

slice stack of an EPI volume collected at an echo time of 28ms, with arrows pointing to 

significant areas of signal improvement. b further displays the improvement in EPI quality 

by showing slices in ventral regions at three echo times and the action of the T2* weighting 

filter in combining the echoes at those slices, compensating for signal dropout in these 

regions for datasets of subjects across the age range
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Fig. 4. 
The effect of ME-ICA signal splitting on time series throughout the brain of a representative 

subject. Voxel-time series are shown throughout different areas of the brain of a 23.8 year-

old subject. Each voxelwise time series set shows the raw time series and its artifactual 

(noise) and functional (neuronal) components. Artifacts such as drift, head motion, and 

physiological pulsatility are seen clearly in the artifactual time series
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Fig. 5. 
Standard deviation maps for subjects of varying age for assessing the cumulative effect of 

ME-ICA denoising. (a) assess the BOLD signal space. (b) assesses the separate non-BOLD/

artifact space. The leftmost columns for each signal space show voxel-wise standard 

deviation maps. The middle columns show standard deviation maps after motion regression. 

BOLD signal shows no substantial change after motion regression, indicating that motion 

artifact is not a significant effect in this signal space. In contrast, the non-BOLD space 

shows a significant reduction in standard deviation after regressing out motion artifacts, 

indicating the non-BOLD space to contain these artifacts. The rightmost column shows 

standard deviation after motion regression and 0.01Hz-0.1Hz bandpass filtering. Standard 

deviation is attenuated somewhat in the BOLD space, but the overall structure remains 

consistent. In the non-BOLD space, even after filtering, non-BOLD variance remains due to 

artifactual physiological signals from the draining veins. (c) shows example components that 

are not obviously related to subject motion, but also not clearly related to functional 

networks. These are clearly demarcated as non- BOLD by ME-ICA and removed from data 

in denoising
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Fig. 6. 
Using a seed-based approach, functional connectivity analysis was conducted for the default 

mode network (DMN) using three connectivity estimators for datasets across the age range. 

The left column demonstrates standard time series correlation (thresholded R>0.5) in data 

from the conventional TE (28ms) after intensity-based anatomical-functional coregistration. 

The middle column shows BOLD time series correlation (thresholded R>0.5) after T2*

weighted anatomicalfuncitonal co-registration and ME-ICA denoising, but without 

correction for BOLD complexity. Note enhanced connectivity between anterior and posterior 

cingulate cortices, but effects of global BOLD phenomena in some subjects. The third 

column shows ME-ICA and connectivity estimation using ME-ICR (thresholded Z>3, 

uncorrected p<0.01), which consistent anteriorposterior cingulate connectivity with an 

apparent age-dependent increases in long-distance versus local connectivity
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Fig. 7. 
Group-level seed-based connectivity analysis of the default mode network (PCC seed) using 

conventional time series correlation (ME denoised) and ME-ICR. Overlays are mean Z 

across subjects. Maps are thresholded by T-values. a Axial and sagittal views of onesample 

T-test maps of subject Z-maps based on time series correlation across 25 subject datasets of 

ages 9–43. Maps are thresholded p¡0.001 (uncorrected). This analysis (which does not 

implement global signal regression) produces spuriously high significance, resulting in 

minimal specificity in DMN map despite a high threshold. b Corresponding views of the 

one-sample T-test of Z-maps based on MEICR on datasets representing the same cohort. 

Maps are thresholded as in b. ME-ICR does not utilize global signal regression, but 

specifically isolates the default mode network and delineates subcortical nodes including 

hippocampus and nucleus accumbens
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Table 1

Reference T2* values (ms) for representative healthy adult of age 31.5y

Tissue Median 75 %ile Std.

CSF 132.2 179.1 50.3

Pia 15.4 18.3 7.1

WM 49.4 56.2 11.6

Gray 45.1 60.3 19.2
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