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Abstract

Growth and remodeling of soft tissues is a dynamic process and several theoretical frameworks 

have been developed to analyze the time-dependent, mechanobiological and/or biomechanical 

responses of these tissues to changes in external loads. Importantly, general processes can often be 

conveniently separated into truly non-steady contributions and steady-state ones. Depending on 

characteristic times over which the external loads are applied, time-dependent models can 

sometimes be specialized to respective time-independent formulations that simplify the 

mathematical treatment without compromising the goodness of the particularized solutions. Very 

few studies have analyzed the long-term, steady-state responses of soft tissue growth and 

remodeling following a direct approach. Here, we derive a mechanobiologically equilibrated 

formulation that arises from a general constrained mixture model. We see that integral-type 

evolution equations that characterize these general models can be written in terms of an equivalent 

set of time-independent, nonlinear algebraic equations that can be solved efficiently to yield long-

term outcomes of growth and remodeling processes in response to sustained external stimuli. We 

discuss the mathematical conditions, in terms of orders of magnitude, that yield the particularized 

equations and illustrate results numerically for general arterial mechano-adaptations.
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1 Introduction

Biological soft tissues consist of myriad structurally significant constituents that are 

collectively referred to as the extracellular matrix. Resident cells establish, maintain, and 

remodel this matrix, which endows the tissue with both stiffness/strength and instructions 

that guide cell behavior. Mathematical models that describe and predict changes in overall 

tissue structure and function can provide increasing insight into connections between the 

biology and mechanics. Two theoretical frameworks have emerged to describe soft tissue 

growth (i.e., change in mass) and remodeling (i.e., change in structure): the theory of 

kinematic growth [1] and the constrained mixture theory [2]. The former tends to be 

mathematically simpler but to focus on consequences of growth. The latter tends to focus on 

mechanisms that drive growth and remodeling (G&R), attempting to capture the different 

rates of turnover and material properties exhibited by individual constituents that constitute 

the tissue; this approach can be computationally expensive however.

Regardless of approach, G&R tends to be driven by changes in biochemomechanical stimuli 

from “homeostatic target” values that are established via the process of development. In 

particular, differences in mechanical stress from target values are primary drivers of soft 

tissue adaptations via mechanobiological processes (i.e., key biological responses by cells to 

mechanical stimuli). From a thermodynamic perspective [3, 4], perturbations in stresses 

from normal values provoke an internal imbalance such that a dissipative (energy 

consuming) G&R process seeks to restore equilibrium.

Such adaptative/maladaptative mechanobiological processes are dynamic, hence evolving 

cell driven tissue structure and function typically requires one to model the general time-

dependent process. There are special situations, however, in which unsteady effects vanish. 

Hence, as in many areas of mathematical physics, steady-state analyses may provide 

tremendous simplification and yet considerable insight. Towards this end, note that the 

constrained mixture theory of G&R has parallels with the Boltzman theory of viscoelasticity, 

with both employing hereditary integrals to capture the “relaxation” of the material back 

towards its preferred state [5].

In this paper we present a steady-state, mechanobiologically equilibrated solution of 

classical constrained mixture models for growth and remodeling of soft tissues [2]. In the 

general, rate-dependent case, the integral equations for the individual load-bearing structural 

constituents track the evolving mechanical states in which the constituents are produced and 

removed. We will see that these G&R processes take place relative to a material-dependent 

characteristic time, say sG&R. Similar to the case of viscoelasticity mentioned above, 

however, one can directly compute the long-term (“relaxed”) outcome of general constrained 

mixture models when the external insults are eventually sustained over time or, more 

specifically, for intervals Δs ≡ s−0 such that s/sG&R ≫ 1. In this case, the evolution 

equations for the full constrained mixture approach can be pre-integrated analytically 

without introducing additional constitutive approximations, giving as a result a fully 

equivalent set of nonlinear evolved (algebraic) equations that can be solved easily and 

efficiently. For purposes of illustration, we show numerical results for a prototypical soft 

tissue – an elastic artery. In particular, we show that the present long-term, steady-state 
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formulation recovers the final adapted state predicted by the full constrained mixture model 

in cases of perturbed blood pressures, flows, and axial stretches. Further parametric studies 

then illustrate the utility of the formulation.

2 A constrained mixture model for G&R of soft tissues

First, we summarize salient features of a constrained mixture model for G&R of soft tissues 

[2], which has satisfactorily predicted complex vascular behaviors as, for example, [6, 7, 9–

11]. The main aim of this section is to highlight underlying hypotheses on which the present 

model will be built, especially regarding the constitutive relations for mass production and 

removal while distinguishing properties defined at the individual constituent level versus the 

whole mixture level. The specific expressions that these relations acquire are fundamental 

for the mechanobiological equilibrium solution invoked in the next section, where a balance 

between production and removal necessarily emerges.

2.1 Differential mass formulation

Consider an (infinitesimal) element of volume δVo in the original homeostatic configuration 

at G&R time s = 0. Consistent with the constrained mixture theory [2], δVo is occupied, in a 

homogenized continuum sense, by multiple constituents α = 1, 2, …, N, for which we 

assume that the bulk modulus far exceeds the shear modulus at any instant. The mass of each 

constituent δMα within (initial) volume δVo can evolve for s > 0 through

δMα(s) = ∫
∞

s
δ∏α (τ)qα(s, τ)dτ = δMα(0)Qα(s) + ∫

∞

s
δ∏α (τ)qα(s, τ)dτ (1)

where δΠα (τ) > 0 is a true (local) mass production rate at time τ ≤ s and qα (s, τ) ∈ [0, 1] 

represents the fraction of the mass deposited at time τ that survives at time s. Hence, for a 

given s, with −∞ < τ ≤ s,

0 = qα(s, − ∞) ≤ qα(s, τ) ≤ qα(s, s) = 1. (2)

or, for a given τ, with τ ≤ s < ∞,

0 = qα(∞, τ) ≤ qα(s, τ) ≤ qα(τ, τ) = 1. (3)

Similarly, Qα (s) represents the fraction of mass that existed at time τ = 0 that survives at 

time s. Assuming that δΠα (τ ≤ 0) remains constant for a sufficiently long period preceding 

τ = 0, i.e. δ∏α (τ < 0) = δ∏α (0) = δ∏o
α and δMα(0) = δMo

α, with subscript o denoting an 

original homeostatic state, then Qα (s) is given in terms of qα (s, τ), from Eq. (1), through
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δ∏o
α∫

−∞

0
qα(s, τ)dτ = δMo

αQα(s) Qα(s) =
∫

−∞

0
qα(s, τ)dτ

∫
−∞

0
qα(0, τ)dτ

(4)

where Qα (0) = 1. The local production rate of mass at arbitrary time τ can be expressed in 

terms of a nominal rate δ∏N
α  and a stimulus-dependent function ϒα that will ultimately drive 

the G&R process, namely

δ∏α (τ) = δ∏N
α (τ)ϒα(τ) (5)

where, importantly, the nominal rate δ∏N
α  may evolve during homeostatic processes (i.e., 

target values may reset).

The strain energy stored locally by δMα (s) at time s is

δ𝒲α(s) = ∫
∞

s
δ∏α (τ)qα(s, τ)Wm

α (Cn(τ)
α (s))dτ (6)

where Wm
α (Cn(τ)

α (s)) is a mass-specific strain energy function for constituent α and Cn(τ)
α (s) is 

the right Cauchy–Green tensor obtained from the deformation gradient Fn(τ)
α (s) experienced 

by the material deposited at time τ (in a generic intermediate configuration) that survives at 

time s (in the current loaded configuration); see Figure 1 whereby

Fn(τ)
α (s) = F(s)F−1(τ)Gα(τ) = F(s)F−1(τ)Gα, (7)

where we assume that constituents are deposited within the mixture via constant, symmetric, 

and volume-preserving “deposition stretch” tensors, that is Gα (τ) = Gα ∀τ, GαT = Gα, and 

det Gα = 1. Consistent with an implicit homogenization procedure, the deformation gradient 

Fn(τ)
α (s) is computed by assuming that the motion of each constituent, once deposited, is 

constrained to equal that of the soft tissue as a whole, which is given by deformation 

gradient F. The corresponding right Cauchy–Green deformation tensor reads

Cn(τ)
α (s) = Fn(τ)

αT (s)Fn(τ)
α (s) = G ∘ F−T(τ)C(s)F−1(τ)Gα, (8)

where C (s) = FT (s) F (s) is a measurable, mixture level deformation. See [8] for an 

example of a mass-based approach.
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2.2 Referential volume formulation

We now obtain from the previous formulation, derived for a differential mass element, its 

equivalent formulation per unit reference volume (see Appendix for nomenclature). From 

Eq. (1)

ρR
α(s) = ∫

∞

s
mR

α(τ)qα(s, τ)dτ (9)

where ρR
α =def δMα/δVo is the referential mass density of cohort α (in a homogenized sense) 

and mR
α =def δ∏α /δVo is the mass production rate per unit reference volume (i.e., mass density 

production rate). From Eq. (5), we also have

mR
α(τ) = mN

α (τ)ϒα(τ), (10)

whereby mR
α is written in terms of two functions, namely a nominal production rate per unit 

reference volume mN
α (τ) that is modulated by a stimulus-dependent function ϒα (τ).

From Eq. (6), the corresponding strain energy function for constituent α (in a homogenized 

sense), per unit reference volume of the mixture, WR
α =def δ𝒲α/δVo, is

WR
α(s) = ∫

−∞

s
mR

α(τ)qα(s, τ)Wm
α (Cn(τ)

α (s))dτ . (11)

Recall that Wm
α  is a mass-specific strain energy function for constituent α (i.e., an intrinsic 

material constitutive relation). We can convert it to a volume-specific counterpart Wα by 

means of the (herein assumed constant) true mass density ρα of constituent α (i.e., not its 

homogenized, apparent mass density with respect to the mixture, either material ρR
α or spatial 

ρα) as

Wα(Cn(τ)
α (s)) = ραWm

α (Cn(τ)
α (s)) . (12)

The strain energy function of constituent α, defined per unit reference volume of the 

mixture, then reads

WR
α(s) = 1

ρα∫−∞

s
mR

α(τ)qα(s, τ)Wα(Cn(τ)
α (s))dτ (13)
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and for the mixture we have

WR(s) = ∑
α

WR
α(s) . (14)

This referential form of the strain energy for the mixture is thus similar to that used in 

hyperelasticity. See [6, 7, 9, 13] for similar formulations.

2.3 Stresses

We consider the response of a typical soft tissue to be isochoric at each fixed G&R time s 
(i.e., for transient deformations with G&R time frozen). The Cauchy stress tensor for the 

tissue (i.e., mixture) thus reads

σ(s) = ∑
α

σα(s) − p(s)I (15)

where σα is the Cauchy stress contribution for constituent α and p is a pressure-type 

Lagrange multiplier associated with the incompressibility constraint J = det (F) = const to be 

calculated at each fixed, G&R time s.

To obtain stresses for each constituent at the mixture level σα, note, from Eq. (8), that

Cn(τ)
α (s) = GαF−T(τ) ⊙ GαF−T(τ):C(s) (16)

where operator symbol ⊙ represents the mixed dyadic product (A ⊙ B)ijkl = AikBjl and 

operator symbol : performs the usual double contraction of indices. Note, too, that [12]

∂Cn(τ)
α (s)

∂C(s) = GαF−T(τ) ⊙ GαF−T(τ) . (17)

The associated second Piola–Kirchhoff stress tensor is obtained from WR
α(s), which is given 

by Eq. (13), via

Sα(s) = 2
∂WR

α(s)
∂C(s) = 2

ρα∫−∞

s
mR

α(τ)qα(s, τ)
∂Wα(Cn(τ)

α (s))
∂Cn(τ)

α (s)
:

∂Cn(τ)
α (s)

∂C(s) dτ . (18)

If we define the second Piola–Kirchhoff stress tensor at the constituent level as
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Sα(Cn(τ)
α (s)) = 2

∂Wα(Cn(τ)
α (s))

Cn(τ)
α , (19)

then Eq. (18) reads

Sα(s) = 1
ρα∫−∞

s
mR

α(τ)qα(s, τ)F−1(τ)GαSα(Cn(τ)
α (s))GαF−T(τ)dτ, (20)

where we substituted (and operated over Ŝα) the fourth-order tensor ∂Cn(τ)
α / ∂C.

The Cauchy stresses σα (s) for each cohort are obtained via the corresponding Eulerian–

Lagrangian stress power equivalence, which gives the following push-forward operation 

over Sα (s)

σα(s) = 1
J(s)F(s)Sα(s)FT(s) (21)

with Jacobian J given by

J(s) = det(F(s)) = δV(s)
δV(0) = δV(s)

δVo
. (22)

Interestingly, substitution of Eq. (20) into Eq. (21) reveals the following relation between σα 

(s), defined at the mixture level (i.e. deriving from WR
α), and σα(s, τ), defined at the 

constituent level (i.e. deriving from Ŵα)

σα(s) = 1
ρα∫−∞

s
mα(τ)qα(s, τ)σα(s, τ)dτ (23)

where mα(τ) = mR
α(τ)/J(τ) is the mass production rate per unit current volume of the mixture 

at time τ and σα(s, τ) reads

σα(s, τ) = 1
det(Fn(τ)

α (s))
Fn(t)

α (s)Sα(Cn(τ)
α (s))Fn(τ)

αT (s) (24)

with det(Fn(τ)
α (s) = J(s)/J(τ)).
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3 A mechanobiologically equilibrated formulation for G&R of soft tissues

In this section we derive a mechanobiologically equilibrated formulation that arises from the 

general model outlined above for G&R stimuli that are eventually sustained in time. Thus, 

we let the model evolve up to a steady state defined by mechanobiological equilibrium, that 

is, with tissue adaptation to external insults completed. In this case, all prior expressions can 

be pre-integrated in time to yield an equivalent, simpler algebraic formulation that provides 

more intuition about target states to which the tissue tends to adapt.

3.1 Mechanobiologically equilibrated state

Of course G&R takes time to return the state to homeostatic following a sustained alteration 

in the biochemomechanical environment. We assume, therefore, that mechanobiological 

equilibrium occurs at some G&R time s ≫ sG&R, where sG&R represents a characteristic 

time associated with internal G&R processes. We postulate a characteristic time sG&R below.

Several statements can be used to define a state of mechanobiological equilibrium for soft 

tissues [2, 14, 15]. In general such a state should include balanced constant productions and 

removals in an unchanging mechanical state. Toward this end, we let each mass density 

production rate mR
α(τ) equal its respective nominal rate mN

α (τ) and reach a constant, evolved, 

homeostatic value mRh
α , namely

mR
α(τ ≫ sG&R) =def mRh

α , ∀α . (25)

Hereafter, we will use the subscript h to refer to equilibrated variables in the new 

homeostatic state (at s ≫ sG&R) to distinguish them from their respective, generally 

different, equilibrated values in the original homeostatic state (at s = 0), for which we use the 

subscript o. Hence, we define mR
α(0) = mN

α (0) =def mRo
α . Given Eq. (10), Eq. (25) along with 

mR
α(τ ≫ sG&R) = mN

α (τ ≫ sG&R) means that the respective homeostatic stimulus-driven 

control functions ϒh
α reach unity

ϒh
α = 1, ∀α, ∀s ≫ sG&R, (26)

which, then, represent a general (mathematical) condition for attaining mechanobiological 

equilibrium. In this respect, note that, in general, mRo
α ≠ mRh

α , but ϒo
α = ϒh

α = 1 while 

nonequilibrated ϒα ≠ 1 by definition.

Similarly, constituent specific removal functions qα (s, τ) reach steady-state expressions 

qh
α(s, τ) as well. Thus, the integral of Eq. (9) specializes to
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ρRh
α = mRh

α ∫
−∞

s
qh

α(s, τ)dτ = mRh
α Tqh

α , ∀α, ∀s ≫ sG&R (27)

where only the constituents deposited at times τ ≫ sG&R contribute, in practice, to the 

integral, and where we recognize Tqh
α  as an equilibrium mean lifetime

Tqh
α =def ∫

−∞

s
qh

α(s, τ)dτ, ∀α, ∀s ≫ sG&R . (28)

Normalizing Eq. (27) as

1 =
mRh

α

ρRh
α Tqh

α =
1/Tmh

α

1/Tqh
α (29)

reveals a balance between the equilibrium mass-specific production rate 1/Tmh
α =def mRh

α /ρRh
α

and the equilibrium mass-specific removal rate 1/Tqh
α  consistent with what Humphrey and 

Rajagopal [2] referred to as “tissue maintenance during which time material that is removed 

is replaced with equivalent material at the same rate and in an ‘unchanging’ configuration”.

Equivalently, Eq. (13) under an evolved state of mechanobiological equilibrium reads

WRh
α = 1

ραmRh
α Tqh

α Wα(Gα2) =
ρRh

α

ρα Wα(Gα2), ∀α, ∀s ≫ sG&R, (30)

where we used Eqs. (25) and (27) and the fact that Fn(τ)
α (s) in Eq. (7), specialized to an 

‘unchanging’ configuration F (τ) = F (s) = Fh ∀s, τ ≫ sG&R, reads

Fn(τ)
α (s ≫ sG&R) = FhFh

−1Gα = Gα, (31)

so Cn(τ)
α (s ≫ sG&R) = (Gα)2 ≡ Gα2. Recognize, too, the term ρRh

α /ρα in Eq. (30) as the 

equilibrium referential volume fraction of constituent α, i.e.

ρRh
α

ρα =
δMh

α/δVo

δMh
α/δVh

α =
δVh

α

δVo
= ΦRh

α , (32)
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so that the strain energy of the mixture (soft tissue), per unit reference volume of the 

mixture, Eq. (14), specializes to the following (referential) volume-based rule of mixtures

WRh = ∑
α

WRh
α = ∑

α
ΦRh

α Wα(Gα2) (33)

which is often a desired, key feature of constrained mixture theories [2]. Note that a general 

rule of mixtures based on referential volume, rather than mass, fractions is also derived in 

the field of micromechanics of composite materials [16,17].

In summary, mechanobiological equilibrium of a soft tissue whose constituents can all turn 

over, and that has been subjected to a sustained alteration of the biochemomechanical 

environment, requires: constant rates of mass production (Eq. (25)) and removal (Eq. (28)) 

that must balance (Eq. (29)) and occur in an unchanging state Fh (along with Eq. (31)) that is 

reached at time s ≫ sG&R.

3.2 Mechanobiologically equilibrated stresses

Now consider stresses at the new mechanobiological equilibrium state, which can be 

obtained either by differentiating the equilibrium strain energy functions while taking into 

account the specialized result of Eq. (31) or by particularizing the stress expressions derived 

in Section 2.3 for constituents that turnover. For example, from Eq. (24)

σh
α = GαSα(Gα2)Gα (34)

whereby the stress tensor σh
α depends only on the (herein assumed constant) deposition 

stretch tensor Gα = Go
α = Gh

α and coincides with its original homeostatic value

σo
α = σh

α = σα . (35)

Note, however, that σo
α ≠ σh

α if we relaxed the hypothesis Go
α Gh

α in Eq. (7). Hence, stresses 

for constituent α at the mixture level are, from Eq. (23),

σh
α = 1

ραmh
αTqh

α σα =
ρh

α

ρα σα (36)

where, again, we used Eqs. (25) and (27) along with the relation

ρh
α = 1

Jh
ρRh

α = 1
Jh

mRh
α Tqh

α = mh
αTqh

α (37)
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with mh
α = mRh

α /Jh the equilibrium mass density production rate (per unit current volume of 

the mixture) and Jh the corresponding volume ratio. Then

σh
α = Φh

ασh
α = Φh

ασα (38)

where Φh
α = ρh

α/ρα = δVh
α/δVh is the spatial volume fraction of cohort α in the new 

equilibrium configuration, thus we recover a (spatial) volume-based rule of mixtures for the 

equilibrium Cauchy stresses as well (cf. Eq. (15))

σh = ∑
α

σh
α − phI = ∑

α
Φh

ασα − phI . (39)

Since σo
α = Φo

ασα in the original homeostatic state and σh
α = Φh

ασα in the new equilibrium 

state, then

σh
α =

Φh
α

Φo
α σo

α =
ρh

α

ρo
α σo

α, (40)

so the Cauchy stresses of the cohort α at the mixture level in the new homeostatic state 

become the respective Cauchy stresses in the original homeostatic state scaled by the ratio of 

the spatial mass densities (or volume fractions) in the respective configurations. We will see 

in examples below that ρh
α = ρo

α, and thus σh
α = σo

α, in some special cases only, cf. [15].

4 Specialization for arteries

Here we specialize the constrained mixture framework, both the general non-equilibrated, 

time-dependent model of Section 2 and the equilibrated, time-independent particularized 

model of Section 3, to G&R experienced by arteries during maturity. The main load-bearing 

constituents α within an artery are elastic fibers (α = e), smooth muscle (α = m), and 

fibrillar collagen (α = c). Smooth muscle and collagen turnover continuously, while elastin 

is only produced in the perinatal period. Elastin also has an extremely long half-life ( Tq
e 50

years) under normal conditions, for which one can assume no removal. Elastin is removed 

(degrades) in aging, aneurysms, atherosclerosis, and other conditions, but we do not consider 

such pathologies here. Of course, the steps we follow next for this specific case can be 

adapted for other soft tissues or vascular problems of interest, including marked loss of 

elastin [7, 18].

Latorre and Humphrey Page 11

Z Angew Math Mech. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1 A constrained mixture model for G&R of arteries

Consistent with many empirical studies, we assume an exponential decay for structurally 

significant constituents modeled by the survival function qα (s, τ), at fixed τ, of the form (cf. 

Eqs. (2) and (3))

qα(s, τ) = exp −∫
τ

s
kα(t)dt , α = m, c (41)

where kα (t), with τ ≤ t ≤ s, varies with respect to its original homeostatic value ko
α through

kα(t) = ko
α(1 + (Δσ(t))2), α = m, c (42)

with Δσ (t) accounting for any normalized difference (positive or negative to account for 

damage or disuse related removal) between a given intramural Cauchy stress measure σ∼ at 

time t at the mixture level, namely σ∼(t), and its corresponding original homeostatic value σ∼o

Δσ(t) =
σ∼(t) − σ∼o

σ∼o
= σ∼(t)

σ∼o
− 1. (43)

The stress value σ∼ represents the overall tensional state within the arterial wall (e.g., a 

principal value, invariant, or overall magnitude – all scalars) such that kα (t) increases and 

the decay given by qα (s, τ) is expedited, accordingly (see [7] and references therein). 

Alternatively, Δσ could be defined in terms of cohort-specific stresses defined at the 

constituent level [6, 7] which, based on the equilibrated relation given in Eq. (38) or its 

general counterpart of Eq. (23), yields similar effects.

Similarly, we can let the stimulus-mediated production term ϒα (τ) in Eq. (10), for the 

specific case of mechanoadaptive arteries, account for normalized differences between 

intramural (e.g., σ∼) and/or wall shear stresses τw, at time τ, and their respective original 

homeostatic values. An illustrative linearized form (consistent with responses to modest 

perturbations in load) in terms of mixture-level stresses can be written

ϒα(τ) = 1 + Kσ
αΔσ(τ) − Kτ

σΔτw(τ), α = m, c (44)

where Kσ
α and Kτ

α are constituent-specific gain parameters and Δτw = (τw − τwo)/τwo. At the 

initial homeostatic state, say τ = s = 0, we have Δσ = 0 and Δτw = 0 and Eq. (44) recovers 

the equilibrium condition ϒo
α(s ≤ 0) = 1 discussed in Eq. (26). At the same time, we obtain 

from Eq. (42) that kα(s ≤ 0) = ko
α, so full integration of qα(0, τ) = qo

α(0, τ) in Eq. (41) yields (cf. 

Eq. (28))

Latorre and Humphrey Page 12

Z Angew Math Mech. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Tqo
α = ∫

−∞

0
qo

α(0, τ)dτ = ∫
−∞

0
exp(ko

ατ)dτ = 1
ko

α , α = m, c (45)

and we recognize the (original) mean homeostatic mass removal rate 1/Tqo
α  as ko

α. The same 

(equilibrium) analysis performed at an evolved homeostatic state, with kα(s ≫ sG&R) = kh
α in 

Eqs. (41) and (42), yields (cf. Eq. (28))

Tqh
α = ∫

−∞

s
qh

α(s, τ)dτ = ∫
−∞

s
exp( − kh

α(s − τ))dτ = 1
kh

α , α = m, c . (46)

Consideration of Eqs. (45) and (46) in Eq. (27) at the different G&R times s = 0 or s ≫ 
sG&R, automatically leads to the following generalization for the nominal mass density 

production rate function mN
α (τ) in Eq. (10)

mN
α (τ) = kα(τ)ρR

α(τ), α = m, c (47)

such that, with ϒo
α = 1 = ϒh

α,

mRo
α = mNo

α = ko
αρRo

α , and mRh
α = mNh

α = kh
αρRh

α . (48)

Eq. (47), derived herein from considerations of mechanobiological equilibrium, suggests 

that the nominal (local) mass production of a given constituent is proportional to its current 

(local) mass within the mixture, which is tantamount to saying that the production of each 

constituent is proportional to the concentration of cells that synthesize that constituent, as 

posited previously [9].

Moreover, in the present case, the factor of proportionality kα (τ) depends on the level of 

intramural stresses, recall Eq. (42). With this approach, which is consistent with our 

definition of mechanobiological equilibrium given in Section 3, the referential mass density 

production rate of the cohort α, Eq. (10), reads

mR
α(τ) = kα(τ)ρR

α(τ)ϒα(τ), α = m, c . (49)

Similar expressions for mass density production have been used [6, 9, 19]. On other hand, 

the present approach is different from the one adopted in, for example, [7], where 

constituent-specific basal mass productions are postulated to be constant per unit reference 
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volume of the mixture. The definitions adopted here regarding degradation and production, 

giving rise to Eqs. (41)–(43) and Eq. (49) respectively, will prove useful below.

An additional, common constitutive assumption in constrained mixture models for G&R of 

soft tissues is that the spatial total mass density ρ remains constant, that is

ρ ≡ ρ(τ) = ∑
α

e, c, m
ρα(τ), ∀τ (50)

where ρα (τ) is the “apparent” spatial mass density of cohort α (in a homogenized sense). 

Note that ρα need not to remain constant, in general. The fact that ρ remains constant, 

however, implies that the “true” spatial mass densities ρα of the different constituents (in a 

heterogeneous sense) coincide with the actual spatial total mass density of the mixture1 ρ, so 

the strain energy function of constituent α per unit reference volume of the mixture, given in 

Eq. (13), specializes to

WR
α = 1

ρ∫−∞

s
mR

α(τ)qα(s, τ)Wα(Cn(τ)
α (s))dτ . (51)

Considering the assumption ρ = const in Eq. (22) lets us relate current to reference local 

masses through the volume ratio J as well, namely

J(s) = δV(s)
δV(0) = δM(s)/ρ

δM(0)/ρ = δM(s)
δM(0) =

δM(s)/δVo
δM(0)/δVo

=
ρR(s)

ρ (52)

where ρR (s) is the referential total mass density.

4.1.1 Active smooth muscle tone—Besides passive contributions σα in Eq. (15), 

consider too the stress due to contraction of smooth muscle cells in the arterial wall. This 

contribution to wall stress, assumed to be exerted primarily along the circumferential 

direction eθ, is defined by (cf. Eq. (38))

σact(s) = ϕm(s)σact(s) (53)

with [20]

1For simplicity, consider a heterogeneous mixture of two incompressible constituents a, occupying a volume Va, and b, occupying a 
volume Vb, within total volume V = Va + Vb. The spatial mass density of the mixture is then obtained in terms of the true mass 

densities of the constituents ρa and ρb through the volume-based rule of mixtures
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σact(s) = Tmax 1 − e−C2(s) λθ
m(act)(s) 1 −

λM − λθ
m(act)(s)

λM − λ0

2

eθ ⊗ eθ (54)

where ϕm(s) = ρm(s)/ρ is the spatial mass fraction of smooth muscle (the use of mass, rather 

than volume, fraction, as we derived in Eq. (38), will be clear below), Tmax accounts for the 

maximum stress-generating capacity of the muscle, C (s) is the ratio of vasoconstrictors 

(such as the biomolecule ET-1) to vasodilators (such as NO), λM and λ0 are the stretches at 

which the active force generating capability is maximum and minimum (i.e. zero), 

respectively, and λθ
m(act) is the current active muscle fiber stretch. We postulate that the ratio 

C (s) is modified by normalized differences in flow induced wall shear stress from its 

original homeostatic value, with

C(s) = CB − CSΔτw(s) (55)

where CB > 0 is the corresponding basal ratio and CS > 0 is a scaling factor. Note that an 

increased, instantaneous shear stress Δτw reduces both the ratio C and the tensile wall stress 

σact = σact : eθ ⊗ eθ, and vice versa, as desired [21, 22]. Finally, the circumferential stretch 

for the active tone is defined as λθ
m(act)(s) = a(s)/aact(s), with a(s) the current luminal radius 

and aact (s) an active value whose evolution is to be prescribed. For example, a shift in 

vasomotor tone via rearrangement of smooth muscle cells observed in mature arteries may 

be modelled using the following linear evolution equation for aact(s) [6]

daact(s)
ds = kαct(a(s) − aact(s)) (56)

where kact is an additional active, relaxation (in the sense of adaptation via structural 

remodeling rather than chemical signaling) rate parameter and aact (0) = a (0). An integral-

type solution of Eq. (56) for aact (s) that adopts the same (conceptual) form as the mass 

densities of Eq. (9) and the stresses of Eq. (23) is obtained through a convolution 

representation (Duhamel’s principle), namely

aact(s) = ∫
−∞

s
kacta(τ)qact(s, τ)dτ (57)

where we let

qact(s, τ) = e−kact(s − τ) . (58)
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4.1.2 Elastin—Equation (51) particularized to elastin at s = 0, with Ce (0) = Ge2, reads

WR
e (0) = 1

ρ∫−∞

0
mR

e (τ)qe(0, τ)We(Ce(0))dτ =
ρR

e (0)
ρ We(Ce(0)) . (59)

Note that Ge is not a true deposition stretch tensor of elastin, but rather a virtual deposition 

stretch tensor that yields a mechanical contribution of elastin at s = 0 that is mechanically 

equivalent to the actual one (for which elastin is gradually deposited and stretched over the 

perinatal period, long before s = 0). If we also consider that elastin is neither produced (i.e. 

mR
e (s) ≡ 0) nor degraded (i.e. qe (s, τ) ≡ 1) during health in maturity (for s > 0), then 

ρR
e (s) = ρR

e (0) = ρR
e  and

WR
e (s) =

ρR
e

ρ We(Ce(s)) . (60)

We have in this case (cf. Eq. (8) with F (τ) = I)

Ce(s) = GeC(s)Ge = Ge ⊙ Ge:C(s) (61)

whereby

∂Ce(s)
∂C(s) = Ge ⊙ Ge . (62)

The second Piola–Kirchhoff stress Se = 2∂WR
e / ∂C derived from Eq. (60), is

Se(s) = 2
ρR

e

ρ
∂We(Ce(s))

∂Ce(s)
: ∂Ce(s)

∂C(s) =
ρR

e

ρ GeSe(Ce(s))Ge, (63)

where we define the associated stresses at the constituent level as

Se = 2∂We(Ce(s))
∂Ce(s)

. (64)

The Cauchy stresses are obtained from Eq. (21)

σe(s) = ϕe(s)F(s)GeSe(Ce(s))GeFT(s) (65)
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where ϕe(s) = ρe(s)/ρ = δMe/δM(s) is the spatial mass fraction of elastin at time s and we 

used the relation ρR
e /J(s) = ρe(s).

4.1.3 Collagen and smooth muscle—From Eq. (51), defined for constant ρ = ρα∀α, 

the Cauchy passive stresses for collagen and smooth muscle are (cf. Eq. (23))

σα(s) = 1
ρ∫−∞

s
mα(τ)qα(s, τ)σα(s, τ)dτ (66)

where σα(s, τ) is given in Eq. (24).

4.2 Mechanobiologically equilibrated G&R of arteries

First, after substituting Eq. (49) into general Eq. (9), we obtain a (recursive) expression for 

the evolution of ρR
α(s)

ρR
α(s) = ∫

−∞

s
kq

α(τ)ρR
α(τ)ϒα(τ)qα(s, τ)dτ, α = m, c (67)

where qα (s, τ), kα(τ) and ϒα(τ) are given in Eqs. (41), (42) and (44), respectively. Assume 

now that, after a sustained change of the distending pressure P, volumetric flow rate Q, and 

axial stretch λz, each with respect to individual (original) homeostatic values, the artery has 

grown and remodeled and finally reached a new state of mechanobiological equilibrium at 

times s ≫ sG&R. Then ρR
α, ϒα and kα reach equilibrium values ρRh

α , ϒh
α and kh

α (to be 

determined) and Eq. (67) specializes to

ρRh
α = kh

αρRh
α ϒh

α∫
−∞

s
qh

α(s, τ)dτ = ρRh
α ϒh

α, α = m, c, (68)

where we used Eq. (46). Hence, dismissing the trivial solution ρRh
α = 0, balance between 

mass production and removal of each cohort (α = m and α = c) at the new (evolved) 

homeostatic state requires in this case, as expected (cf. Eq. (26))

ϒh
α = 1, α = m, c (69)

which, by virtue of Eq. (44), includes the following balance between pressure-induced, 

intramural over-stresses (note that Δσ > 0 heightens mass production) and flow-induced, 

shear over-stress (note that Δτw > 0 > C − CB attenuates mass production)
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Kσ
αΔσh = Kτ

αΔτwh, α = m, c . (70)

Recalling the assumption ρ = const, which implies ρα = ρ∀α, the equilibrium stresses of 

smooth muscle and collagen at the mixture level, Eq. (36), become

σh
α =

ρh
α

ρ σα = ϕh
ασα, α = m, c (71)

where in the new equilibrium configuration in this case (cf. Eq. (38)), 

Φh
α = ϕh

α = ρh
α/ρ = δMα/δM, with σα constant. For elastin, however, the stresses at the mixture 

level of Eq. (65) in the original homeostatic state—noting that Fo ≡ I and 

Co
e = GeCoGe = Ge2—are

σo
e = ϕo

eGeSe(Ge2)Ge = ϕo
eσo

e (72)

and in the new equilibrated state

σh
e = ϕh

eFhGeSe(Ch
e)GeFh

T = ϕh
eσh

e(Fh) . (73)

That is, because it does not turnover in maturity, elastin deforms elastically (due to the 

presence of Fh) from its initial homeostatic configuration to a new one. In contrast, Fh is not 

present in Eq. (71) because smooth muscle and collagen continuously turnover.

Note, too, that under static equilibrium both Eq. (56) and Eq. (57) yield

ah
act = ah, (74)

which means that the reference length aact for active stretch calculation has reduced to the 

current luminal radius ah, thus

λθh
m(act) =

ah

ah
act = 1, (75)

and the stress due to active tone, Eqs. (53) and (54), becomes a function of ϕh
m and Δτwh
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σh
act(ϕh

m, Δτwh) = ϕh
mσact(Δτwh) (76)

with

σact(Δτwh) = Tmax 1 − e
−C2(Δτwh)

1 −
λM − 1
λM − λ0

2
eθ ⊗ eθ (77)

with C (Δτw) given by Eq. (55).

Finally, Eq. (39) specializes to the following (spatial) mass-based rule of mixtures (recalling 

that Φh
a ≡ ϕh

a and we are considering an active contribution)

σh = ∑
α

e, m, c
σh

α + σh
act − phI = ∑

α

m, c
ϕh

ασα + ϕh
eσh

e + ϕh
mσh

act − phI (78)

where the equilibrated-state-independent stresses σα = σo
α = σh

α are given in Eq. (34) and the 

(generally) equilibrated-state-dependent stresses σh
e ≠ σo

e and σh
act ≠ σo

act are given in Eqs. 

(73) and (77), respectively.

Remark 1—Consider Eq. (9). The rate of change of ρR
α(s) is (by Leibniz integral rule)

dρR
α(s)
ds = mR

α(s)qα(s, s)ds
ds + ∫

−∞

s
mR

α(τ)∂qα(s, τ)
∂s dτ = mR

α(s) − kα(s)ρR
α(s) (79)

where we have used the fact that, for Eq. (41), (by chain and Leibniz rules)

∂qα(s, τ)
∂s = exp −∫

τ

s
kα(t)dt ∂

∂s −∫
t

s
kα(t)dt = qα(s, τ) −kα(s)ds

ds = − qα(s, τ)kα(s) (80)

so, using Eq. (49)

dρR
α(s)
ds = kα(s)ρR

α(s)(ϒα(s) − 1) (81)

Clearly, dρR
α(s)/ds = 0 in a mechanobiological equilibrium state, thus (dismissing the trivial 

solution ρR
α = 0) we arrive at the same condition given in Eqs. (26) and (69). Obviously, Eq. 
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(67) represents the general solution in integral form (which is obtained directly through the 

convolution representation or Duhamel’s principle) of the differential equation given in Eq. 

(79), where mR
α = kαρR

αϒα is the generic forcing term. Introducing Eq. (44) into Eq. (81) 

yields

dρR
α(s)
ds = kα(s)ρR

α(s)(Kσ
αΔσ(s) − Kτ

αΔτw(s)) (82)

which is employed in [5] as well, though without the flow shear stress contribution or a 

single constant parameter kσ = ko
αkσ

α.

Remark 2—Eq. (81) can be rephrased in the differential form

dρR
α(s)

ρR
α(s)

= kα(s)(ϒα(s) − 1)ds (83)

and then directly integrated to yield the following explicit solution in terms of the out-of-

equilibrium function ϒα − 1

ρR
α(s)
ρo

α = exp ∫
0

s
kα(τ)(ϒα(τ) − 1)dτ (84)

where we used the initial value ρR
α(0) = ρo

α. Let ko
m = ηqko

c, with ηq > 0, and let the out-of-

equilibrium functions ϒα(τ) − 1 for smooth muscle and collagen be related proportionally 

through ϒm(τ) − 1 = ηϒ(ϒc(τ) − 1), with ηϒ > 0. Then, we obtain from Eq. (84) for smooth 

muscle and collagen

ρR
m(s)
ρo

m =
ρR

c (s)
ρo

c

ηqηϒ

, (85)

which we will use below. In this respect, we see that the factor ηqηϒ controls how smooth 

muscle mass changes with respect to collagen mass for a given G&R stimulus in ϒα. 

Considering now the special case in Eq. (44), the proportionality relation 

ϒm(τ) − 1 = ηϒ(ϒc(τ) − 1) is satisfied for Kσ
m = ηϒKσ

c and Kτ
m = ηϒKτ

c, with the ratio 

ηK = Kσ
m/Kτ

m = Kσ
c /Kτ

c controlling the different effects of wall and shear stresses over the 

G&R response. We note that this assumption has been made in previous works (e.g., 
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implicitly in [7, 23], where ηϒ = 1). Nevertheless, ϒm(τ) − 1 and ϒc(τ) − 1 need not be 

proportional in a more general case, for which all gain-type parameters are independent.

Remark 3—Observe in Eq. (56) that a characteristic time for the adaptation of the 

reference length aact for active smooth muscle is sG&R
act = 1/kact. In addition, observe in Eq. 

(79) that characteristic times associated with changes in mass of constituents α = m, c are 

given by sG&R
α = 1/kα 1/ko

α, which are the characteristic decay times of the mass removal 

functions qα (s, τ). Hence, a characteristic time for the global G&R process is, in terms of 

order of magnitude,

sG&R = max (sG&R
α , sG&R

act ) = 1
min (ko

α, kact)
. (86)

Note that, for the specific case given in Eq. (82), sG&R can be modulated by specific values 

of the gain parameters Kσ
α and/or Kτ

α. The solution discussed in this section, valid for 

sustained changes in external mechanical stimuli, is reached at G&R times satisfying s/sG&R 

≫ 1, as we show in Example 5.1 below.

All previous equations are defined pointwise within the arterial wall; that is, they are equally 

valid for either thick or thin walled arterial models. For simplicity, we consider below a 

unilayered thin-walled model for illustrative purposes. A thick-walled description would 

provide a more accurate through-the-thickness solution without changing our main 

qualitative results or conclusions. We take the representative measure of the intramural stress 

state, namely σ∼, as the first principal invariant of the mean wall Cauchy stress σ, namely 

σ∼ = tr σ ≃ σθθ + σzz, where we assume a quasi-plane-stress state for which σrr ≪ σθθ and σrr 

≪ σzz. The mean in-plane (biaxial) stresses σθθ and σzz are given in terms of the distending 

pressure P and the global axial force on the vessel fz, respectively, through

σθθ = Pa
h , and σzz =

f z
πh(2a + h) , (87)

where a is inner radius and h is thickness. The intramural over-stress term expressed in terms 

of original (o) and evolved (h) homeostatic values (i.e., we allow new homeostatic set-points 

to evolve) reads

Δσh =
σθθh + σzzh
σθθo + σzzo

− 1. (88)

Assuming that the blood flow is Newtonian and fully developed through a long cylindrical 

sector of the artery, with τw = 4μQh/(πah
3) and μ the viscosity, the equilibrium Δτwh is
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Δτwh =
τwh
τwo

− 1 =
Qh
Qo

ao
3

ah
3 − 1 (89)

hence, from Eq. (70)

Kσ
α σθθh + σzzh

σθθσ + σzzo
− 1 − Kτ

α τwh
τwo

− 1 = 0, α = m, c (90)

where ah (present in σθθh, σzzh and τwh), hh (in σθθh and σzzh), and fzh (in σzzh) are 

unknowns to be determined for each prescribed alteration in blood pressure, γh = Ph/Po, 

blood flow, εh = Qh/Qo, and axial stretch λzh (note that, in experiments, one usually 

prescribes axial stretch rather than axial load). If, as in Remark 2, the gain parameters for 

smooth muscle and collagen satisfy the relation Kσ
m/Kτ

m = Kσ
c /Kτ

c = ηK, even if they have 

different values Kσ
m = ηϒKσ

c and Kτ
m = ηϒKτ

c, then Eqs. (90) for α = m, c can be written

ηK
σθθh + σzzh
σθθo + σzzo

− 1 −
τwh
τwo

− 1 = 0 (91)

which is a single equation for the unknowns ah, hh and fzh. It is easy to see that 

mechanobiological equilibrium according to Eq. (91) is consistent with that stated in [14]. In 

what follows we derive additional equilibrium equations that define completely the evolved 

homeostatic state at s ≫ sG&R.

By symmetry considerations, we model the arterial wall as an orthotropic material with the 

radial (r), circumferential (θ) and axial (z) directions being preferred axes at the mixture 

level. Since pressure-induced loads are axisymmetric and axial stretch is along the long axis, 

the resulting deformation gradient Fh, expressed in cylindrical coordinates, is diagonal, i.e. 

[Fh]rθz = diag [λrh, λθh, λzh] with λrh, λθh and λzh equilibrium stretches relative to the 

initial homeostatic state. Note that we are neglecting the mechanical effect of the flow-

induced shear stress over the arterial wall while including its mechanobiological effect, since 

τw ∼ 1 Pa and σθθ ∼ 100 kPa [20]. The (yet unknown) Jacobian in terms of the stretches 

reads

Jh = λrhλθhλzh (92)

where we consider the axial stretch λzh, relating both equilibrated configurations, to be 

known (prescribed). The radial λr and circumferential λθ stretches are given in terms of ah, 

ao, hh and ho

Latorre and Humphrey Page 22

Z Angew Math Mech. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



λrh =
hh
ho

, and λθh =
ah + hh/2
ao + ho/2 . (93)

Recall, of course, that λro = λθo = λzo = 1 yield non-zero homeostatic stresses due to 

deposition stretches Gα.

Since the mass of elastin does not change, its spatial mass density at the new equilibrium 

state reads

ρh
e =

ρo
e

Jh
. (94)

The spatial mass densities of elastin, smooth muscle and collagen must satisfy, with ρ 
constant,

ρh
e + ρh

m + ρh
c = ρ . (95)

In addition, from Eq. (85) with ρRh
α = Jhρh

α, we obtain the following relation between the 

spatial mass densities of smooth muscle and collagen

Jhρh
m

ρo
m =

Jhρh
c

ρo
c

ηqηϒ

. (96)

The total Cauchy stresses at the new equilibrated state are given by—recall Eq. (78)

σh = ∑
α

m, c ρh
α

ρ GαSαGα +
ρh

e

ρ FhGeSe(Ch
e)GeFh

T +
ρh

m

ρ σh
act − phI (97)

where the Lagrange multiplier is computed while assuming σrr /σ∼ ≃ 0 for a thin wall, along 

with σrr
m ≃ 0 ≃ σrr

c  and σrr
act ≃ 0 for (in-plane) smooth muscle and collagen in Eq. (78). Since 

[Ge]rθz = diag[Gr
e, Gθ

e, Gz
e], we obtain

σrrh = σrrh
e − ph = 0 ph = σrrh

e =
ρh

e

ρ Srrh
e Ge

e2λrh
2 . (98)

The projection of Eq. (76) over eθ ⊗ eθ gives the circumferential active stress
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σθθh
act (ρh

m, ah) =
ρh

m

ρ Tmax 1 − e
−C2(ah)

1 −
λM − 1
λM − λ0

2
(99)

where we explicitly indicate the dependence of the ratio C on the unknown ah. The global 

equilibrium equations σθθhhh = Phah and σzzhπhh(2ah + hh) = fzh close the system of 

equations to be solved, yielding

∑
α

m, c ρh
α

ρ σθθ
α +

ρh
e

ρ Sθθh
e Gθ

e2λθh
2 +

ρh
m

ρ σθθh
act (ah) −

ρh
e

ρ Srrh
e Gr

e2λrh
2 =

Phah
hh

(100)

and

∑
α

m, c ρh
α

ρ σzz
α +

ρh
e

ρ Szzh
e Gz

e2λzh
2 −

ρh
e

ρ Srrh
e Gr

e2λrh
2 =

f zh
πhh(2ah + hh) (101)

with σθθ
α = σα:eθ ⊗ eθ = σθθo

α = σθθh
α  and σzz

α = σα:ez ⊗ ez = σzzo
α = σzzh

α . Note from the axial 

global equilibrium equation that the axial stretch λzh would replace the axial force fzh as 

unknown if one prescribed fzh rather than λzh (as we do based on biaxial testing 

procedures).

In order to solve Eqs. (100) and (101) in a general case, we need to know the spatial mass 

density of every cohort of smooth muscle and collagen contributing to circumferential and 

axial passive stresses (first terms in the left-hand sides of Eqs. (100) and (101)). Four 

families of collagen fibers oriented in four directions are frequently considered in arterial 

mechanics, namely one oriented circumferentially, one oriented in the axial direction, and 

two additional ones oriented in symmetric diagonal directions (say ±45°). Thus, the first 

(sum) terms in the left-hand sides of Eqs. (100) and (101) include corresponding passive 

stress contributions of circumferential smooth muscle and “four” different collagen fiber 

families. Interestingly, we obtain from Eq. (96), but with exponents unity between different 

cohorts of collagen, a common relative change in the mass of the different cohorts of 

collagen with respect to their initial homeostatic values

ρh
ci

ρo
ci

=
ρh

c j

ρo
c j

, i ≠ j = 0°, ± 45°, 90°
ρh

ci

ρo
ci

=
ρh

c

ρo
c (102)

where ρc = ∑ ρ
ci, which is to be used in the first terms in the left-hand sides of Eqs. (100) 

and (101).
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In summary, we will solve the system of nonlinear algebraic equations formed by Eqs. (91), 

(95), (100), and (101) for γh = Ph/Po, εh = Qh/Qo, and λzh (defined herein with respect to the 

homeostatic configuration, i.e. λzo = 1, see Figure 1) prescribed, which we summarize as

ηK
σθθh + σzzh
σθθo + σzzo

− 1 −
τwh
τwo

− 1 = 0 (103)

ρh
e + ρh

m + ρh
c = ρ (104)

∑
α

m, c ρh
α

ρ σθθ
α +

ρh
e

ρ Sθθh
e Gθ

e2λθh
2 +

ρh
m

ρ σθθh
act −

ρh
e

ρ Srrh
e Gr

e2λrh
2 =

Phah
hh

(105)

∑
α

m, c ρh
α

ρ σzz
α +

ρh
e

ρ Szzh
e Gz

e2λzh
2 −

ρh
e

ρ Srrh
e Gr

e2λrh
2 =

f zh
πhh(2ah + hh) (106)

where the unknowns are ah, hh, ρh
c, and fzh, with other variables expressed easily in terms of 

these unknowns. This system of nonlinear equations admit solutions by the (iterative) 

Newton–Raphson method, for which a proper initial guess is that given by an ideal 

adaptation, namely ah/ao = εh
1/3, hh/ho = γhεh

1/3, ρh
c /ρo

c = 1, and fzh/fzo = hh(2ah+hh)/(ho(2ao+ 

ho)), cf. [14]. Of course, the solution ah = ao, hh = ho, ρh
c = ρo

c, and fzh = fzo is recovered from 

Eqs. (103)–(106) at the initial homeostatic state γh = γo = 1, εh = εo = 1, and λzh = λzo = 1.

5 Illustrative examples

In the following examples we solve numerically the system of nonlinear equations given in 

Eqs. (103)–(106) for a thin-walled artery containing isotropic elastin, circumferential 

smooth muscle cells, and circumferential collagen fibers. The hyperelastic response of 

elastin is modelled using a neoHookean model

We(Ce(s)) = ce

2 (Ce(s):I − 3) (107)

which gives the following constant second Piola–Kirchhoff stress tensor at the constituent 

level
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Se = 2∂We Ce s
∂Ce s

= ceI, (108)

hence the associated second Piola–Kirchhoff stress components in Eqs. (105) and (106) are 

equilibrated-state-independent

Srrh
e = ce = Srro

e , Sθθh
e = ce = Sθθo

e , and Srrh
e = ce = Srro

e , (109)

while the Cauchy stresses for elastin yet depend on both deposition stretches and total 

mixture stretches, cf. Eqs. (105) and (106). Both circumferential smooth muscle and 

collagen hyperelastic responses are modelled using Fung-type models

Wα λn τ
α s =

c1
α

4c2
α e

c2
α λn τ

α2 s − 1 2
− 1 , α = m, c (110)

with am = ac = eθ, i.e.

λn τ
α2 s = Cn τ

α s :aα ⊗ aα ≡ Cn τ
α s :eθ ⊗ eθ, α = m, c (111)

The respective second Piola–Kirchhoff stresses at the constituent level are

Sα λn τ
α s = 2

∂Wα Cn τ
α s

∂Cn τ
α s

= 2
dWα λn τ

α s

dλn τ
α2 s

∂λn τ
α2 s

∂Cn τ
α s

(112)

= c1
α λn τ

α2 s − 1 e
c2
α λn τ

α2 s − 1 2
eθ ⊗ eθ, α = m, c (113)

Taking into account Eq. (31), we arrive at

λn τ
α s ≫ sG&R = Gθ

α, α = m, c . (114)

The corresponding Cauchy stresses at the constituent level, from Eq. (34), are
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σθθ
α = σα:eθ ⊗ eθ = c1

αGθ
α2 Gθ

α2 − 1 e
c2
α Gθ

α2 − 1 2
, α = m, c (115)

The elastic parameters for elastin, smooth muscle, and collagen, along with the remaining 

parameters needed to solve the system of equations at hand, are given in Table 1. The 

associated inner pressure at the initial homeostatic state is Po = 14.18 kPa = 106.4 mmHg.

5.1 Correspondence between full and equilibrated models

The main goal of this example is to verify that the time-independent formulation of Section 

4.2, reduced in practice to Eqs. (103)–(106), yields the same long-term, steady-state solution 

as that obtained with the full, time-dependent constrained mixture model of Section 4.1 for a 

given set of initially altered and then sustained external loads. To establish this salient 

feature of the equilibrated formulation in a general case, we consider simultaneous 1.5-fold 

increments of inner pressure P, flow rate Q, and axial stretch λz, which are sustained in time 

(Figure 2.f, solid line). We show in Figure 2.a – e (solid lines), the G&R response predicted 

by the full model of Section 4.1 for this combined loading case. The evolving response 

reveals that the inner radius a (Figure 2.a) initially increases sharply in parallel with the 

increased combined loading while the thickness (Figure 2.b) decreases (even though the 

response is not initially isochoric, as we see next).

After this initial response, both a and h increase at a lower rate until reaching new steady-

state “homeostatic” values. We can also see that the referential densities ρR
m and ρR

c  for 

smooth muscle and collagen (Figures 2.d and 2.e) increase quickly, meaning that the G&R 

process starts promptly, again reaching new steady-state values. The increment of mass 

addition for both constituents during this complex loading is consistent with the evolution of 

the over-stress functions for collagen and smooth muscle ϒα (see Figure 2.c for collagen and 

recall that ϒm − 1 = kϒ (ϒc − 1)), which ultimately drive the G&R process (via Eq. (81)). 

Since all three external insults are sustained, the artery tends to “relax” the altered stresses 

and restore mechanobiological equilibrium (mathematically described by ϒα = 1, recall Eq. 

(69)). In this particular case, the mechanical-stimulus functions ϒα reach a maximum at s ≈ 
7 days, then decrease, approaching to equilibrium values ϒα → 1 for s = 560 days ≫ 14 

days ≡ sG&R (recall Remark 3). If the external insults were sustained beyond s = 560 days, 

the eventually reached constant (equilibrium) value ϒα = 1 would give a vanishing net mass 

production situation during which time production would equal removal within an 

unchanging state (tissue maintenance).

Additionally, we show in Figure 2.a – e (solid squares) the time-independent solution that 

the mechanobiologically equilibrated G&R formulation of Section 4.2 (system of Eqs. 

(103)–(106)) predicts for the present combination of external loads Ph/Po = Qh/Qo = λzh/λzo 

= 1.5 (Figure 2.f). To compute this solution, we employed a standard Newton–Raphson 

procedure, with starting point ah0/ao = εh
1/3, hh0/ho = γhεh

1/3, ρh0
c /ρo

c = 1, and fzh0/fzo = 

hh0(2ah0 + hh0)/(ho(2ao + ho)). Clearly, the mechanobiologically equilibrated model yields 

the same long-term, steady-state, tissue maintenance solution given by the full integral 
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model. Although not shown, both formulations yield the same (long-term) outcomes for 

other combinations of external stimuli that were evaluated.

We submit that —given any alteration of P/Po, Q/Qo and λz/λzo, applied at any rate, but 

eventually sustained in time, that leads to a mechano-adaptation—the present formulation 

can be used with confidence to obtain the resulting evolved, mechanobiologically 

equilibrated state in a computationally efficient manner. That is, we can bypass the need to 

track the history of the many variables in the full model calculation. For example, the full 

model simulation in this example, integrated up to s = 560 days (when the solution is 

relaxed) with a time step Δs = 1 day, took a computational time of the order of seconds, 

whereas the equilibrated, single solution computed from the resulting nonlinear system of 

equilibrium equations was obtained in a few hundredths of a second, both within an 

interpreted (Matlab) environment. This 2 order of magnitude reduction in computational 

time (and associated memory) could prove important when performing (long-term) large 

scale 3D simulations as well as problems of parameter sensitivity, uncertainty quantification, 

or optimization.

5.2 Instantaneous and mechanobiologically equilibrated solutions

We solve in this example Eqs. (103)–(106) for different values of γh = Ph/Po and εh = 

Qh/Qo, with λzh/λzo = 1. That is, we obtain exact mechanobiologically equilibrated 

solutions for long-term, steady states after sustained changes of the external stimuli (i.e. 

such that s/sG&R ≫ 1). For each pair {γh, εh}, we also compute the transient, 

mechanobiologically unbalanced, elastic solution of the model corresponding to abrupt 

changes in pressure and flow rate {Ph, Qh} that are applied completely at s = 0+ and depart 

from the homeostatic state {Po, Qo} at s = 0− (i.e. such that s/sG&R ≪ 1). In this last case, we 

consider the instantaneous response of the material to be isochoric, so λrλθλz = 1, whereby 

the constituent mass fractions remain (initial) homeostatic, the stresses σθθ
α  for smooth 

muscle and collagen are obtained from hyperelasticity considerations with respect to the 

initial homeostatic configuration, and the reference length for the active stretch λθ
m act  is 

aact = ao.

Figure 3 shows both instantaneous (meshed) and relaxed (solid) responses for each pair {γh, 
εh} over the ranges 0.5 ≤ γh ≤ 1.5 and 0.5 ≤ εh ≤ 1.5. Specifically, shown are solutions for 

inner radius a, wall thickness h, referential density for collagen ρR
c = Jρc (with that for 

ρR
m = Jρm similar), circumferential passive σθθ

pas and active σθθ
act stresses, and the relative shear 

overstresses Δτw = (τw − τwo)/τwo. Consider two particular cases of interest: {γh, εh} = 

{1.5, 1}, that is, an increment in distending pressure while maintaining flow rate constant, 

and {γh, εh} = {1, 1.5}, that is, an increment in flow rate while maintaining pressure 

constant.

In the first case, {γh, εh} = {1.5, 1}, the instantaneous elastic response corresponding to an 

isolated increment in pressure yields {a+/ao, h+/ho} = {1.023, 0.979}, that is, the inner radius 

increases while the thickness decreases consistent with transient incompressibility. With the 

symbol (+) we refer to the instant s = 0+. The overstresses associated to the increase in 
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pressure are mainly intramural, coming from a dramatic change in the passive stress 

σθθ +
pas /σθθo

pas = 1.87 , with relative over-stresses {Δσ+, Δτw+} = {(σθθ+ − σθθo)/σθθo, (τw+ − 

τwo)/τwo} = {0.57, −0.067}. Note that the wall shear stress decreases slightly due to the 

increase in inner radius with constant flow rate. The instantaneous active stress changed 

little σθθ +
act /σθθo

act = 1.08 , even though it is yet positive consistent with the instantaneous, 

small decrement of flow shear stress. At this instant, direct assessments of both stimulus-

mediated functions for smooth muscle and collagen give ϒ+
α > 1, so the artery is 

mechanobiologically unequilibrated at s = 0+. Since the external stimulus {γh, εh} = {1.5, 

1} is sustained, the artery tends to restore internal equilibrium through respective mass 

turnover of smooth muscle and collagen (recall Eq. (81)), until ϒh
α = 1 (recall Eq. (69)) at 

s/sG&R ≫ 1. Thus, turnover of smooth muscle and collagen are driven so as to decrease the 

initial intramural stress deviation Δσ+ = 0.57 and to increase the initial shear stress deviation 

Δτw+ = −0.067. The corresponding mechanobiologically equilibrated, G&R state is 

ρRh
m /ρo

m, ρRh
c /ρo

c = 1.623, 1.403  and {Δσh, Δτwh} = {−0.0085, −0.017}. Finally, consistent 

with the mass turnover and target stresses, mechanobiological equilibrium at s/sG&R ≫ 1 

yielded a decrease in luminal radius and an increase in wall thickness (respect to the 

previous instantaneous values {a+/ao, h+/ho} = {1.023, 0.979}) such that {ah/ao, hh/ho} = 

{1.006, 1.521}. Note, therefore, that {σθθh/σθθo, τwh/τwo} ≈ {1, 1} and {ah/ao, hh/ho} ≈ 
{ε1/3, γε1/3}= {1, 1.5}, cf. [14].

Next, consider an isolated change of flow rate, {γh, εh} = {1, 1.5}. The instantaneous 

hyperelastic response (Figure 3) yields {a+/ao, h+/ho} = {1.008, 0.993}. Again, the inner 

radius slightly increases and the thickness decreases by incompressibility. Unlike the 

previous case, however, the overstresses associated with the increase in flow rate are mainly 

due to shear stresses, namely {Δσ+, Δτw+} = {0.015, 0.466}. The instantaneous change in 

passive stress is σθθ +
pas /σθθo

pas = 1.22, while the active stress decreases as σθθ +
act /σθθo

act = 0.68

consistent with the instantaneous, high increment of flow shear stress. Since the artery is 

mechanobiologically unequilibrated at s = 0+ and the external stimulus {γh, εh} = {1, 1.5} is 

sustained, the artery grows and remodels trying to restore mechanobiological equilibrium. 

The corresponding “relaxed” state is ρRh
m /ρo

m, ΔρRh
c /ρo

c = 1.351, 1.234  and {Δσh, Δτwh} = 

{−0.0024, −0.005}. Finally, consistent with the mass turnover and target stresses, 

mechanobiological equilibrium at s/sG&R ≫ 1 is geometrically accomplished by increases in 

luminal radius and wall thickness (respect to the previous instantaneous values {a+/ao, h

+/ho} = {1.008, 0.993}) such that {ah/ao, hh/ho} = {1.147, 1.150}. We obtain, again, {σθθh/
σθθo, τwh/τwo} ≈ {1, 1} and {ah/ao, hh/ho} ≈ {ε1/3, γε1/3} = {1.145, 1.145}, cf. [14].

Finally, note as a general trend in Figure 3 that the instantaneous, mechanobiologically 

unbalanced response provokes relatively small changes in the geometric parameters, with no 

change in constituent mass, by relatively large changes in intramural and shear stresses, all 

measured with respect to the respective initial homeostatic values. The situation is reversed 

after G&R is complete for each external insult {Ph, Qh}. That is, the long-term, 

mechanobiologically equilibrated response yields relatively large changes in the geometric 

parameters, by means of marked changes in smooth muscle and collagen mass, with 
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relatively small deviations in intramural and shear stresses due to the near recovery of 

baseline values. Indeed, since Δσh and Δτwh do not reach the ideal targets Δσh = Δτwh = 0, 

we could consider a resetting of homeostatic stresses from (original) values at o to (evolved) 

values at h.

5.3 Effects of elastin content

Now verified and validated (Figures 2 and 3), the present simpler formulation can be used to 

evaluate fundamental hypotheses ([13]) or perform parametric studies ([23]) efficiently. As 

an example, we now solve Eqs. (103)–(106), with material parameters given in Table 1 

(except for the mass fractions), for different relative contents of elastin, smooth muscle, and 

collagen (cf. [10, 11, 24]). As we can observe in Eq. (104), different relative contents of 

elastin will yield different relative (evolved) contents of smooth muscle and collagen and, 

accordingly, different relative contributions of stresses in Eqs. (105) and (106), and different 

geometrical outcomes.

We firstly compute arterial adaptations in the ranges 0.5 ≤ γh ≤ 1.5 and 0.5 ≤ εh ≤ 1.5 for the 

hypothetical case in which no elastin is present in the artery. We consider mass fractions 

ϕo
e = 0.0, ϕo

m = 0.77 and ϕo
c = 0.23. Figure 4 reveals that the arterial adaptations are almost 

perfect, approaching the theoretical target responses ah/ao = εh
1/3, hh/ho = γhεh

1/3 and σθθh/

σθθo = 1 = τwh/τwo for any values of Ph and Qh, with λzh = λzo = 1. In Figure 5 we consider 

a case with increased content of elastin ϕo
e, ϕo

m, ϕo
c = 0.30, 0.57, 0.13 . Note that the higher 

the content of elastin, the worse the agreement between the grown and remodeled geometric 

parameters and stresses and their ideal targets. This should not be surprising since we are 

assuming that elastin can be neither produced nor removed, thus a perfect adaptation to the 

theoretical targets cannot be attained [10, 11, 24]. That is, the long half-life of elastin 

represents a physiologic constraint against perfect mechanoadaptation. Conversely, albeit not 

shown, full turnover of elastin (with ϕo
e, ϕo

m, ϕo
c = 0.30, 0.57, 0.13  and, for example, 

ko
e = ko

m, Kσ
e = Kσ

m, and Kτ
e = Kτ

m), yielded a full mechanoadaptation similar to that in Figure 4 

wherein all constituents turned over fully. In this regard, we recall that elastin does 

“turnover” in development.

Finally, one possibility for ideal adaptation, in the sense that ah/ao = εh
1/3, hh/ho = γhεh

1/3 and 

σθθh/σθθo = τwh/τwo = 1, predicted by the present constrained mixture model is given when, 

first, no elastin is present within the arterial wall and, second, smooth muscle and collagen 

share the same gain Kσ
m = Kσ

c, Kτ
m = Kτ

c (i.e., same over-stress functions ϒm (τ) = ϒc (τ)) and 

rate ko
m = ko

c (i.e., same removal function qm (s, τ) = qc (s, τ)) parameters, that is ηϒ = ηq = 1. 

In this very particular case, the relative mass increments of the constituents are equal, see 

Eq. (96), thus their spatial mass fractions preserve their respective original homeostatic 

values throughout the G&R process and the intramural stresses, under the final 

mechanobiological equilibrium state, recover exactly their original homeostatic values, 

recall Eq. (40).
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6 Discussion

Adaptative/maladaptative mechanobiological processes in soft tissues are dynamic. We have 

shown, however, that associated long-term, steady-state G&R analyses can simplify the 

formulation greatly and yet provide considerable insight. Analyses of this type are frequent 

in applied mathematics and mechanics. For example, when modeling standard viscoelastic 

materials, one can consider the existence of both equilibrium and non-equilibrium energies 

from which total stresses are derived [25, 26]. In that case, if the loading process is 

sufficiently fast (relative to a characteristic relaxation time, cf. Example 5.2), then the 

response can be derived from both potentials simultaneously. If the loading process is 

sufficiently slow, or the external load is sustained over a sufficiently long time (cf. Example 

5.2), the response is derived from the equilibrium potential alone. Importantly, a viscous 

material is thermodynamically unbalanced if loads are applied rapidly, as in the former case, 

and thermodynamically equilibrated in the latter ones [27]. Even though the material 

response is rate-dependent for arbitrary loading, knowledge of these specific (limiting) 

solutions is fundamental to understanding the constitutive behavior [27], characterizing the 

material from experimental data [28], and predicting additional results [29].

Indeed, a direct relationship between models of G&R and viscoelasticity has been suggested 

in [5]. In that work, a temporally homogenized constrained mixture model is derived with 

the main goal of reducing the computational cost of classical constrained mixture models 

while preserving biologically motivated, micromechanical characteristics. Setting that 

formulation within the context addressed herein, we could say that temporal homogenization 

seeks to simplify the integration of the time-dependent terms, giving as a result a more 

efficient (while approximated) formulation for analysis of yet transient, non-equilibrium 

responses.

Regarding steady-state G&R analyses, Rachev and coworkers [30,31] computed long-term 

outcomes of arterial models in a hypertensive scenario. These authors follow a so-called 

global growth approach, in which the evolution of geometric and mechanical properties of 

an artery are computed based on deviations from baseline stress values across the wall 

thickness [32]. In the general, rate-dependent case, the postulated evolution equations are 

integrated in time. In [30, 31], however, the rate-dependent terms are neglected, and 

differential equations for the evolution are replaced by nonlinear algebraic equations that 

yield corresponding remodeled solutions towards either normotensive [30] or maladaptive 

[31] targets.

7 Conclusions

In this paper we derived a mechanobiologically equilibrated, steady-state formulation for a 

constrained mixture theory of G&R of soft tissues. We formally derived evolution equations 

that govern the general time-dependent model from the onset, obtaining a specific version of 

the mass production equation consistent with the concept of mechanobiological equilibrium. 

Stresses defined at either the constituent or the (homogenized) mixture level are 

conveniently distinguished. We further specialized the general formulation to the case in 

which rate-dependent effects vanish, deriving a fully equivalent algebraic formulation in 
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which time is no longer present; hence one need not track the production and removal 

history of the load-bearing constituents, with consequent savings in computational time (two 

orders of magnitude in the present study). This time-independent formulation is valid, then, 

for states in which the soft tissue has completed its internal process of G&R, namely purely 

steady states after long-term applications of sustained external stimuli. Whereas the 

presentation was for a special case where Δs = s − 0 ≫ sG&R, in fact similar results hold for 

any Δs = s − sp ≫ sG&R, where sp is the time at which the last sustained perturbation 

occurred. For illustrative purposes, we analyzed such responses using a single layer, thin-

walled description of an idealized artery, obtaining a system of nonlinear, evolved equations 

that yielded, precisely, the same long-term solution as the associated full constrained 

mixture model. Although the present mechanobiologically theory has not been extended to 

obtain grown and remodeled, steady-state configurations of soft tissues with more complex 

geometries and/or loads, we submit that it may “represent a fundamentally new capability to 

predict the single thing that matters most to doctors and patients: long-term outcomes” [33]. 

Notwithstanding these benefits, the present equilibrium formulation is not valid, in general, 

for the analysis of truly time-dependent responses of soft tissues, for which the full integral 

formulation is needed to compute the time course of the G&R.
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Appendix: List of Symbols

It is common to write many mechanical quantities per unit mass or volume, but both can 

change in biological growth and remodeling. Here we list mass-and-volume-related 

quantities, with SI units. If constituents are modeled as incompressible, respective reference-

volume-specific and current-volume-specific properties are equivalent. In contrast, if the 

volume of mixture varies via production/removal of mass, variables defined per unit 

reference or current volume of mixture must be distinguished. We note, too, that traction-

free configurations can evolve and so too homeostatic states, hence reference configurations 

need not equal original references.

Intrinsic properties of constituents

ρα
Mass density of constituent α: current mass of constituent α per unit current volume of constituent α kg · m−3

Wα
Volume-specific strain energy function of constituent α: current strain energy of constituent α per unit current volume of constituent 
α

J · m−3

Wm
α

Mass-specific strain energy function of constituent α: current strain energy of constituent α per unit current mass of constituent α J · kg−1

Latorre and Humphrey Page 32

Z Angew Math Mech. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Properties of constituents at the mixture level

Mα Partial mass of constituent α within the mixture (usually defined locally) kg

Vα Partial volume of constituent α within the mixture (usually defined locally) m3

Πα Mass production rate of constituent α (usually defined locally) kg · s−1

ρα Apparent spatial mass density of constituent α: current mass of constituent α per unit current volume of mixture kg · m−3

ρR
α

Apparent referential mass density of constituent α: current mass of constituent α per unit reference volume of mixture kg · m−3

ΦR
α

Referential volume fraction of constituent α: current volume of constituent α per unit reference volume of mixture [−]

Φα Spatial volume fraction of constituent α: current volume of constituent α per unit current volume of mixture [−]

ϕα Spatial mass fraction of constituent α: current mass of constituent α per unit current mass of mixture [−]

mα Spatial mass density production rate of constituent α: current mass production rate of constituent α per unit current volume of 
mixture

kg · s−1 · m−3

mR
α

Referential mass density production rate of constituent α: current mass production rate of constituent α per unit reference 
volume of mixture

kg · s−1 · m−3

mN
α

Referential nominal mass density production rate of constituent α: current nominal mass production rate of constituent α per 
unit reference volume of mixture

kg · s−1 · m−3

WR
α

Referential strain energy function of constituent α: current strain energy of mass of constituent α within the mixture per unit 
reference volume of mixture

J · m−3

Properties of mixture

M Mass of mixture (usually defined locally) kg

V Volume of mixture (usually defined locally) m3

Vo Reference (original homeostatic) volume of mixture (usually defined locally) m3

ρ Spatial mass density of mixture: current mass of mixture per unit current volume of mixture kg · m−3

ρR Referential mass density of mixture: current mass of mixture per unit reference volume of mixture kg · m−3
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Fig. 1. 
Schematic view of different configurations involved in the G&R response of a soft tissue. 

The original homeostatic configuration of the mixture κ(0) = κo is chosen as the reference 

configuration for the computation of G&R deformations of the mixture via F(τ), τ ∈ [0, s]. 

The deformation experienced, at time s, by the material element of constituent α deposited 

at time τ is given by Fn(τ)
α (s) = F(s)F−1(τ)Gα, where we assume that the constituents are 

deposited with constant prestretches Gα (τ) = Gα and that all constituents are constrained to 

deform with the mixture.
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Fig. 2. 
Long-term, steady-state solution computed with the full (line) and mechanobiologically 

equilibrated (solid square) models. Shown are (a) inner radius a/ao, (b) thickness h/ho, (c) 

collagen over-stress function ϒc, (d) referential mass density of smooth muscle ρR
m/ρo

m, (e) 

referential mass density of collagen ρR
c /ρo

c, and (f) loads prescribed simultaneously P/Po = 

Q/Qo = λz/λzo from 1 to 1.5.
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Fig. 3. 
Instantaneous (hyperelastic) responses at s = 0+ (meshed surfaces) and associated 

mechanobiologically equilibrated states at s/sG&R ≫ 1 (solid surfaces) following respective 

instantaneous, and then sustained, changes of luminal pressure (γh = Ph/Po) and flow rate 

(εh = Qh/Qo) with respect to the initial homeostatic state γh = εh = 1 (black solid point). 

Shown are (a) relative luminal radius a/ao, (b) relative thickness h/ho, (c) relative referential 

mass density of collagen ρR
c /ρo

c, (d) passive contribution to circumferential stress σθθ
pas [kPa], 

(e) active contribution to circumferential stress σθθ
act [kPa], and (f) increment of flow-induced 

shear stress relative to the initial homeostatic value Δτw = (τw−τwo)/τwo. The axial stretch 

with respect to the initial homeostatic configuration is prescribed as λzh = 1 (with total axial 

stretch relative to unloaded ≃ 1.6).
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Fig. 4. 

Case ϕh
e = 0.00, ϕh

m = 0.77, ϕh
c = 0.23 (hypothetical case without elastin). 

Mechanobiologically equilibrated states (solid surfaces) and associated ideal targets (meshed 

surfaces) for respective changes of inner pressure (γh = Ph/Po) and flow rate (εh = Qh/Qo) 

with respect to the initial homeostatic state γh = εh = 1 (black solid point). Shown are (a) 

relative luminal radius ah/ao (ideal target ah/ao = εh
1/3), (b) relative thickness hh/ho (ideal 

target hh/ho = γhεh
1/3), (c) relative referential mass density of collagen ρRh

c /ρo
c (ideal target 

ρRh
c /ρo

c = Jtarget), (d) passive contribution to circumferential stress σθθh
pas [kPa] (ideal target 

σθθh
pas = σθθo

pas), (e) active contribution to circumferential stress σθθh
pas [kPa] (ideal target 

σθθh
act = σθθo

act ), and (f) increment of flow shear stress relative to the initial homeostatic value 

Δτwh = (τwh − τwo)/τwo (ideal target Δτwh = 0). The axial stretch with respect to the initial 

homeostatic configuration is prescribed as λzh = 1.
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Fig. 5. 

Case ϕh
e = 0.30, ϕh

m = 0.57, ϕh
c = 0.13 (elastin does not turnover). Mechanobiologically 

equilibrated states (solid surfaces) and associated ideal targets (meshed surfaces) for 

respective changes of inner pressure (γh = Ph/Po) and flow rate (εh = Qh/Qo) with respect to 

the initial homeostatic state γh = εh = 1 (black solid point). Shown are (a) relative luminal 

radius ah/ao (ideal target ah/ao = εh
1/3), (b) relative thickness hh/ho (ideal target 

hh/ho = γhεh
1/3), (c) relative referential mass density of collagen ρRh

c /ρo
c (ideal target 

ρRh
c /ρo

c = JTarget), (d) passive contribution to circumferential stress σθθh
pas [kPa] (ideal target 

σθθh
pas = σθθo

pas), (e) active contribution to circumferential stress σθθh
act  [kPa] (ideal target 

σθθh
act = σθθo

act ), and (f) increment of flow shear stress relative to the initial homeostatic value 

Δτwh = (τwh − τwo)/τwo (ideal target Δτwh = 0). The axial stretch with respect to the initial 

homeostatic configuration is prescribed as λzh = 1.
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Table 1

Baseline material parameters for a cerebral artery. Adapted from Ref. [6] for the specific examples performed 

in this work.

ρ = 1050 kg/m3

[ϕo
e, ϕo

m, ϕo
c]

= [0.02, 0.76, 0.22]

[ao, ho] = [1.4, 0.12] mm

ce = 70.6 kPa

[c1
m, c2

m]
= [10 kPa, 3.5]

[c1
c, c2

c]
= [672.5 kPa, 22]

[Gr
e, Gθ

e, Gz
e]

= [1/1.42, 1.4, 1.4]

[Gθ
m, Gθ

c]
= [1.3, 1.08]

Tmax = 170 kPa

kact = 1/7 day−1

[λM, λ0] = [1.1, 0.4]

[CB, CS] = 0.8326 × [1, 0.5]

[ko
m, ko

c]
= [1/14, 1/10] day−1

[Kσ
m, Kτ

m, Kσ
c , Kτ

c]
= [2, 1, 1, 0.5]
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