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Abstract

The inside of a cell is highly crowded with a large number of macromolecules together with 

solvents and metabolites. To know the molecular-level behaviour of biomolecules in such dense 

crowding environment, we constructed full atomistic model of the cytoplasm of bacteria, and 

performed massive all-atom molecular dynamics (MD) simulations. On the other hand, to analyse 

such big MD data, we need significant computational power and efficient calculation 

methodology. Here, we introduce what and how we analyse the biomolecule properties from the 

big trajectory data produced by cellular scale all-atom MD simulations.

1. Introduction

Molecular dynamics (MD) simulations are widely used to investigate the microscopic 

behaviour of biomolecules. Recently, the scale of the MD simulation has rapidly expanded 

both spatially and temporally. One of the largest targets is the cellular environments in which 

various kinds of proteins, RNAs, metabolites are interacting under significantly crowded 

conditions (in fact, 20～40% of the volume is occupied by biomolecules in the cell1–4). How 

variable interactions within dense cellular environments may affect the structure and 

dynamics of biomolecules, and ultimately their function, is one of the most exciting 

questions in life science5–10. Recently, we constructed a full atomistic model of the 

cytoplasm of a minimal bacterium11. Using the model, we performed massive all-atom 

molecular dynamics (MD) simulation, and succeeded in reproducing the molecular-level 

behaviour of biomolecules in the cell12. On the other hand, the extraction of dynamic 

features and insight into the interactions of biomolecules from extremely big and complex 

data was another challenging issue. Conventional analysis tools for MD trajectories cannot 
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easily handle a trajectory of such a big system13–15. In this paper, we introduce the kind of 

physicochemical properties of biomolecules that we typically analyse from the big MD data 

of cellular crowding systems and describe how to calculate them using high-performance 

computer based on spatial decomposition techniques.

2. Models of crowded systems

By integrating data from a variety of experimental sources, we constructed a full atomistic 

model of the cytoplasm of a bacterium (Mycoplasma genitalium) including all of the 

molecular components, i.e., proteins, RNA, metabolites, ions, and solvent, that are mapped 

on the complete biochemical pathways11. The size of the system is 100 nm x 100 nm x 100 

nm, which greatly exceeds the size of typical molecular dynamics (MD) simulations, 

covering about 10% of the volume of an entire cell (MGh in Figure 1 A). Model cytoplasms 

at middle (MGm) and small (MGs) sizes were additionally constructed. These models were 

subjected to MD simulation using the highly parallelized MD program GENESIS16 on the 

supercomputer K12. The resulting data sizes of the MD simulations generated for each 

model are in the 5–20 TB range as shown in Table 1.

3. Results and Discussions

3.1 Analysis of the kinetic properties of macromolecules

How fast do macromolecules (proteins, RNAs, and huge complex, such as ribosomes or 

GroEL) move through the crowded environment in a cell? This is one of the most 

fundamental questions in life science. Here, we focus on the translational and rotational 

diffusive motion of macromolecules. The influence of crowding on these kinetic properties 

is also discussed.

3.1.1 Translational diffusion coefficient of macromolecules—The translational 

diffusion coefficient Dtr is one of the most fundamental kinetic properties, quantifying the 

mobility of macromolecules. Dtr is usually calculated from the square displacement (SD) of 

target molecules. The time evolution of the SD of a macromolecule α is obtained by 

tracking the center of mass of α. Multiple profiles of SD for α can be obtained by sliding 

windows with certain intervals. These profiles are then averaged to obtain mean square 

displacements (MSD). To obtain translational diffusion coefficient Dtr, a linear function is 

fitted to the MSD curve and Dtr is subsequently computed from the slope of the fitted line 

according to the Einstein relation,

Dtr α =
r2 α, τ i

6τ (1)

where r2(α,τ) denotes the SD of the macromolecule α at time τ from the beginning of one 

of the windows i. Further details of this analysis are explained elsewhere12.

As an example, Dtr of each macromolecule in MGm was calculated and is compared with 

experimentally measured diffusion coefficients for green fluorescence proteins 
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(GFPs)17(Figure 2 A). The resulting values are correlated with the size of the different 

proteins (i.e., their Stokes radii Rs). From this analysis, the agreement with the experimental 

data or the dependency of Dtr on the molecular size under crowded conditions can be 

evaluated.

3.1.2 Rotation of macromolecules—The rotation of macromolecules is strongly 

influenced by protein-protein interactions (PPI) with the surrounding molecules. In addition, 

the rotational dynamics (such as the rotational relaxation time, the rotational diffusion 

coefficient, and the axis of rotation) can be directly compared with NMR data. Thus, the 

properties of rotation can be a useful reference for the elucidation of the PPI or to tune the 

interaction parameters in MD simulation18. To analyze the overall tumbling motion of a 

macromolecule α, the rotation matrix R that defines the rotation of α at t= ti to the target 

orientation at t= ti +τ is used. Then, the rotational correlation function (RCF) in a given time 

window i as a function of τ (c(α,i,τ)) is obtained by applying the rotation matrix R on the 

principal axis of inertia or the NH vector of protein backbone or randomly distributed unit 
vectors attached to the protein structure19. Time-averaged RCF, c α, τ i are then obtained 

using sliding windows as in the calculation of the translational diffusion coefficients.

The isotropic rotational relaxation timeτrel was obtained by fitting a single (or multiple) 

exponential

c α, τ i ∝ exp −τ /τrel (2)

Finally, the isotropic rotational diffusion coefficient of α is obtained as(2)

Drot α = 1/2τrel (3)

The instantaneous rotation angle θ and the rotation axis v (vx, vy, vz) can be obtained by 

converting the rotation matrix R to the quaternion q. The relation between four elements of q 
and θ, v is as follows,

q = qw, qx, qy, qz = cos θ /2 , sin θ /2 ν (4)

Figure 2B shows the time-averaged angular velocity of each macromolecule in MGm as a 

function of their size, Rs. The rotation of macromolecules also displayed a strong molecular 

size dependency as for translational motion.

3.1.3 Influence of local crowding on the translation and rotation of 
macromolecules—Because different macromolecules are exposed to different local 

crowding environments, their dynamics is influenced differently even though they have the 

same size and structure. For example, there are 25 copies of tRNA in MGm. Each tRNA has 

different values of Dtr and ω (see red squares in Figure 2). To measure the local degree of 
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crowding around a given target molecule α, we used the number of backbone Cα and P 

atoms in other macromolecules within the cutoff distance Rcut = 50 Å from the closest Cα 
and P atoms of α at a given time t as the instantaneous coordination number of crowder 

atoms, Nc(α,t). Time averages of Nc(α,t) were then calculated over 10 ns windows. The 

obtained values of Nc are correlated with Dtr or ω in the corresponding 10 ns windows, and 

histogram-averaged values of Dtr and ω are shown in 100 interval of Nc (see small figures 

inserted in Figures 2 A and 2B). These analysis show how the degree of local crowding 

retards the dynamics of macromolecules.

3.2 Analysis of the spatial distribution of solvent and metabolites

In section 3.1, the analysis of kinetic properties (translational and rotational diffusion) of 

macromolecules is discussed. As the data size is greatly reduced (e.g., instead of all-atom 

coordinates only the centres of mass are considered), these analyses do not require very 

large computational resources. On the other hand, properties related to inter-molecular 

distances, or spatial distributions can involve significant computational costs. One typical 

application that presents significant challenges is the calculation of the density distribution 

of solvent molecules around the macromolecules (see Fig. 3). To analyse the number density 

of solvent as a function of the distance from the closest macromolecule ρ(r), one has to 

calculate i), the volume of the hypothetical layer at a distance r (with a certain thickness Δr) 
from the macromolecule (we refer to this volume as the available volume V(r); see red 

layers in Figure 3), and ii), the number of water molecule that are present in a given layer at 

distance r, N(r).

Because one needs to calculate the distance between vast numbers of sites and 

macromolecular atoms, the calculation of V(r) needs significant CPU power and large 

amounts of memory. To overcome these difficulties, we developed a hybrid (MPI/OpenMP) 

parallelization scheme based on the spatial decomposition technique. The whole system 

(usually corresponding to a box under periodic boundary conditions) is decomposed into 

smaller domains. Each domain has a buffer region with enough thickness to obtain the 

profile of ρ(r) up to a given target distance. A domain is further decomposed into smaller 

cells. Each MPI process then assigns atoms inside the domain + buffer region to cells. The 

calculation for each domain is done by each MPI process, and the calculation for cells is 

decomposed into Open MP threads. For each time step (t), the minimum distance (rmin) from 

a given cell in a given domain to any atoms of macromolecules in the domain + buffer 
region is determined. Such a calculation is repeated for all cells in a given domain. Then, the 

histogram of the number of cells as a function of the rmin at time t (Ncell(r, t)) is obtained 

with a certain bin size Δr by accumulating the results from different domains. The total 

number of target solvent atoms in the cells assigned to each bin (Natom(r, t)) is also counted. 

Finally, ρ(r) is calculated as follows,

ρ r = ρ r, t t =
Natom r, t

V r, t t
= i

Ncell Natom i, r, t
Ncell r, t ⋅ Vcell

t

(5)
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where Vcell is the volume of a cell.

In Figure 4. the example of the (normalized) density distribution ρ(r) obtained by this 

scheme. ρ (r) is shown for several small molecules (such as water, phosphates and amino 

acids) around macromolecules in MGm. From these profiles, it is possible to understand 

how strongly these molecules associate with macromolecular surfaces.

Figure 5 shows benchmark timing results for the calculation of ρ (r) for water oxygen 

(dashed line in Figure 4B). The performance numbers of the calculation were obtained on 

RIKEN’s supercomputer system HOKUSAI GreatWave (CPU: SPARC64, performance: 

1Pflops). As Figure 5 shows, the calculation is linearly accelerated with an increasing 

number of CPU cores.

4. Conclusions

We have presented analysis techniques for large all-atom MD trajectories of cellular 

crowding systems. In addition to the calculation of kinetic properties of macromolecules, we 

discuss the analysis of the spatial density distribution of solvents and metabolites which 

requires significant computer power. To accelerate the calculation of such a time-consuming 

analysis, we developed a hybrid (MPI/OpenMP) parallelization framework based on the 

spatial decomposition technique. This method exhibits good scalability to more than 1,000 

CPU cores on a suitable supercomputer system.

The developed framework can be applicable not only the calculation of solvent density 

analysis, but also to the analysis of many physicochemical property related to local 

quantities of a given target molecule or local spatial properties in the system. For example 

we applied the same framework for the calculation of solvent accessible surface areas 

(SASA) of macromolecules, protein-protein interactions, and the extraction of hydrogen 

bonds in the large crowded systems. The analysis methods described here are implemented 

in one of the analysis modules (SPANA: SPatial decomposition ANAlysis) of the MD 

software GENESIS16.
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Figure 1. 
All atom models of the cytoplasm of Mycoplasma genitalium. A: The largest model contains 

about 100 million atoms (MGh). B: A middle size model containing about 10 million atoms 

(MGm). C: A small size model containing about 1 million atoms (MGs). Each 

macromolecules is shown with randomly assigned colours. The interspace of 

macromolecules are filled with water (blue) and metabolites and ions (for MGh, only the 

macromolecules are shown).
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Figure 2. 
A: Translational diffusion coefficients Dtr of macromolecules in a model bacterial cytoplasm 

(MGm) as a function of their Stokes radii Rs (grey squares). The MSD was obtained using 

multiple 10 ns windows. Dtr for the multiple (25) copies of tRNA are highlighted with red 

squares. The correlation between Dtr and the local extent of crowding Nc for tRNAs is 

inserted at the top right. The experimental values of Dtr for GFPs (Green Fluorescence 

Protein) are shown as black filled circles. B: Angular velocity of macromolecules in MGm 
as a function of Rs. The averaged rotation angle θ was calculated using multiple 10 ns 

windows. ω was obtained as θ /10.0ns. ω for the multiple (25) copies of tRNA are 

highlighted as red squares. The correlation between ω and the local extent of crowding Nc 

for tRNAs is inserted at the top right.
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Figure 3. 
Schematic representation of the analysis of solvent density around macromolecules (blue 

objects) based on spatial decomposition techniques. The available volume V(r) at a distance 

r from the closest macromolecule is represented as red layers. The system is equally divided 

into domains having enough buffer region. Each domain is further divided into smaller cells. 

The profile of V(r) is approximated by taking the histogram of the number of cells with the 

minimum distance to the macromolecules rmin.
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Figure 4. 
A: Snapshot of metabolites around macromolecules in MGm. red: phosphates (such as ATP: 

adenosine triphosphate, UTP: uracil triphosphate), green: amino acids (such as ALA: 

alanine, VAL: valine, and GLN: glutamine), and blue: other types of metabolites (such as 

NAD: nicotinamide adenine dinucleotide). B: heavy atom number density of five types of 

metabolites as a function of the distance to the closest macromolecule heavy atom ρ(r). Each 

profile is normalized (denoted as ρ (r) ) by the density at the most distant region (r=20.0 Å). 

For the calculation of V(r), the resolution (i.e., a cell size)is set to the 1.0 Å3. ρ (r) of water 

oxygen atoms is also shown for comparison with a dashed line.

Yu et al. Page 10

J Phys Conf Ser. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Benchmark calculation of ρ (r) for water (dashed line in Figure 4B). The number of frames 

(snapshots) processed per hour is shown vs. the number of CPU cores that were used. The 

number of MPI processes (red) and OpenMP threads (green) are shown beside each marker 

(blue).
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Table 1.

Data sizes of MD simulations for different bacterial cytoplasm models. For MGh and MGm, atomic 

coordinates were stored every 1 ps. For MGs, atomic coordinates were stored every 10 ps.

System Total number of atoms Total length of MD sim. (ns). Data size of total frame (TB)

MGh 103,708,785 20 22

MGm 11,737,298 140 17

MGs 1,082,358 1,000 × 4 5.2
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