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Abstract

Protein structures are essential in modern biology yet experimental methods are far from being 

able to catch up with the rapid increase in available genomic data. Computational protein structure 

prediction methods aim to fill the gap while the role of protein structure refinement is to take 

approximate initial template-based models and bring them closer to the true native structure. 

Current methods for computational structure refinement rely on molecular dynamics simulations, 

related sampling methods, or iterative structure optimization protocols. The best methods are able 

to achieve moderate degrees of refinement but consistent refinement that can reach near-

experimental accuracy remains elusive. Key issues revolve around the accuracy of the energy 

function, the inability to reliably rank multiple models, and the use of restraints that keep sampling 

close to the native state but also limit the degree of possible refinement. A different aspect is the 

question of what exactly the target of high-resolution refinement should be as experimental 

structures are affected by experimental conditions and different biological questions require 

varying levels of accuracy. While improvement of the global protein structure is a difficult 

problem, high-resolution refinement methods that improves local structural quality such as 

favorable stereochemistry and the avoidance of atomic clashes are much more successful.
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Protein structure refinement to improve a template-based model (green) towards the native 

structure (red) continues to be a challenging computational problem.

Introduction

When the first protein structures were solved via X-ray crystallography1, 2, it became 

instantly clear that detailed structural information at the atomistic level is the key to a full 

mechanistic understanding of biological processes. The sequence-structure-function 

paradigm is now an essential feature of modern molecular and cellular biology3. Accurate 

protein structures are necessary as starting points for rational drug design4, protein 

engineering applications5, and to understand functional implications of mutations associated 

with genomic variations within populations6. We have reached an age where structural 

information is available for most types of proteins7. Nevertheless, the number of known 

genes continues to greatly outnumber the number of available protein structures by orders of 

magnitude as experimental protein structure determination remains a slow and tedious 

process. This has motivated computational efforts to predict protein structures soon after the 

first protein structures became available8, 9. Since early on, ab initio methods have aimed at 

structure prediction via physics-motivated models with the idea that, starting from extended 

chains, the native structure could be found via sampling or optimization as the lowest (free) 

energy state10, 11. To overcome computational limitations, these approaches have often 

invoked simplified models of proteins such as polymers decorated with patterns of polar and 

hydrophobic side chains12–14. While much has been learned at the fundamental level about 

protein structures and the folding process13, pure ab initio methods that do not use any 

information from known structures largely fail to accurately and reliably predict the 

structures of all but very small proteins15, 16. This remains true today even as more 

sophisticated models can be sampled extensively on today’s computers. In contrast, using 

knowledge from known structures to predict new structures, has always been a far more 

successful strategy17–20. Homology modelling, which assumes that similar amino acid 

sequences lead to similar structures, is the standard method for predicting protein 

structures21. Furthermore, advanced methods that assemble models based on structural 

fragments taken from known structures are often able to generate useful models for 

sequences where homologous proteins with known structures cannot be found22–24.

Predicted structural models generated with today’s methods can be impressively 

accurate25, 26, but they still often do not reach experimental accuracy (considered to be <1Å 

root mean square deviation (RMSD) for all heavy atoms). The reliance on structural 

templates inherently limits the ability to capture subtle variations in protein structures as a 

result of minor differences in amino acid sequence. Template-based modelling is also 

problematic when interaction partners such as other proteins, nucleic acids or ligands, 

perturb the structure and when templates that include such interactions are not available. 

This has created the need for structure refinement methods to improve initial models towards 

experimental accuracy27–36. Structure refinement methods are widely used already to derive 

atomistic structures from nuclear magnetic resonance (NMR) restraints37, 38 and during 

crystallographic structure determination39–41 either de novo or via molecular replacement. 

The use of lower-resolution data, such as from electron microscopy (EM)42, small-angle X-
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ray scattering (SAXS)43, 44, or cross-linking information45 can also be very effective in 

guiding structure refinement when combined with template-based modelling. In the absence 

of experimental data, structure refinement is tasked with improving initial template-based 

models using just computation. As template-based models often come within 2–5 Å Cα 
RMSD from an experimentally determined native structure46, the goal of structure 

refinement is a seemingly moderate degree of improvement in accuracy by just a few Å. 

While an accurate overall fold of the native structure, based on the backbone Cα atoms, is 

often the main target of structure prediction, high-resolution refinement also comes with the 

expectation of generating accurate side chain orientations47 and a high stereochemical 

quality that is comparable to experimental structures48–50.

Template-based models already incorporate knowledge from existing structures. Therefore, 

structure refinement has to rely on alternative strategies51. A common idea is to use 

atomistic force fields in conjunction with energy minimization or more extensive sampling 

methods, in particular molecular dynamics (MD) simulations52. The resolution of atomistic 

force fields matches the target resolution of structure refinement. The hope is that 

conformational sampling can reach the native state as the state with the lowest free energy 

with no or few kinetic barriers since the initial model is already very close to the correct 

structure. Other strategies involve the targeted optimization of certain aspects of a given 

model53–55. Such an approach would be especially effective when there is knowledge about 

which parts of a given structure are least accurate and would benefit most from refinement. 

Highly successful structure refinement has been documented in anecdotal cases for a 

while28, 34, 36, 52, 56–60, but broadly useful strategies for structure refinement have only 

recently begun to emerge61–66. What seemed to be a relatively straightforward task, turned 

out to be exceedingly challenging. The objective of this review is to present the current state 

of the art and outline the significant challenges that remain.

The goal of structure refinement: How close is close enough?

Template-based models often correctly capture the overall fold of a given protein structure. 

On the other hand, effective atomic coordinate precisions as high as 0.2 Å provided by most 

crystal structures67 are not needed, for example, to determine which residues to mutate in 

biochemistry experiments that investigate a proposed biochemical mechanism. Therefore, it 

has to be established first what level of accuracy is necessary to obviate experimental 

structures before discussing how to reach such accuracy.

Mechanistic analyses

A primary use of high-resolution structures is to provide mechanistic insight that may 

require 1 Å resolution or better, especially when reaction mechanisms involving quantum 

mechanics would be applied68. Mechanistic analyses likely also require the accurate 

modelling of side chains and cofactors such as ions or ligands. However, as such questions 

are often focused on certain parts of a given structure, an accuracy better than 1 Å RMSD 

for all heavy atoms may not be needed across an entire structure for a model to be useful. 

Fortunately, the functionally most important regions of a given protein are also typically 

most conserved among homologues with the same function. Therefore, initial template-

Feig Page 3

Wiley Interdiscip Rev Comput Mol Sci. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



based models may already be highly accurate at mechanistic key sites and refinement 

methods may not need to improve those regions by much in order to reach experimental 

accuracy.

Prediction of binding partners

Protein structures serve as the starting point for a variety of further computational analyses. 

An important application is the identification of potential binding partners, such as proteins, 

ligands, and potential drug molecules69, 70. This type of analysis may be important for 

functional predictions but also during rational drug design applications. Previous studies 

have shown that homology models are often inferior to experimental structures for reliably 

predicting protein-protein interfaces71 and for generating docked conformations with small-

molecule ligands72, 73. The docking of small molecules is expected to require high structural 

accuracy near the binding site and preferable models of holo structures since docking to apo 
structures may not be successful if, for example, binding sites are occluded74. Protein-

protein interactions are sensitive to shape complementary over larger parts of a given protein 

surface. This may necessitate the accurate modelling of dynamic regions on the surface such 

as loops as they can alter the overall shape substantially if modelled incorrectly, even if such 

parts may otherwise not be functionally important75–77.

Biological relevance of experimental reference structures

The ultimate goal of structural prediction is to generate high-resolution models of proteins in 

their biologically most relevant conformation. In contrast, much of the assessment of 

structure prediction methods is driven by comparisons against experimental reference 

structures from X-ray crystallography or NMR, e.g. in the context of the biannual Critical 

Assesment of protein Structure Prediction (CASP) competitions25. Crystal structures may or 

may not exactly correspond to the biologically most relevant due to crystal contacts78 and 

other peculiarities of the artificial crystal environment that could have a significant effect on 

protein structures79. While it may be possible to consider the crystal environment during 

computational structure refinement, focusing refinement methods too much on exactly 

reproducing X-ray structures distracts from capturing what is biologically most relevant. 

Another related concern is that although crystallography has promoted a largely static view 

of structural biology, in reality, protein structures exhibit significant dynamics, especially at 

physiological temperatures80. Therefore, the most accurate representation of protein 

structures would be an ensemble spanning the native state with, for example, alternate 

conformations for flexible loops81. Computational refinement methods could in principle 

deliver such ensembles and comparisons could be made against crystallographic B-factors or 

NMR-derived ensembles. But a broader validation of how accurate computer-generated 

ensembles are could bemore challenging.

Structure refinement via minimization and molecular dynamics simulations

The use of force-field based energy minimization or MD simulation has long been a popular 

strategy for structure refinement following homology model generation82–90. The immediate 

benefit of force-field based refinement is the resolution of atomic clashes, deviations from 

standard bonding geometries, and other gross pathologies that may have been introduced as 
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a result of using coarse-grained representations91 or the combination of templates from 

multiple structures92 during homology modeling. Distorted bond geometries and 

unfavorable atomic interactions correspond to high-energy states with atomistic force fields 

that can be quickly relieved when subjected to short optimization55, 83, 91, 93–95. On the other 

hand, the use of longer MD simulations for protein structure refinement (see Fig. 1, left side) 

has appeared as an obvious choice to achieve more extensive refinement without requiring 

any further knowledge or assumptions86, 96. Confidence in the ability of MD simulations to 

deliver on the promise of being able to refine approximate models stems from ample 

evidence that modern atomistic simulations typically maintain native conformations in close 

correspondence with experimental data97, 98 while also being able to fold peptides and small 

proteins via MD simulations given sufficient sampling16, 99–103. This suggests that MD 

simulations should in principle be able to accomplish refinement by sampling conformations 

on a downhill energy landscape towards the native state, at least to within the 1–3 A Cα 
RMSD deviations that are typically seen in MD simulations that are started from 

experimental structures104. The two main challenges in MD-based structure refinement are 

the accuracy of the model to ensure that the native state is indeed at the global minimum105 

and the amount of conformational sampling that is needed to reach the native state from an 

initial model32. Refinement may be further complicated by a lack of a clear downhill funnel 

from near-native conformations to the native basin as a result of roughness in the energy 

landscape and/or force field inaccuracies when atomistic models are applied87, 106. Another 

challenge is the selection of a refined model from the conformational ensemble generated in 

MD simulations where the last conformation in a given run may not necessarily be the most 

native-like structure62. All of these issues are discussed in more detail in the following.

Force fields and solvation models

An accurate energy description is essential to distinguish the native state from similar, but 

less accurate initial models that may have been generated by template-based modeling. The 

first choice may be atomistic force fields that have improved significantly in accuracy over 

the last decade97, 98, 100, 107–111. Backbone torsion potentials, a key ingredient to correctly 

reproduce secondary structure propensities, have been fine-tuned to balance ab initio data 

with experimental data on small peptides and torsional distributions in structures from the 

Protein Data Bank (PDB)97, 107, 109. Other improvements have focused on side chain 

rotamer sampling and a better balance of solvation and salt-bridge interactions of charged 

and polar residues107, 112, 113. Most recently, the attention has shifted to the sampling of 

disordered regions as most available force fields have a tendency to over-stabilize ordered 

and compact states107, 114–117. While the sampling of disordered peptides is less relevant in 

the context of structure refinement, which generally targets well-folded proteins, a better 

balance between folded and disordered states may benefit the sampling of more dynamic 

regions such as longer loops that are part of many folded proteins. The most recent sets of 

force fields perform very well when folding model peptides and smaller proteins and there is 

evidence that force field improvements translate into better accuracy during structure 

refinement61, 87, 107, 118, 119. In addition to physics-based force fields, statistical potentials 

have also been used in MD- or minimization-based refinement methods56, 83, 120. Other 

efforts aim at specifically training potentials to deepen the energy of protein native 

states87, 119 and/or to penalize excursions to non-native states88.
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As the inclusion of solvent is generally important in modeling biological systems, it is also 

key for successful refinement121. Atomistic force fields are typically meant to be combined 

with explicit water to account for solvation effects. However, the high cost of explicit solvent 

and requirements for extensive sampling demand significant computational resources. 

Therefore, implicit solvent methods have been used as a more efficient alternative in MD 

simulations122–125. Generalized Born models are especially attractive and have led to 

success in protein folding and refinement34, 35, 94, 120, 121, 126–136, but even simpler models 

such as a distant-dependent dielectric can be applicable during refinement85. However, 

implicit solvent models may have artifacts such as an overstabilization of salt-bridges and 

secondary structure elements that may require specially optimized force fields to be 

effective133, 137–140.

Coarse-grained models offer advantages over fully atomistic force fields141, 142 by reducing 

computational costs, and providing smoother energy landscapes that are helpful in 

navigating the transition from a slightly incorrect but already well-folded initial model to the 

native state. Although very coarse models, such as Cα-based protein models are problematic 

when applied to high-resolution structure refinement, moderately coarse-grained models 

such as UNRES143, 144 or PRIMO145, 146 can be suitable alternatives to the more expensive 

all-atom standard force field treatments during refinement85.

Conformational sampling strategies

In addition to the accuracy of the energy function, conformational sampling is essential to 

overcome the kinetic barriers during the transition from an initial model to the native state 

during refinement. Initial attempts at MD-based structure refinement quickly established that 

sub-nanosecond time scales are not sufficient52. Instead, much longer time scales on the 

order of 100 ns or beyond may be required to achieve any significant refinement at all36. 

Furthermore, it has been found that unrestrained sampling that is started from an initial 

template-based model often deviates quickly and sometimes quite significantly away from 

the native state rather than towards it58, 82. Even simulations on 100 μs time scales, when 

unrestrained, generally do not come back towards the native state32. Force field issues have 

been suggested as an obvious culprit32. Another argument is that the initial template-based 

models are overly compact so that the only way to refine further would be to first expand the 

structure away from the native state92. More generally, the idea is that homology models 

may not lie exactly on the folding funnel exhibiting and local defects such as mispacked side 

chains or incorrect secondary structures may only be resolvable on low free energy paths via 

partial unfolding and eventual refolding147. Since unfolding and refolding may take a very 

long time, this has led to a general practice of applying weak restraints with respect to a 

given initial model during refinement so that large structural drifts are prevented while still 

allowing some refinement towards the native state32, 34, 56, 61, 62, 89, 90, 95. Restraints are 

commonly implemented based on Cα RMSD but may alternatively encode pairwise 

distances within a given reference structure126. The application of restraints can be effective 

when the initial model is close to the native state, but this practice opposes larger 

conformational arrangements that are needed to refine models that are further away from the 

native state. In some refinement protocols, restraints are applied based on selected fragments 

rather than the entire structure106 or are limited to regions deemed least reliable59, 60, either 
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based on previous knowledge59, 60 or quality assessment criteria95. There are also methods 

that combine multiple, possibly conflicting sets of restraints based on homologs89, 90 or 

other knowledge to maintain the conformational sampling close to the native state148.

MD simulations are often combined with enhanced sampling methods such as replica 

exchange (REXMD)149 or other related techniques150. In protein folding simulations, 

enhanced sampling techniques can accelerate in silico folding by several orders of 

magnitude151–156. Consequently, some of these methods have also been used in the context 

of refinement37, 58, 59, 120, 127, 128, 147, 157. Other strategies for navigating the high-

dimensional space of atomistic models during refinement include normal mode (NMA) 

based sampling31, 41, 158, torsional dynamics58, 84, 126, 159, or multi-scale methods where 

coarse-grained and atomistic models are mixed85, 132, 160–165. Other methods sample 

conformations either via the direct replacement of fragments from a library, often via Monte 

Carlo (MC) sampling,53, 158, 166 or by guiding MD sampling by constraints from such 

fragments106. Thus, traditional force field based methods are effectively combined with 

knowledge-based (KB) approaches. In all cases, the general idea is to focus sampling on 

lower-resolution space to more efficiently overcome the major barriers during refinement. 

However, refinement either via directly enhancing sampling of atomistic models or by 

confining sampling to lower-resolution space has so far not quite provided the breakthrough 

one would hope for. The reason is probably that the accelerated sampling does not prevent 

structures drifting away from the native state if restraints are not applied157. On the other 

hand, the use of restraints largely cancels the advantage of enhanced sampling so that the 

effective performance becomes similar to what can be achieved with regular MD 

simulations.

Selecting refined structures from MD ensembles

MD simulations generate trajectories that follow the free energy landscape for a given 

system according to the force field used in the simulation. In the ideal case where the native 

structure indeed corresponds to the free energy minimum and the sampling is long enough to 

reach full convergence, the largest population of structures in the ensemble generated by MD 

would be expected to correspond to the native state. However, it is not guaranteed that any 

snapshot, and in particular the final structure from a long MD run, corresponds to the native 

state as there may be excursions to non-native states with energies similar to the native state. 

In practical scenarios, where sampling is more limited and/or the native state is only a 

metastable state with a given force field, there may be larger excursions for much of a given 

trajectory. Therefore, simply taking the final structure from an MD run is rarely the best 

choice for obtaining improved structures. One common approach to overcome this challenge 

is to treat the structural ensemble as a set of decoys and apply clustering and/or scoring 

methods to find the most native-like structures35, 94, 105, 126, 167–172. The generation of 

decoys followed by scoring is a widely applied strategy in structure prediction. However, 

during refinement, where the generated models are very similar to each other and to the 

native state, the limited accuracy and noise in typical scoring functions may cause high false 

positive rates35, 170, 173, 174. As a consequence, it is often very difficult to identify the most 

refined models, or even distinguish refined models from models that have become worse in 

snapshots from MD simulations31, 62. An interesting alternative to traditional scoring is to 
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use the stability in MD simulations as a scoring function118. In a similar spirit, one may also 

score based on the distance by which models deviate from an initial model during 

refinement62 as structures that remain closer to an initial model generally appear to be closer 

to the native state.

A different strategy to selecting one or few structures is to consider larger subsets of 

conformations from an MD-generated ensemble and obtain a refined model via 

conformational averaging of those conformations61, 62, 66, 158. The subset may be 

determined via scoring as well but applying scoring functions as a filter is more robust than 

selecting one or few structures. In addition, the conformational averaging further reduces 

sensitivity to noise in the scoring function175. Conformational averaging of a structural 

ensemble generated via MD is also conceptually more consistent with how MD ensembles 

should be compared to experimental structures since experiments implicitly involve 

extensive ensemble- and time-averaging176. Indeed, subset averaging of MD simulations has 

contributed to the most robust success in structure refinement to date62, 175.

Structure refinement via structure optimization

While MD-based refinement typically relies on a physics-based force field to move an initial 

model towards the native state, an alternative approach is the targeted optimization of 

specific aspects of a given structure (see Fig. 1, right side), often via iterative protocols. In 

particular, the hydrogen bond network that is key for secondary structure formation may be 

examined and re-optimized55, 93, 106 or structural elements of a given model such as 

secondary structure elements or loops may be resampled extensively to find better 

conformations28, 58, 95, 118. The resampling of structural fragments using a fragment library 

as already mentioned above in the context of MD simulations106, 158, 166 would also fall into 

this category as such methods have the potential to re-optimize larger sections at once. 

While most optimization protocols involve conventional sampling or minimization using a 

suitable energy function, an alternative approach is the use of a constraint-based geometric 

technique where parts of a structure are iteratively pulled open and reannealed to mimic 

chaperon-induced unfolding and refolding147. As in the application of restraints, selective 

refinement could target only certain parts of a structure based on quality assessment criteria 

to determine which parts are most likely in need of refinement. Targeted optimization often 

involves the generation of decoys followed by subsequent scoring which would be subject to 

same challenges and uncertainties as the scoring of snapshots generated via full MD 

simulations118.

Certain structure quality criteria can be targeted via optimization without requiring 

knowledge of the native structure. An example is the MolProbity score177 that combines 

various stereochemical quality criteria such as the avoidance of atomic clashes, bond, angle, 

and torsion distributions consistent with statistics from known structures, favorable 

hydrogen bond patterns and other generic features of protein structures. Most optimization 

protocols focus at least in part on structure quality by improving side chain orientations, 

hydrogen bonding, and/or general stereochemical accuracy49, 83, 178. Clashes and major 

bond distortions are easily removed with standard force fields whereas hydrogen bonding 

geometries of donors and acceptors in close proximity can be optimized with KB 
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functions106, 179. Since the local structure quality and overall accuracy of the fold, measured 

based on Cα coordinates, are only weakly correlated in typical template-based models49, the 

local quality can often be improved without altering the Cα coordinates49 and therefore 

quality optimization can be employed as a final step for example after MD-based refinement 

that would focus more on improving the overall fold49.

Performance of refinement methods

Until recently, successful structure refinement without the use of experimental data was 

limited to selected cases while overall consistency was lacking. Up until CASP8, the overall 

most consistent structure refinement method was essentially not to attempt refinement at 

all65. In CASP9, refinement methods started to eke out, on average, very slight 

improvements64. Beginning with CASP10, MD-based refinement became successful as a 

result of force field improvements, extensive sampling, and the application of ensemble 

averaging46, 63. The current state of the art is that almost any model can now be refined by a 

modest amount (on average by 1–3 units of the Global Distance Test (GDT) score187), with 

very few models becoming worse while some models may become significantly better (up to 

10 GDT units; see the example for TR872 in Fig. 2). GDT captures the number of residues 

where Cα coordinates can be superimposed within four different RMSD cutoffs (1, 2, 4, 8 Å 

for GDT_TS and 0.5, 1, 2, 4 Å for GDT_HA) and essentially reflects how much of a given 

structure is accurate to within a few Å while being insensitive to incorrectly modeled parts. 

Improvements in GDT scores are consistent with the refinement of structural regions that are 

already fairly good in the initial model. In terms of RMSD, reliable refinement methods 

rarely exceed improvements by more than 1 Å. Since the overall RMSD is more sensitive to 

parts of a model that deviate significantly from the native structure, this suggests that 

consistent refinement of those regions is more difficult. The most successful refinement 

protocols (see Table 1) largely use MD or MC-type sampling methods and/or energy 

minimization with a combination of atomistic force fields and/or KB scoring terms, but 

alternative methods focusing on structure optimization can also perform similarly well. The 

use of restraints during the MD simulations is common but it limits more significant 

refinement, especially in more dynamic regions such as loops. Less conservative approaches 

that sample more aggressively and do not use restraints continue to result in remarkable 

successes (see for example the best predictions for the TR868 and TR870 CASP12 targets 

from the Wu and Baker groups in Fig. 2)29, 158. As these methods also generate many 

deteriorated models for other targets, a lack of consistency hinders practical applications, 

though. In particular, it remains difficult, despite much effort, to discriminate successful 

from unsuccessful cases158. Therefore, less conservative methods are only useful in cases 

where high failure rates can be tolerated, for example to improve success with molecular 

replacement during crystallographic refinement64, 188.

Closer inspection of Fig. 2 reveals a general trend that refinement is most successful in 

regions where only minor rearrangements are necessary. Correct reorientations of helices 

appear to be especially successful. On the other hand, larger structural errors remain largely 

uncorrected or structures may even become worse in those areas after refinement. In other 

words, the most problematic parts of a given model that would benefit most from refinement 
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remain also the hardest parts to improve. How to improve those parts of an initial model will 

be the main challenge going forward towards achieving near-experimental accuracy.

Structure refinement via MD can incur significant computational costs as the best current 

protocols apply sampling from tens of nanoseconds to microsecond scales. Although very 

long MD simulations do not necessarily lead to better refinement32, even moderate-length 

MD simulations require significant resources. This has limited broad adoption of MD-based 

refinement as part of standard structure prediction pipelines. Although refinement web 

servers have become available, they tend to offer only a limited amount of 

refinement55, 83, 180, 186. It will require additional efforts and resources to focus on 

optimizing computational efficiency for MD-based methods so that more significant 

refinement via web-based services can benefit the broader community.

Related to the development of computationally efficient refinement protocols is the question 

of how to tell when sufficient refinement has been achieved. In principle, successful 

refinement methods should continue refinement until the native structure is reached and at 

that point there should be no further structural changes. However, the lack of structural 

variation during continued application of a given refinement protocol could also simply 

reflect being stuck in a non-native metastable state. How to distinguish those two is so far an 

unresolved problem.

The practical utility of refinement methods would benefit from knowledge about what kind 

of initial models are most likely to improve upon refinement. One question is how 

refinement success depends on the initial model, both in terms of distance from the native 

structure and how it was generated. Analysis from recent rounds of CASP suggests that 

models that are closer to the native structure may be generally more amenable to 

refinement46, 63, 66. This may be useful information since the quality of initial models can be 

assessed with some degree of certainty189. Another question is how the method used for 

initial model generation affects refinement. Analysis based on CASP results has offered 

some insights66, but as prediction methods used in CASP often involve convoluted pipelines 

and may include refinement already as part of their modeling protocol, it is difficult to arrive 

at clear conclusions.

While the refinement of the overall protein fold remains a significant challenge, at least the 

improvement of the local stereochemical quality has turned out to be more 

straightforward49, 83, 106. Generally, the optimization of force field and/or KB terms with 

iterative protocols that target a reduction in quality scores such as MolProbity177 are 

sufficient and perform well. For example, the locPREFMD method is able to improve 

MolProbity scores for almost any starting structure to values below 1–1.5, which is 

comparable to experimental structures. Although locPREFMD uses MD simulations as part 

of the protocol, simulations are short and the resulting stereochemical refinement can be 

completed on moderate resources within minutes49.
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Conclusions

Computational protein structure refinement aims at turning approximate initial models, 

which can be generated today for many genes where no experimental structures exist, into 

structures with accuracy and quality that is comparable to experimental structures. While 

that remains a significant challenge, recent successes, especially with protocols based on 

MD simulations that can deliver modest but consistent refinement, are beginning to point in 

the right direction. Such MD-based methods may become part of standard prediction 

pipelines to improve template-based models. Moreover, methods that target local structural 

quality have become available to apply finishing touches to generate models that satisfy 

most quality criteria expected from experimental structures. However, as the overall degree 

of refinement with the best methods still remains modest on average, the refinement problem 

is far from solved.

Going forward, it appears that the ever-recurring issues of force field and scoring function 

accuracy on one side and sampling insufficiency on the other side still need to be fully 

addressed. Current force fields are much improved, but they are far from perfect and the 

most successful refinement protocols combine standard atomistic force fields with KB 

functions in some form or fashion. One underappreciated aspect involves polarization effects 

that are difficult to capture with fixed charge force fields and that have limited for example 

the accurate description of hydrogen bonding179, 190. It will, therefore, be interesting to see 

how much can be gained with polarizable force fields191 in the context of structure 

refinement. However, sampling is probably still the more significant challenge. Having to 

use restraints to obtain consistent refinement is a major impediment towards more significant 

refinement and the key to developing more effective refinement methods will be how to 

prevent initial models from deviating too far from initial models while still allowing 

refinement by several Å RMSD. One idea to overcome this conundrum may be the 

simultaneous use of multiple restraints148, 192 and/or adaptive restraints15, 89, 90 to limit 

sampling while still being able to reach the native state. Another successful path may be to 

continue to explore strategies that explicitly follow an unfolding/refolding scheme147 as that 

more likely mimics what nature would do to reach the native state from misfolded states via 

chaperones193.

As refinement methods become better at reaching experimental accuracy, the exact 

reproduction of experimental conditions will become increasingly important. Current 

methods generally do not fully consider ionization equilibria of titratable amino acid side 

chains, the potential effect of ligands and ions, and the structural constraints imposed by 

crystal packing for structures solved by crystallography. There is a danger, however, to 

overemphasize single structures under very specific, possibly artificial conditions, whereas 

the ultimate goal should be to produce structural ensembles that are representative of the 

biological context including the crowded conditions of the cellular environment194, 195.

Finally, another underdeveloped direction is the prediction and refinement of membrane 

protein structures196–198. It may be that similar strategies as for soluble proteins will be 

successful but limited assessment, during CASP for example, has effectively discouraged 

efforts by the community to date. As a consequence, it is much less clear, for example, how 
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well scoring functions work for membrane protein structures199, 200 and how the sampling 

challenges present for soluble proteins translate to membrane proteins201.
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Figure 1: 
Typical refinement protocols via MD-based sampling (left) and iterative structure 

optimization (right). Grey colors indicate optional elements. KB: Knowledge-based.
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Figure 2: 
Examples of successful protein structure refinement based on CASP12 targets (from 

CASP12 web site: http://www.predictioncenter.org/casp12/index.cgi). Experimental, initial, 

and refined structures are shown in red, green, and orange, respectively. RMSD values refer 

to Cα atom deviations. The GDT_HA score is explained in the text.
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Table 1:

Selected Refinement Protocols and Web Services

Name Reference Method Selection Web server

KoBaMIN Chopra et 
al.83

Minimization w/ KB force 
field

Minimized structure http://csb.stanford.edu/kobamin/

Carlsen & Røgen88 Optimization with 
iteratively refined KB 
potential

Minimized structure N/A

3DRefineCheng et 
al.55, 180

H-Bond Optimization 
Minimization w/physics & 
KB force field (MESHI178)

Minimized structure http://sysbio.rnet.missouri.edu/3Drefine/

Anton Shaw et al.32 Very long MD (100 μs) Force field/Cluster size N/A

PREFMD Feig et al.
61, 62, 66

MD (μs scale) with 
restraints

Averaging over subset based on 
DFIRE181, RW+182, iRMSD62

http://feig.bch.msu.edu/web/services/prefmd

Schröder et al.89, 90 MD (ns scale) with 
restraints from coupled 
homologs

Final structure N/A

Wu et al.29 (REX)MD (μs scale) with 
optimized force field

Best RMSD N/A

Honig & Mark120 REXMD Scoring with RAPDF183/DFIRE181 N/A

Olson & Lee157 REXMD Scoring with force field, GOAP184, 
dDFIRE185

N/A

GNEIMO Vaidehi et 
al.58, 84

Torsional space REXMD Force field N/A

FG-MD Zhang et al.
106

Fragment-guided MD KB scoring function http://zhanglab.ccmb.med.umich.edu/FG-MD/

GalaxyRefine Seok 
et al.47, 186

Sidechain repacking 
Iterative MD (ps scale)

Final structure http://galaxy.seoklab.org/refine

TIGRESS Floudas et 
al.126

Constraint based sampling 
(torsion MD, Rosetta24, 
MD)

Selection based on machine 
learning

http://atlas.princeton.edu/refinement

Kosztin et al.118 Targeted optimization 
(RosettaRelax24) and MD

MD-based stability N/A

ROSETTA Baker et 
al.158

Iterative relaxation MD-
based sampling NMA-
based sampling Fragment 
rebuilding

Clustering and averaging Scoring 
with GOAP184

N/A

FRODA Ozkan et al.
147

Selective unfolding with 
geometric method, 
refolding with REXMD

Clustering and scoring with 
DFIRE181

N/A

Skolnick et al.87 REXMC (A-TASSER119) 
with optimized force field

Force field energy N/A

locPREFMD Feig et 
al.49

Iterative optimization 
targeting local geometry

MolProbity117 score http://feig.bch.msu.edu/web/services/locprefmd

Wiley Interdiscip Rev Comput Mol Sci. Author manuscript; available in PMC 2019 January 04.

http://csb.stanford.edu/kobamin/
http://sysbio.rnet.missouri.edu/3Drefine/
http://feig.bch.msu.edu/web/services/prefmd
http://zhanglab.ccmb.med.umich.edu/FG-MD/
http://galaxy.seoklab.org/refine
http://atlas.princeton.edu/refinement
http://feig.bch.msu.edu/web/services/locprefmd

	Abstract
	Graphical Abstract
	Introduction
	The goal of structure refinement: How close is close enough?
	Mechanistic analyses
	Prediction of binding partners
	Biological relevance of experimental reference structures

	Structure refinement via minimization and molecular dynamics simulations
	Force fields and solvation models
	Conformational sampling strategies
	Selecting refined structures from MD ensembles

	Structure refinement via structure optimization
	Performance of refinement methods
	Conclusions
	References
	Figure 1:
	Figure 2:
	Table 1:

