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Abstract

The concordance rate for developing autoimmune disease in identical twins is around 50% 

demonstrating that gene and environmental interactions contribute to disease etiology. The 

environmental contribution to autoimmune disease is a wide-ranging concept including exposure 

to immunotoxic environmental chemicals. Because the immune system is immature during 

development suggests that adult-onset autoimmunity may originate when the immune system is 

particularly sensitive. Among the pollutants most closely associated with inflammation and/or 

autoimmunity include Bisphenol-A, mercury, TCDD, and trichloroethylene. These toxicants have 

been shown to impart epigenetic changes (e.g., DNA methylation) that may alter immune function 

and promote autoreactivity. Here we review these autoimmune-promoting toxicants and their 

relation to immune cell epigenetics both in terms of adult and developmental exposure.
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1. Introduction

The immune system is designed to recognize and eliminate foreign antigens. If the immune 

system instead attacks self-antigens, autoimmune diseases may occur. Approximately 24 

million Americans have one or more autoimmune disease. These chronic, incurable 

disorders disproportionately affect females, and are among the leading causes of death for 

young and middle-age women [1]. Twin studies have shown that although an individual’s 

genome may increase susceptibility, environmental triggers are required to initiate disease. 

Defining how the environment promotes autoimmunity will enhance understanding of so-

called idiopathic autoimmune disease. The elevated prevalence and incidence rates of 

autoimmune disease parallel the documented increase in environmental pollutants leading to 

an appreciation of environmental toxicants common to industrialized nations as important 

riggers for autoimmunity [2].

Corresponding author: Blossom, Sarah J, Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children’s 
Research Institute, 13 Children’s Way, Little Rock, AR 72202, USA. Fax: +501 364 2403. (blossomsarah@uams.edu) 
gilbertkathleenm@uams.edu (K.M. Gilbert)

HHS Public Access
Author manuscript
Curr Opin Toxicol. Author manuscript; available in PMC 2019 January 04.

Published in final edited form as:
Curr Opin Toxicol. 2018 August ; 10: 23–30. doi:10.1016/j.cotox.2017.11.013.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Enhanced sensitivity of the immune system to environmental perturbations during key 

developmental events occurring prenatally and/or postnatally are critical for later life 

function [3–6]. The cells of the innate immune system (i.e. neutrophils, dendritic cells, NK 

cells, and macrophages) provide the first line of defense against pathogens. Their relative 

functional immaturity at birth means that innate immunity is weak in the newborn compared 

to an adult. The second line of defense is mediated by the cells of the adaptive immune 

system. T cells derived in the thymus are abundant at birth, and they need to undergo further 

maturation in the periphery to become fully functional. Peripheral B cells in the newborn are 

similarly immature, and require further maturation to respond to antigens. Thus, due to the 

vulnerability of the developing immune system, developmental exposures may influence 

adult autoimmunity [7].

When contemplating how developmental toxicant exposure “programs” the host for 

autoimmunity, one likely scenario involves epigenetic alterations such as aberrant DNA 

methylation. The epigenome consists of modifications of the genome that do not alter DNA 

base sequences, but can regulate gene expression and phenotype. While it is understood that 

the epigenome is regulated by several epigenetic mechanisms other than DNA methylation 

(e.g., histone acetylation and micro-RNA expression), of the various forms of epigenetic 

modifications, DNA methylation is the most thoroughly investigated. Maturation of immune 

cells are largely controlled by DNA methylation events that occur most often in early life 

that are functionally evident in later life and potentially to additional generations [8]. Auto-

immune diseases [(lupus, rheumatoid arthritis, type 1 diabetes (T1D), and multiple 

sclerosis)] associated with environmental toxicants are also linked to abnormal methylation 

[9] and may represent a mechanism by which environmental triggers promote autoimmunity. 

Thus, the review will focus on toxicant-induced effects on DNA methylation in autoimmune 

disease.

2. DNA methylation changes at various stages of immune development

Autoimmune disease, whether antibody-or T cell-mediated is largely driven by CD4+ T 

cells. As shown in Fig. 1, epigenetic events play an important role in immune cell 

development and correspond to several key cellular maturational events. Prior to immune 

system development, genome-wide global epigenetic reprogramming in early embryonic 

development occurs immediately after fertilization to ensure loss of DNA methylation 

allowing for global repression and gene expression in all cells [10]. In later stages, CpG 

methylation coincides with general developmental life stages with a reported global trend of 

demethylation during Tcell development in the thymus closely related to the development of 

TCR function [11].

Another DNA methylation mechanism identified as an emerging concept in toxicology is 

epigenetic drift (i.e., drift) [12]. Drift is the divergence of the epigenome as a function of age 

due to stochastic changes in methylation. Under normal circumstances drift occurs because 

the fidelity of maintaining CpG methylation in mammalian cells (about 97–99% per cell 

division) is not absolute [13]. The small but significant error rate creates opportunity for 

changes in the methylome to occur and accumulate in constantly dividing cells, such as self-

renewing effector/memory CD4+ T cells [14]. Drift involves both involves both hypo- and 
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hyper-methylation events, and can encompass as much as 2.2% of total CpG sites, and 5–

25% of specific genes over time [15,16]. Drift can impact promoter methylation status and 

gene expression, and has been used to explain the subset heterogeneity of memory CD4+ T 

cells that occurs during aging. In terms of autoimmune disease (e.g., T1D) results from twin 

studies suggest that drift causes heterogeneity in disease onset, severity, and predisposition 

to secondary complications [17]. The events that dysregulate drift are unclear, but appear to 

involve environmental exposures [18,19]. Importantly, although drift appears soon after 

birth, it occurs at a higher rate of change in children compared with adults [20]. Thus, 

although drift is still an understudied area of epigenetics, environmental influences may 

perturb this process in early life to promote autoimmunity.

One stage of vulnerability mediated by epigenetic changes is CD4+ T cell differentiation. 

Beginning in early life, the phenotype of differentiated CD4+ T cell subsets are normally 

controlled by carefully maintained levels of DNA methylation in the promoters of pertinent 

regulatory genes [21,22] (Fig. 2). The development of autoimmune disease can disrupt the 

methylation patterns of differentiated CD4+ T cells, resulting in the demethylation of genes 

that encode immunomodulatory factors as reported in juvenile arthritis [23]. Subsets of 

differentiated CD4+ Tcells (i.e., Th1/Th17) have been shown to promote autoimmune 

disease in part to their persistence as effector/memory CD4+ T cells. The dysregulated 

methylome in autoimmune disease is associated with increased heterogeneity or plasticity in 

these subsets [24,25].

While several key maturational and differentiation events in Tcells are regulated by DNA 

methylation, it is not known whether these events promote autoreactivity. While studies have 

shown that the function of autoreactive CD4+ T cells can be mediated by epigenetic 

processes, most of this work has been done in lupus models. Normal activated CD4+ Tcells 

treated with the DNA methyltransferase drug/inhibitor 5-azacytidine in vitro hypomethylates 

certain genes important in autoimmunity that become autoreactive upon adoptive transfer 

[26]. Whether environmental toxicants drive autoimmune-promoting epigenetic events in 

CD4+ T cells similar to 5-azacytidine is not known.

Identification of environmental pollutants that promote autoimmunity has been studied 

extensively [27,28]. However, there are a few toxicants associated with autoimmunity in the 

context of developmental exposure that have been identified and that may also impart 

autoimmune-promoting effects, at least in part, by aberrant DNA methylation. These 

substances are briefly reviewed below.

3. Mercury

Human exposure to mercury is common due primarily to its anthropogenic release from 

industrial use. Evidence that mercury promotes autoimmunity appears to be more 

straightforward in mouse models where it stimulates ANAs and induces immune complex-

mediated lupus nephritis. Developmental exposure to subclinical doses of HgCl2 in maternal 

drinking water in mice has been shown to cause adverse immune effects in offspring. This 

includes increased number of activated CD4+ T cells and increased levels of brain-reactive 

antibodies [29].
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In humans, mercury exposure was associated with sub-clinical autoimmunity as measured 

by increased ANAs among reproductive-age women [30]. Prenatal methyl-mercury exposure 

was associated with reduced levels of B cells and CD4+ T cells [31]. With regard to 

autoimmune disease, Sardinia has the second highest incidence of T1D in the world. The 

especially elevated levels of heavy metals, including mercury, in this country has led to the 

assumption that exposure to mercury, in the context of metals and other co-exposures during 

development promotes generation of this early-life autoimmune disease [32].

The potential autoimmune-promoting capacity of mercury is undoubtedly complex and 

likely involves other factors that enhance disease risk. Mercury can promote oxidative stress 

by depletion of anti-oxidant glutathione in immune cells [33]. This aspect of toxicity is 

functionally relevant to DNA methylation effects because glutathione pathway intermediates 

direct methionine metabolism to increase or decrease methyl donors to execute cellular 

methylation reactions. Direct evidence that mercury impacts DNA methylation in immune 

cells was shown in humans, where prenatal exposure to mercury detected in infant toenails 

correlated with hypermethylation of CpG islands of cord blood leukocytes [34]. These data 

highlight the potential for DNA methylation events in mercury-induced immunotoxicity or 

autoimmunity.

4. Bisphenol A

Bisphenol A (BPA) is a xenoestrogenic compound used to manufacture polycarbonate 

plastics and epoxy resins that can be detected in human blood and tissues [35]. There is 

evidence that developmental BPA exposure alters the immune system later in life and may 

be a potential autoimmune trigger. Studies report associations between urinary levels of BPA 

and allergic asthma [36]. In mice gestation, only exposure to BPA increased the development 

of adult experimental autoimmune encephalomyelitis (EAE) [37]. In a different study, 

gestational and lactational exposure to BPA failed to exacerbate adult EAE [38]. Diabetic 

(NOD) mice given BPA during gestation generated female offspring with an increased 

incidence of diabetes [39]. Perinatal BPA exposure accelerated inflammation in a mouse 

model of virally-induced multiple sclerosis [40].

Although the effects of BPA in mouse models were potentially relevant to human disease, 

most used concentrations of BPA that were higher than the typical concentration found in 

drinking water (<1 ppb). Developmental exposure to BPA at the US EPA oral reference dose 

(50 μg/kg/day) did not increase the severity of experimental inflammatory colitis in mice 

[41]. In humans, serum BPA in adults has shown consistent association with autoantibodies 

associated with thyroid- and neuron-specific antigens [42,43]. An association between 

urinary BPA concentrations and asthma in a cohort of inner-city children was reported 

implying developmental/early life exposures promoted inflammatory disease [44]. These 

results suggest that BPA may enhance autoimmunity depending on dose, model, and 

window of exposure.

DNA methylation changes with BPA exposure have been reported in the actual tissues that 

are targeted by the autoimmune response as in perinatal BPA exposure and altered DNA 

methylation in liver [45]. In NOD mice, BPA exposure increased the number of TREGS, 
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while also increasing production of IL-17 [39]. Thus, BPA-mediated DNA methylation 

events may play a role in effector cell generation since differentiation of naïve CD4 Tcells 

into these subsets is regulated in part by DNA methylation. Even if toxicants do not induce 

uni-directional changes in the methylation state of specific genes, they may support 

epigenetic drift as shown in a longitudinal study of early life exposure to BPA [46]. These 

data suggest the potential role for DNA methylation in BPA-mediated immunotoxicity.

5. Trichloroethylene

One toxicant linked to the development of autoimmunity is the industrial solvent and water 

pollutant, trichloroethylene (TCE). Chronic TCE exposure (mostly occupational, but 

sometimes environmental) has been linked to a variety of autoimmune diseases including 

lupus [47], autoimmune hepatitis [48], and scleroderma [49]. Signs of immune activation 

and alterations in lymphocyte subsets have been associated with chronic environmental 

exposure to drinking water contaminated by TCE or via dermal or inhalational occupational 

exposure [50–54]. We and others have reported that chronic TCE exposure in drinking water 

during adulthood induces autoimmune hepatitis in autoimmune-prone MRL +/+ mice, and 

that this disease development is associated with several changes in CD4+ T cells [55,56].

Developmental exposure to TCE is a concern based on the ability of TCE and its metabolites 

to cross the placenta and its detection in breastmilk [57]. We and others have shown that 

continuous developmental exposure to TCE in mice (gestation, lactation, and early life) 

generated CD4+ Tcell alterations and/or early signs of tissue inflammation in both normal 

and autoimmune-susceptible mouse strains [58,59]. Similar immune-altering effects were 

observed with gestation- or postnatal-only exposure in young adult mice [60,61]. We 

recently reported continuous chronic exposure to low-level TCE beginning at gestation 

generated autoimmune hepatitis at postnatal day 259 even when TCE exposure was stopped 

15 weeks earlier [62]. Because the effects persisted after TCE was removed from the 

drinking water suggested that programming events played a role in disease pathology. 

Indeed TCE altered the DNA methylation profile of the IFN-γ promoter in mouse CD4+ T 

cells [63]. In a genome-wide DNA methylation and gene expression study, TCE exposure in 
vivo differentially methylated CpGs in regions that bind polycomb group proteins [64] 

whose function is to regulate T effector cell expansion and differentiation [65]. Chronic 

exposure to TCE increased epigenetic drift in CD4+ T cells that corresponded with immune 

pathology [66]. These results support evidence that epigenetic events may play a role in 

TCE-induced immunotoxicity and autoimmunity.

6. TCDD/AHR ligands

While several environmental pollutants bind the aryl hydrocarbon receptor (AHR), 2,3,7,8-

tetrachlorodibenzo-p-dioxin or TCDD is the prototypical ligand. Developmental exposure to 

TCDD and other AHR-binding xenobiotics alter the immune system. In contrast to the 

primarily immunosuppressive nature of adult TCDD exposure, developmental exposure to 

TCDD generated immune dysfunction with a different result. Adult C57BL/6 and 

autoimmune-prone SNF (1) mice exposed to TCDD on gestational day 12 demonstrated 

autoimmune glomerulonephritis including increased levels of anti-dsDNA in adulthood 
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[67,68]. Neonatal exposure to TCDD increased pro-inflammatory cytokine and autoantibody 

production in a mouse model of Sjogren’s syndrome through signaling events in the 

neonatal thymus [69]. More recently, the novel autoimmune-prone Gnaq± mice were used to 

examine the autoimmune-promoting effects of TCDD on CD4+ Tcells. Exposure to TCDD 

generated offspring which developed lupus-like disease sooner and at a higher frequency 

than the offspring of vehicle-exposed dams [70]. Thus, unlike adult exposure, developmental 

exposure to AHR ligands appear to promote autoimmunity. It is plausible to hypothesize that 

epigenetic events which are more relevant during developmental periods may play a role in 

this disparity.

Studies have shown that DNA methylation plays a role in immunoregulation of AHR 

ligands. When the methylation status of CpG islands present in Foxp3 and IL-17 promoters 

following AHR activation were examined for their methylation/demethylation status, 

demethylation of CpG islands present in the Foxp3 promoter and increased methylation of 

CpG islands of the IL-17 promoter, following activation of AHR during colitis was observed 

[71]. In a different model, TCDD changed DNA methylation patterns in CD8+ T cells in the 

context of host resistance to viral infection [72].

7. Conclusion and future research needs

This review summarized several environmental chemicals studied for their potential to alter 

immune function, DNA methylation, and promote autoimmunity after developmental 

exposure. Although many autoimmune-promoting immunotoxicants appear to target CD4+ T 

cells, end organ pathology may also occur from toxicant-induced damage that enhances 

immunogenicity of proteins in certain target tissues or by disrupting repair or anti-oxidant 

systems designed to promote regeneration/recovery. Autoimmunity is complex and may be 

affected by lifestyle factors and genetic susceptibility (Fig. 3). In particular, the role of co-

exposures, whether other toxicants or lifestyle factors that also impair immune 

function/DNA methylation should be an important research consideration for future study. 

For example, 50% of American women of childbearing age are overweight or obese [73]. 

Data from animal studies demonstrated adverse outcomes in models of autoimmunity and 

allergic sensitization models of maternal and postnatal obesity [74,75]. In humans, maternal 

obesity influenced programing of the neonatal immune system [76] potentially enhancing 

risk to inflammatory disease such as asthma in offspring [77]. Thus certain risk factors may 

synergistically act on an already sensitive developing immune system by modifying the 

methylome and downstream gene expression leading to enhanced susceptibility to 

autoimmunity. There are only a few studies with toxicants outlined in this review that 

addressed diet/obesity co-exposures [(e.g., BPA [12] and TCE (manuscript in preparation)]. 

Future studies should aim to interrogate DNA methylation and gene expression events to 

confirm the role of epigenetic modifications when considering both exogenous and/or 

endogenous risk factors in the development of autoimmune disease.
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Fig. 1. 
Key human immune system developmental checkpoints that correspond with important 

changes in DNA methylation. General steps of human immune system development spans 

from gestation to early postnatal life. These events in particular are epigenetically regulated 

via DNA methylation and represent a sensitive window for perturbation due to 

environmental insults that may later manifest in later life autoimmune disease in certain 

individuals with genetic susceptibility or lifestyle factors.
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Fig. 2. 
The phenotype of differentiated CD4+ T cells are normally controlled by carefully 

maintained levels of DNA methylation in the promoters of pertinent genes. Development of 

autoimmune disease can disrupt methylation patterns of differentiated CD4+ T cells 

resulting in the demethylation of genes that encode pro-inflammatory cytokines, 

chemokines, adhesion molecules, or subset differentiation. Toxicants have been associated 

with DNA demethylation in CD4+ T cells tied to increased expression of critical pro-

inflammatory genes, cell cycle molecules/regulatory proteins and adhesion molecules within 

biological pathways with known links to autoimmunity.
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Fig 3. 
Conceptual diagram of hypothesized factors associated with autoimmunity. Autoimmune 

diseases result from complex interplay of gene–environmental interactions. The 

developmental period represents an enhanced time of epigenetic plasticity that may facilitate 

functional changes in an already sensitive maturing immune system. Multiple exposures to 

several factors together with impaired toxicant-induced regeneration/repair mechanisms 

converge with these factors to promote autoreactivity and disease.
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