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Abstract

Adaptive laboratory evolution (ALE) has emerged as a powerful tool in basic microbial research 

and strain development. In the context of metabolic science and engineering, it has been applied to 

study gene knockout responses, expand substrate ranges, improve tolerance to process conditions, 

and to improve productivity via designed growth coupling. In recent years, advancements in ALE 

methods and systems biology measurement technologies, particularly genome sequencing and 13C 

metabolic flux analysis (13C-MFA), have enabled detailed study of the mechanisms and dynamics 

of evolving metabolism. In this review, we discuss a range of studies that have applied flux 

analysis to adaptively evolved strains, as well as modeling frameworks developed to predict and 

interpret evolved fluxes. These efforts link mutations to fitness-enhanced phenotypes, identify 

bottlenecks and approaches to resolve them, and address systems concepts such as optimality.
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INTRODUCTION

Evolution is a defining characteristic of biological systems, and along with codability and 

molecular precision is a key attribute in the engineering of biology for applications like 

biochemical conversion [1]. Harnessing the mechanisms of evolution, adaptation, and 

selection for developing complex desired phenotypes is particularly valuable when, as is 

often the case, limited understanding precludes fully rational approaches. In such efforts, an 

organism is cultured in a condition of interest for many generations, and fitness (typically 

growth rate) is often improved as beneficial mutations are selected for and accumulate. This 

approach, called adaptive laboratory evolution (ALE) has been applied to enhance fitness in 

non-standard environments, including resistance to toxic solvents and other (by)products 

that inhibit industrial fermentation [2–6], and elevated temperature [7–10], which may be 

desirable to reduce downstream separations cost or reduce contamination risk (Figure 1).
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Metabolism is of central interest to biochemical engineering applications such as 

biocatalysis and metabolic engineering. In the context of metabolism, adaptive evolution is 

often employed to improve fitness in new environmental (e.g., substrate) or genetic contexts 

(e.g., knockout of a previously utilized pathway). Significant changes are typically observed, 

as most organisms are not fully optimized for any one condition. For example, even on its 

preferred substrate (glucose) E. coli has been shown to evolve to increase its growth rate 1.6-

fold [11,12]. ALE has generated large fitness improvements for many other substrates, and 

even established growth on non-native substrates like 1,2-propanediol and citrate [13,14]. 

Such efforts are a powerful way to expand the substrate repertoire and efficiency of chassis 

strains for bioprocessing [15,16]. ALE has also been applied to strains in conjunction with 

(typically following) genetic engineering, such as gene knockouts. These studies can provide 

fundamental insight into the flexibility of metabolism and various modes of optimality, or 

can be involved in targeted strain design efforts. For example, the design algorithm 

OptKnock [17] can be used to couple growth and production such that fitness improvements 

via ALE necessarily lead to increased production rates.

The results from ALE efforts are most informative when the mechanisms of fitness 

improvement are elucidated by combined genetic and phenotypic analysis. Sequencing of 

the end-point strains identifies the mutations that have accumulated, and then the 

mechanisms of improvement can be studied via the relevant systems measurements. 

Causality can be demonstrated by recapitulating the mutations in the starting strain, or 

inferred by frequency across a larger number of replicates (i.e. distinguished from random 

“hitch-hiker” mutations) [11]. In the context of metabolism, the phenotypic outcome of 

interest is often the changes in metabolic rates or fluxes (Figure 2). The simplest of these to 

measure are external rates, including substrate uptake, product secretion, and growth rates. 

These provide limited visibility into changes in intracellular pathway usage, which are 

resolved using isotopic (e.g. 13C) tracers and metabolic flux analysis (13C-MFA) [18,19]. 

There is a myriad of in silico approaches for predicting evolved fluxes, mostly around the 

idea of constrained optimization. In this review we will summarize the state of metabolic 

flux analysis in evolved systems and highlight promising areas for future study.

MODELING FRAMEWORKS

The basis of the predominant family of metabolic models, constraint-based reconstruction 

and analysis (COBRA), is tightly associated with evolutionary principles. An annotated 

genome is used to identify the available metabolic reaction network, and thus the set of 

possible flux solutions consistent with this stoichiometry. Within this solution space, specific 

predictions can be made by optimization of an ‘objective function’, a method known as flux 

balance analysis (FBA) [20]. The biological relevance and accuracy of various objective 

functions have been widely debated [21,22]. The most common is the biomass objective 

function, which states that the cell will maximize its growth subject to the stoichiometric and 

substrate uptake limitations. This is justified as reflecting the result of natural evolution, 

which would select for optimal fitness, i.e. growth [23]. However, the natural fitness 

landscape can be different and significantly more complex than that in controlled laboratory 

conditions. For example, in its natural life cycle E. coli contends with wildly changing 

temperature, pH, and nutrient conditions as it traverses the mammalian gut, moves between 

Long and Antoniewicz Page 2

Curr Opin Chem Eng. Author manuscript; available in PMC 2019 January 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



hosts, and spends part of its life cycle in open environments. Biomass optimization is 

expected to be a more robust assumption following ALE in controlled conditions, and has 

indeed been usefully applied to assess the outcome of ALE on a wide range of diverse 

substrates including glucose, glycerol, acetate, succinate, malate, α-ketoglutarate, lactate, 

and pyruvate [24,25]. When assessing fitness trajectories from ALE with FBA, alternative 

optima must be considered [26], as in many cases different metabolic strategies can achieve 

similar levels of fitness.

The evolutionary justifications of FBA have long been recognized to carry less weight when 

predicting fluxes immediately following genetic perturbations [27], as these can introduce 

significant unnatural constraints on metabolism. Predicting these responses, and those after 

subsequent adaptive evolution, has been an area of major research interest. Such models 

provide conceptual frameworks for interpreting experimental measurements with respect to 

metabolic bottlenecks, regulatory interactions, and flexibility. In engineering practice, they 

are used in strain design [17]. In addition to FBA, several alternative models have been 

proposed for predicting fluxes following genetic perturbation and ALE. Minimization of 

metabolic adjustment (MOMA) [27] minimizes the sum of squares difference (Euclidean 

distance) between wild-type and perturbed (e.g., gene knockout) strain. This was 

hypothesized to reflect the initial, unevolved response. Regulatory on/off minimization 

(ROOM) [28] instead uses the Hamming distance, which minimizes the number of 

significant flux changes (favoring fewer, larger changes rather than a large number of small 

adjustments). This was hypothesized to reflect the regulatory adjustments made during ALE, 

and along with FBA was expected to provide more useful predictions for the evolved 

phenotype. Another approach, termed RELATCH for relative change [29], implements 

different assumptions to make flux predictions prior to and after ALE. For the unevolved 

responses, RELATCH limits latent pathway activation and large increases in enzyme usage. 

For post-ALE predictions, these restrictions are relaxed, allowing for significant regulatory 

adjustment and flux rewiring.

MEASURING EVOLVED METABOLISM VIA EXTERNAL FLUXES

The most accessible measures of metabolic phenotype are the external fluxes, including 

substrate uptake rates and product secretion rates. These provide information on the system 

performance, but limited visibility into mechanisms of flux change and fitness improvement. 

Several notable early studies compared external flux measurements to FBA predictions in 

evolved systems. One performed ALE with E. coli on 5 different substrates (glucose, 

acetate, succinate, malate, and glycerol) [25], while a second used three substrates (α-

ketoglutarate, pyruvate, and lactate) at both 30 °C and 37 °C [24]. Both used FBA 

approaches to identify “lines of optimality” (LO), where the optimal respective rates of 

carbon substrate uptake and O2 uptake are predicted. In most cases, evolved strains 

“converged” to the LO as predicted. Discrepancies in the predicted and measured 

performance during growth on pyruvate were suggested to have resulted from missing 

reactions in the model. In another study, six different E. coli knockout strains (of major 

metabolic genes ackA, frd, pck, ppc, tpi, and zwf) were evolved on 4 different substrates 

[30]. FBA accurately predicted the final growth phenotype within 10% for 78% (39/50) of 

the endpoint strains tested. These results collectively gave support to the ideas of constrained 
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optimality in evolved systems. For more detailed understanding of the mechanisms of 

evolution in metabolism, including whether the optimal solutions are convergent or multiple, 

observation of intracellular fluxes was needed.

MEASURING INTRACELLULAR FLUXES VIA 13C-MFA

A landmark study of metabolic fluxes of evolved E. coli knockout strains was published in 

2006 [31]. Stable-isotope 13C glucose tracers were used to estimate the intracellular fluxes 

of the unevolved parent and two evolved descendants each of Δpgi, Δppc, Δpta, and Δtpi. 
Three of these four knockouts caused dramatic reductions in growth rates (from 0.63 h−1 in 

the wild-type to less than 0.23 h−1), but growth was recovered to near-wild-type rates (0.5–

0.6 h−1) in all cases. The flux results revealed several notable effects, for example the 

expression-driven increase in the normally latent methylglyoxal pathway in Δtpi. In Δpgi, 
the replicate evolved strains achieved similar growth rates with significant differences in 

pathway usage. All of these results also informed an interpretation of transient and evolved 

perturbation responses that focused on latent pathway activation and subsequent re-

repression [32]. For example, an active PCK (gluconeogenic reaction from OAC to PEP) 

reaction was observed in unevolved Δpgi and Δtpi, which was reduced on a relative basis in 

the evolved strains. As this reaction is not optimal for growth on glucose (it causes a futile 

cycle), it makes sense that its activity would be repressed by evolution. Similar observations 

were made in some cases for the Entner-Doudoroff (ED) pathway and glyoxylate shunt.

More recently, additional 13C-MFA studies of ALE strains have called this interpretation 

into question and led to new insights. A set of 10 evolved Δpgi strains, originally described 

with respect to external rates and mutations in 2010 [33], was reassessed for intracellular 

fluxes [34]. The number of replicate strains in this study was valuable for identifying 

frequently mutated genes to guide investigations into mechanism. The previously reported 

increase and subsequent decrease in relative flux through the ED, PCK, and glyoxylate shunt 

pathways was observed again. However, these were shown to be artifacts of the dramatic 

changes in absolute glucose uptake rate; the absolute fluxes (mmol/gDW/h) were not 

significantly different in the wild-type, unevolved, or evolved strains. Rather than regulatory 

responses impacting expression and flux capacity of these pathways, this result indicated 

that such latent pathways are likely constitutively active at low levels to provide flexibility in 

changing environments. Another observation was frequent (8/10 strains) mutations to the 

pyridine cofactor transhydrogenase genes, which corresponded to large changes to the 

corresponding flux. In the wild-type, excess NADH is converted to NADPH by PntAB, but 

by forcing flux through the NADPH-producing oxidative pentose phosphate pathway 

(oxPPP), the pgi knockout necessitates a reversal of this flux (NADPH to NADH by SthA). 

Frequent mutations in the PTS (glucose transport complex) subunit crr, which is also 

involved in gene regulation via the global regulator Crp that controls the transcription of 

over 100 genes, suggested new questions for further study.

While fluxes may be expected to shift to facilitate recovery of severely perturbed strains, 

what about wild-type strains evolved for faster growth? Even on its preferred substrate, 

glucose, E. coli increases its growth rate by up to 1.6-fold following ALE [11]. A follow-up 

study showed that, in fact, uptake-normalized fluxes (i.e., pathway usage) did not 
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appreciably change in six evolved wild-type E. coli MG1655 strains. The differences 

between them was much less than that between WT MG1655 and other E. coli WT strains, 

particularly BL21 [35]. This result is consistent with a broad and proportional increase in the 

activity of metabolic enzymes, and reflects that wild-type metabolism already allocates flux 

through its pathways in an efficient manner. For both wild-type and knockout strains, the 

interplay of global regulators and metabolism is a promising area of ongoing investigation. 

For example, a ubiquitous mutation in the RNAP subunit rpoB was shown to cause a broad 

change in gene expression partially responsible for the faster metabolism in WT ALE strains 

[36]. In other cases, evolved phenotypes of interest such as co-utilization of glucose and 

xylose in Thermus thermophilus have been understood by mapping fluxes via 13C-MFA 

[37].

FUTURE DIRECTIONS AND OPPORTUNITIES

Adaptive evolution coupled with metabolic analysis is clearly a powerful approach for basic 

investigation into metabolism, including for hypothesis generation, as well as for gleaning 

specific and useful knowledge for biotechnology. For example, a recent ALE study of an E. 
coli Δzwf strain with a blocked oxPPP, mutations were observed that resulted in increased 

transhydrogenase activity opposite to those observed in the Δpgi-ALE study (NADPH-

generating) [38]. These mutations observed across both studies could provide additional 

tools for metabolic engineering where cofactor balancing is often a crucial consideration. In 

these examples, transhydrogenase activity apparently was significantly rate-limiting to the 

unevolved mutants. By using this approach across other mutants or in other conditions, 

nature’s solutions to other types of rate limitations could be elucidated, providing a wealth 

of new targets for the metabolic engineering toolbox.

For these reasons, it would be useful to undertake a more complete and systematic approach 

to characterizing metabolic responses to ALE. These could include more knockouts in 

central carbon metabolism [39], global regulators, or secondary pathways of interest [40]. 

Recent studies of gene knockout phenotypes provide a framework for selecting targets [41], 

such as the slowest growing which would be expected to undergo the most dramatic 

changes. In addition to providing insights into rate limitations, these efforts could reveal the 

nature and limits of other unnatural modes of metabolism such as if whole pathways are 

blocked or restricted. Generating high-performance strains with unique pathway usage, e.g. 

“no TCA cycle” or “ED pathway-exclusive”, would be interesting for both testing the limits 

of in silico prediction and as novel chassis strains.

Further study of evolved wild-type strains will also continue to provide valuable insights 

into biological limitations and engineering efficient chassis organisms. Comparing the 

fluxes, mutations, and other ‘omics’ of other evolved E. coli strains, such as the 

aforementioned BL21, will reveal whether all strains ‘converge’ to a single optima or evolve 

toward distinct high-performance states. This can be extended to other substrates and 

conditions of industrial interest as well. For example, efforts to engineer E. coli to consume 

alternative substrates like methanol or CO2 will likely involve evolution, and 13C-MFA is 

likely to be an important part of the design-build-test cycle [42–46]. Comparison to other 

organisms with distinct environmental niches and evolutionary histories will also be quite 
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interesting. For example, are the marine strain Vibrio natriegens [47,48] or the thermophile 

Geobacillus LC300 [49,50] able to further improve upon their exceptional rates of growth, 

or are they already ‘optimal’ for growth on glucose? Are these microbes less adaptable than 

E. coli to alternative substrates or harsher culture conditions?

Lastly, creative variations on the ALE experimental process itself may reveal additional 

nuances. More complicated fitness landscapes can be explored, for example, by alternating 

the conditions such as substrate [51] or other variables such as temperature [8]. In the case 

of alternating between glucose and a second substrate (xylose, glycerol, or acetate), different 

strategies emerged: in some cases a single “generalist” strain emerged, while in others two 

“specialist” strains persisted [51]. Such experimental designs have rich potential for 

exploring ecologically relevant scenarios. Another possibility for manipulating the 

experimental design is to change the order of ALE and genetic perturbation. If a wild-type is 

evolved first for fast growth on glucose, will the nature of its knockout responses change 

[52–56]? How does that strain compare to the reverse, original case (knockout then ALE), 

and what if a second round of ALE was performed subsequently to the knockout? The path 

and context-dependency of evolution would be explored in these types of studies, with 

potential to add a significant layer of understanding.

CONCLUSIONS

Measuring, modeling, and understanding evolved metabolic systems is an important and 

fruitful area of research. The continued application of 13C-MFA and whole genome 

sequencing to understand the mechanisms of adaptive evolution will generate biological 

hypotheses, identify engineering targets, and provide fundamental insights into how 

evolution occurs and how metabolism functions. The ability to explain causal mutations is a 

useful test of biological knowledge, and offers clear guidance for follow-up investigation to 

close knowledge gaps. Diverse types of insights are possible depending on the purpose and 

design of evolution experiments. We propose that further study of fluxes in adaptively 

evolved strains, particularly following gene knockouts, would be a worthwhile effort for 

generating understanding of metabolic bottlenecks and potential engineering strategies.
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Figure 1. 
Applications of adaptive laboratory evolution (ALE) in strain development for 

biomanufacturing and in basic science research.
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Figure 2. 
In adaptive laboratory evolution (ALE) an organism is cultured for many generations under 

specific conditions of interest. In the process, the fitness (typically growth rate) is improved 

as beneficial mutations are selected for and accumulate, and metabolism is rewired to 

facilitate the enhanced phenotype.
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