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Abstract

We compare alternative computing strategies for solving the constrained lasso problem. As its 

name suggests, the constrained lasso extends the widely-used lasso to handle linear constraints, 

which allow the user to incorporate prior information into the model. In addition to quadratic 

programming, we employ the alternating direction method of multipliers (ADMM) and also derive 

an efficient solution path algorithm. Through both simulations and benchmark data examples, we 

compare the different algorithms and provide practical recommendations in terms of efficiency 

and accuracy for various sizes of data. We also show that, for an arbitrary penalty matrix, the 

generalized lasso can be transformed to a constrained lasso, while the converse is not true. Thus, 

our methods can also be used for estimating a generalized lasso, which has wide-ranging 

applications. Code for implementing the algorithms is freely available in both the MATLAB toolbox 

SparseReg and the JULIA package ConstrainedLasso. Supplementary materials for this article are 

available online.
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1 Introduction

Our focus is on estimating the constrained lasso problem (James et al., 2013)
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minimize 1
2‖y − Xβ‖2

2 + ρ‖β‖1

subject to Aβ = b and Cβ ≤ d,
(1)

where y ∈ ℝn is the response vector, X ∈ ℝn×p is the design matrix of predictors or 

covariates, β ∈ ℝp is the vector of unknown regression n coefficients, and ρ ≥ 0 is a tuning 

parameter that controls the amount of regularization. It is assumed that the constraint 

matrices, A and C, both have full row rank. As its name suggests, the constrained lasso 

augments the standard lasso (Tibshirani, 1996) with linear equality a nd inequality 

constraints. While the use of the ℓ1 penalty allows a user to impose prior knowledge on the 

coefficient estimates in terms of sparsity, the constraints provide an additional vehicle for 

prior knowledge to be incorporated into the solution. For example, consider the annual data 

on temperature anomalies given in Figure 1. As has been previously noted in the literature 

on isotonic regression, in general temperature appears to increase monotonically over the 

time period of 1850 to 2015 (Wu et al., 2001; Tibshirani et al., 2011). This monotonicity can 

be imposed on the coefficient estimates using the constrained lasso with the inequality 

constraint matrix

C =

1 −1
1 −1

⋱ ⋱
1 −1

(2)

and d = 0 ∈ ℝp−1. The lasso with a monotonic ordering of the coefficients was referred to by 

Tibshirani and Suo (2016) as the ordered lasso, and is a special case of the constrained lasso 

(1).

Another example of the constrained lasso that has appeared in the literature is the positive 
lasso. First mentioned in the seminal work of Efron et al. (2004), the positive lasso requires 

the lasso coefficients to be non-negative. This variant of the lasso has seen applications in 

areas such as vaccine design (Hu et al., 2015b), nuclear material detection (Kump et al., 

2012), document classification (El-Arini et al., 2013), and portfolio management (Wu et al., 

2014). The positive lasso is a special case of the constrained lasso (1) with C = −Ip and d = 

0p. Additionally, there are several other examples throughout the literature where the 

original lasso is augmented with additional information in the form of linear equality or 

inequality constraints. Huang et al. (2013b) constrained the lasso estimates to be in the unit 

interval to interpret the coefficients as probabilities associated with the presence of a certain 

protein in a cell or tissue. The lasso with a sum-to-zero constraint on the coefficients has 

been used for regression (Shi et al., 2016) and variable selection (Lin et al., 2014) with 

compositional data as covariates. Compositional data are multivariate data that represent 

proportions of a whole and thus must sum to one, and arrive in applications such as 

consumer spending in economics, topic consumption of documents in machine learning, and 

the human microbiome (Lin et al., 2014). Lastly, simplex constraints were utilized by Huang 

et al. (2013a) when using the lasso to estimate edge weights in brain networks. Thus, the 
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constrained lasso is a very flexible framework for imposing additional knowledge and 

structure onto the lasso coefficient estimates.

During the preparation of our manuscript, we became aware of unpublished work by He 

(2011) that also derived a solution path algorithm for solving the constrained lasso. 

However, our approach to deriving the path algorithm is completely different and is more in 

line with the literature on solution path algorithms (Rosset and Zhu, 2007), especially in the 

presence of constraints (Zhou and Lange, 2013). Additionally, we address how our 

algorithms can be adapted to work in the high dimensional setting where n < p, which was 

not done by He (2011). Furthermore, the approach by He (2011) decomposes the parameter 

vector, β, into its positive and negative parts, β = β+ − β−, thus doubling the size of the 

problem. On the other hand, we work directly with the original coefficient vector at the 

benefit of computational efficiency and notational simplicity. Lastly, another important 

contribution of our work is the implementation of our algorithms in the SparseReg MATLAB 

toolbox and the ConstrainedLasso JULIA package available on GitHub.

The constrained lasso was also studied by James et al. (2013) in an earlier version of their 

manuscript on penalized and constrained (PAC) regression. The current PAC regression 

framework extends (1) by using a negative log likelihood for the loss function to also cover 

generalized linear models (GLMs), and thus is more general than the problem we study. 

However, we believe the squared error loss function merits additional attention given its 

widespread use with the ℓ1 penalty, and also since the constrained lasso is a natural approach 

to solving constrained least squares problems in the increasingly common high-dimensional 

setting. Additionally, the use of the squared error loss function yields nice properties of the 

coefficient solution paths which can be exploited in deriving the path algorithm (Zhou and 

Wu, 2014). The path algorithm developed by James et al. (2013) is not a traditional solution 

path algorithm as it is fit on a pre-specified grid of tuning parameters, which is 

fundamentally different from our path following strategy. Hu et al. (2015a) studied the 

constrained generalized lasso, which reduces to the constrained lasso when no penalty 

matrix is included (D = Ip). However, they do not derive a solution path algorithm but 

instead develop a coordinate descent algorithm for fixed values of the tuning parameter.

The rest of the article is organized as follows. In Section 2, we demonstrate a connection 

between the constrained lasso and the generalized lasso, which shows that the latter can 

always be transformed and solved as a constrained lasso, even when the penalty matrix is 

rank deficient. Given the flexibility of the generalized lasso, this result greatly extends the 

applicability of our algorithms and results. Various algorithms to solve the constrained lasso, 

including quadratic programming (QP), the alternating direction method of multipliers 

(ADMM), and a novel path following algorithm, are derived in Section 3. Simulation results 

that compare the performance of the algorithms are presented in Section 4. The main result 

from the simulations is that, in terms of run time, the solution path algorithm is more 

efficient than the other approaches when coefficient estimates at more than a handful of 

values of the tuning parameter are desired. Benchmark data examples that highlight the 

flexibility of the constrained lasso are given in Section 5, while Section 6 concludes.
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2 Connection to the Generalized Lasso

Another flexible lasso formulation is the generalized lasso (Tibshirani and Taylor, 2011)

minimize 1
2‖y − Xβ‖2

2 + ρ‖Dβ‖1, (3)

where D ∈ ℝm×p is a fixed, user-specified regularization matrix. Certain choices of D 
correspond to different versions of the lasso, including the original lasso, various forms of 

the fused lasso, and trend filtering. It has been observed that (3) can be transformed to a 

standard lasso when D has full row rank (Tibshirani and Taylor, 2011), and it can be 

transformed to a constrained lasso when D has full column rank (James et al., 2013).

Here we note that it is in fact possible to solve a generalized lasso as a constrained lasso 

even when D is rank deficient, which is stated in Theorem 1 (see Appendix A.1 for the 

proof).

Theorem 1. For an arbitrary penalty matrix with rank(D) = r, using the following change of 
variables

α
γ

= Dβ =
U1Σ1V1

T

V2
T

β, (4)

where U1 ∈ ℝm×r, U2 ∈ ℝm×(m−r), Σ1 ∈ ℝr×r, V1 ∈ ℝp×r, and V2 ∈ ℝp×(p−r) are from the 
singular value decomposition (SVD) of D, α ∈ ℝm, and γ ∈ ℝp−r, the generalized lasso 
problem (3) is equivalent to a constrained lasso problem

minimize 1
2 y − XD+α − XV2γ

2

2
+ ρ‖α‖1

sub ject to U2
Tα = 0m − r,

(5)

where D+ denotes the Moore-Penrose inverse of the matrix D.

There are three special cases of interest:

1. When D has full row rank, r = m, the matrix U2 is null and the constraint 

U2
Tα = 0 vanishes, reducing to a standard lasso as observed by Tibshirani and 

Taylor (2011).

2. When D has full column rank, r = p, the matrix V2 is null and the term XV2γ 
drops, resulting in a constrained lasso as observed by James et al. (2013).
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3. When D does not have full rank, r < min(m, p), the above problem (5) can 

besimplified to a constrained lasso problem only in α by noticing that 

minimizing (5) with respect to γ yields

XV2γ = PXV2
y − XD+α

or any α, where PXV2
 is the orthogonal projection onto the column space 

𝒞(XV2). Thus, the resulting constrained lasso problem is given by

minimize 1
2‖y − Xα‖2

2 + ρ‖α‖1

subject to U2
Tα = 0m − r,

where y = I − PXV2
y and X = I − PX V2

XD+. The solution path α(ρ) can be 

translated back to that of the original generalized lasso problem via the affine 

transformation

β(ρ) = V1Σ1
−1U1

Tα(ρ) + V2 V2
TXTXV2

−
V2

TXT y − XD+α(ρ)

= I − V2 V2
TXTXV2

−
V2

TXTX D+α(ρ)

+V2 V2
TXTXV2

−
V2

TXT y,

where X− denotes the generalized inverse of a matrix X.

Thus, any generalized lasso problem can be reformulated as a constrained lasso, so the 

algorithms and results presented here are applicable to a large class of problems. However, it 

is not always possible to transform a constrained lasso into a generalized lasso, as detailed in 

Appendix A.2.

3 Algorithms

In this section, we derive three different algorithms for estimating the constrained lasso (1). 

Throughout this section, we assume that X has full column rank, which necessitates that n > 
p. For the increasingly prevalent high-dimensional case where n < p, we follow the standard 

approach in the related literature (Tibshirani and Taylor, 2011; Hu et al., 2015a; Arnold and 

Tibshirani, 2016) and add a small ridge penalty to the original objective function in (1). The 

problem then becomes

minimize 1
2‖y − Xβ‖2

2 + ρ‖β‖1 + ε
2‖β‖2

2

subject to Aβ = b and Cβ ≤ d,
(6)

Gaines et al. Page 5

J Comput Graph Stat. Author manuscript; available in PMC 2019 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where ε is some small constant, such as 10−4. Note that the objective (6) can be re-arranged 

into standard constrained lasso form (1)

minimize 1
2‖y* − X* β‖2

2 + ρ‖β‖1

subject to Aβ = b and Cβ ≤ d,
(7)

using the augmented data y* =
y
0p

 and X* =
X
εIp

. The augmented design matrix has full 

column rank, so the following algorithms can then be applied to the augmented form (7). As 

discussed by Tibshirani and Taylor (2011), this approach is attractive for more than just 

computational reasons as the inclusion of the ridge penalty may also improve predictive 

accuracy.

Before deriving the algorithms, we first define some notation. For a vector v and index set 𝒮, 

let v𝒮 be the sub-vector of size 𝒮  containing the elements of v corresponding to the indices 

in 𝒮, where |·| denotes the cardinality or size of the index set. Similarly, for a matrix M and 

another index set 𝒯, the matrix M𝒮, 𝒯 contains the rows from M corresponding to the 

indices in 𝒮 and the columns of M from the indices in 𝒯. We use a colon, :, when all indices 

along one of the dimensions are included. That is, M𝒮,: contains the rows from M 

corresponding to 𝒮 but all of the columns in M.

3.1 Quadratic Programming

Our first approach is to use quadratic programming to solve the constrained lasso problem 

(1). The key is to decompose β into its positive and negative parts, β = β+ − β−, as the 

relation |β| = β+ + β− handles the ℓ1 penalty term. By plugging these into (1) and adding the 

additional non-negativity constraints on β+ and β−, the constrained lasso is formulated as a 

standard quadratic program of 2p variables,

minimize 1
2

β+

β−

T
XTX −XTX

−XTX XTX

β+

β− + ρ12p − XT y

−XT y

T
β+

β−

subject to (A − A) β+

β− = b, β+ ≥ 0p

C −C
β+

β− ≤ d, β− ≥ 0p .

MATLAB’s quadprog function is able to scale up to p ∼ 102-103, while the commercial 

GUROBI OPTIMIZER is able to scale up to p ∼ 103-104.

3.2 ADMM

The next algorithm we apply to the constrained lasso problem (1) is the alternating direction 

method of multipliers (ADMM). The ADMM algorithm has experienced renewed interest in 
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statistics and machine learning applications in recent years as it can solve a large class of 

problems, is often easy to implement, and is amenable to distributed computing; see Boyd et 

al. (2011) for a recent survey. In general ADMM is an algorithm to solve a problem that 

features a separable objective but coupling constraints,

minimize f (x) + g(z)
subject to Mx + Fz = c,

where f,g : ℝp ↦ ℝ ∪ {∞} are closed proper convex functions. The idea is to employ 

block coordinate descent to the augmented Lagrangian function followed by an update of the 

dual variables ν,

x(t + 1) arg min
x

ℒτ x, z(t), ν(t)

z(t + 1) arg min
x

ℒτ x(t + 1), z, ν(t)

ν(t + 1) ν(t) + τ Mx(t + 1) + Fz(t + 1) − c ,

where t is the iteration counter and the augmented Lagrangian is

ℒτ(x, z, ν) = f (x) + g(z) + νT(Mx + Fz − c) + τ
2‖Mx + Fz − c‖2

2 . (8)

Often it is more convenient to work with the equivalent scaled form of ADMM, which scales 

the dual variable and combines the linear and quadratic terms in the augmented Lagrangian 

(8). The updates become

x(t + 1) arg min
x

f (x) + τ
2‖Mx + Fz(t) − c + u(t)‖2

2

z(t + 1) arg min
z

g(z) + τ
2‖Mx(t + 1) + Fz − c + u(t)‖2

2

u(t + 1) u(t) + Mx(t + 1) + Fz(t + 1) − c,

where u = ν/τ is the scaled dual variable. The scaled form is especially useful in the case 

where M = F = I, as the updates can be rewritten as

x(t + 1) prox1
τ f

c − z(t) − u(t)

z(t + 1) prox1
τ g

c − x(t + 1) − u(t)

u(t + 1) u(t) + x(t + 1) + z(t + 1) − c,

where prox1
τ f

 is the proximal mapping of a function f with parameter τ > 0. Recall that the 

proximal mapping is defined as
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prox1
τ f

(v) = argmin
x

f (x) + τ
2‖x − v‖2

2 .

One benefit of using the scaled form for ADMM is that, in many situations including the 

constrained lasso, the proximal mappings have simple, closed form solutions, resulting in 

straightforward ADMM updates. To apply ADMM to the constrained lasso, we identify f as 

the objective in (1) and g as the indicator function of the constraint set 𝒞 = {β ∈ ℝp : Aβ = 

b, Cβ ≤ d},

g(β) = χ𝒞 = ∞ β ∉ 𝒞
0 β ∈ 𝒞 .

For the updates, prox1
τ f

 is a regular lasso problem and prox1
τ g

 is a projection onto the affine 

space 𝒞 (Algorithm 1). The projection onto convex sets is well-studied and, in many 

applications, the projection can be solved analytically (see Section 15.2 of Lange (2013) for 

several examples). For situations where an explicit projection operator is not available, the 

projection can be found by using quadratic programming to solve the dual problem, which 

has a smaller number of variables.

Algorithm 1:

ADMM for solving the constrained lasso (1).

1 Initialize β(0) = z(0) = β0, u(0) = 0, τ > 0;

2 repeat

3      β(t + 1) argmin1
2‖y − Xβ‖2

2 + τ
2‖β + z(t) + u(t)‖2

2 + ρ‖β‖1;

4      z(t + 1) proj𝒞 β(t + 1) + u(t) ;

5      u(t+1) ← u(t) + β(t+1) + z(t+1);

6 until convergence criterion is met;

3.3 Path Algorithm

In this section we derive a novel solution path algorithm for the constrained lasso problem 

(1). According to the KKT conditions, the optimal point β(ρ) is characterized by the 

stationarity condition

−XT[y − Xβ(ρ)] + ρs(ρ) + ATλ(ρ) + CT μ(ρ) = 0p

coupled with the linear constraints. Here s(ρ) is the subgradient ∂‖β‖ with elements
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s j(ρ) =

1 β j(ρ) > 0
[ − 1, 1] β j(ρ) = 0
−1 β j(ρ) < 0

, (9)

and μ satisfies the complementary slackness condition. That is, μl = 0 if cl
T β < dl and μl ≥ 0 

if cl
T β = dl.

Along the path we need to keep track of two sets,

𝒜 ≔ j: β j ≠ 0 , 𝒵I ≔ l:cl
T β = dl .

The first set indexes the non-zero (active) coefficients and the second keeps track of the set 

of (binding) inequality constraints on the boundary. Focusing on the active coefficients for 

the time being, we have the (sub)vector equation

0 𝒜 = − X : , 𝒜
T y − X : , 𝒜β𝒜 + ρs𝒜 + A: , 𝒜

T λ + C𝒵I, 𝒜
T μ𝒵I

b
dZI

=
A: , 𝒜
C𝒵I, 𝒜

β𝒜,
(10)

involving dependent unknowns β𝒜, λ, and μZI
, and independent variable ρ. Applying the 

implicit function theorem to the vector equation (10) yields the path following direction

d
dρ

β𝒜
λ

μ𝒵I

= −

X : , 𝒜
T X : , 𝒜
A: , 𝒜

C𝒵I, 𝒜

A: , 𝒜
T C𝒵I, 𝒜

T

0 0
0 0

−1
s𝒜
0
0

. (11)

The right hand side is constant on a path segment as long as the sets 𝒜 and 𝒵I and the signs 

of the active coefficients s𝒜 remain unchanged. This shows that the solution path of the 

constrained lasso is piecewise linear. The involved matrix is non-singular as long as X : , 𝒜

has full column rank and the constraint matrix 
A: , 𝒜
C𝒵I, 𝒜

 has linearly independent rows. The 

stationarity condition restricted to the inactive coefficients

−X
: , 𝒜c
T y − X : , 𝒜β𝒜(ρ) + ρs

𝒜c(ρ) + A
: , 𝒜c
T λ(ρ) + C

𝒵I, 𝒜c
T μ𝒵I

(ρ) = 0
𝒜c
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determines

ρs
𝒜c(ρ) = X

: , 𝒜c
T y − X : , 𝒜β𝒜(ρ) − A

: , 𝒜c
T λ(ρ) − C

ZI, 𝒜c
T μ𝒵I

(ρ) . (12)

Thus ρs
𝒜c moves linearly along the path via

d
dρ ρs

𝒜c = −

X : , 𝒜
T X:,𝒜c

A:,𝒜c

C𝒵I
, 𝒜c

T

d
dρ

β𝒜
λ

μ𝒵I

. (13)

The inequality residual r
𝒵I

c ≔ C
𝒵I

c, 𝒜
β𝒜 − d

𝒵I
c also moves linearly with gradient

d
dρ r

ZI
c = C

ZI
c, 𝒜

d
dρ β𝒜 . (14)

Together, equations (11), (13), and (14) are used to monitor changes to 𝒜 and 𝒵I, which can 

potentially result in kinks in the solution path.

To recap, since the solution path is piecewise linear we only need to monitor the events 

discussed above that can result in kinks along the path, and then the rest of the path can be 

interpolated. A summary of these events is given in the column on the left in Table 1. We 

perform path following in the decreasing direction from ρmax towards ρ = 0. Let β(t) denote 

the solution at kink t, then the next kink t+1 is identified by the smallest Δρ, where Δρ > 0 is 

determined by the first four conditions listed in the right column of Table 1. In addition to 

monitoring these events along the path, we also need to monitor a technical condition to 

ensure that the subgradient conditions (9) remain satisfied along the path for the solution 

path to be well-defined. An issue arises when inactive coefficients on the boundary of the 

subgradient interval are moving too slowly along the path such that their subgradient would 

escape [−1, 1] at the next kink t + 1. To handle this issue, if an inactive coefficient βj, j ∈ 𝒜c, 

with subgradient sj = ±1 is moving too slowly, the coefficient is moved to the active set 𝒜
and equation (11) is recalculated before continuing the path algorithm. The explicit range of 
d

dρ ρs
𝒜c  that needs to be monitored is given in Table 1, and the corresponding derivations 

are in Appendix A.3.

3.3.1 Initialization—Since we perform path following in the decreasing direction, a 

starting value for the tuning parameter, ρmax, is needed. As ρ → ∞, the solution to the 

original problem (1) is given by
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minimize ‖β‖1
subject to Aβ = b and Cβ ≤ d,

(15)

which is a standard linear programming problem. We first solve (15) to obtain initial 

coefficient estimates β0 and the corresponding sets 𝒜 and 𝒵I, as well as initial values for the 

Lagrange multipliers λ0 and μ0. Following Rosset and Zhu (2007), path following begins 

from

ρmax = max x j
T y − Xβ0 − A: j

T λ0 − CZI, j
T μZI

0 , (16)

and the subgradient is set according to (9) and (12). As noted by James et al. (2013), this 

approach can fail when (15) does not have a unique solution. For example, consider a 

constrained lasso with a sum-to-one constraint on the coefficients, Σj βj = 1. Any elementary 

vector ej, which has a 1 for the jth element and 0 otherwise, satisfies the constraint while also 

achieving the minimum ℓ1 norm, resulting in multiple solutions to (15). In this case, it is still 

possible to use (15) and (16) to identify ρmax, which is then used in (1) to initialize β0, 𝒜, 

𝒵I, λ
0, and μ0 via quadratic programming.

3.3.2 Termination—Another practical consideration for implementing the solution path 

algorithm is a principled way for terminating the algorithm. To this end, we derive a formula 

for the degrees of freedom of the constrained lasso. The standard approach in the lasso 

literature (Efron et al., 2004; Zou et al., 2007; Tibshirani and Taylor, 2011, 2012) is to rely 

on the expression for degrees of freedom given by Stein (1981),

df(g) = E ∑
i = 1

n ∂gi
∂yi

, (17)

where g is a continuous and almost differentiable function, which with g(y) = y = Xβ is 

satisfied in our case (Hu et al., 2015a). In order to apply (17), we need to assume that the 

response is normally distributed, i.e. y ∼ N(μ,σ2I). As before, we also assume that both 

constraint matrices, A and C, have full row rank, and X has full column rank. Then, using 

the results in Hu et al. (2015a) with D = I, for a fixed ρ ≥ 0 the degrees of freedom are given 

by

df(Xβ(ρ)) = E 𝒜 − q + 𝒵I , (18)

where 𝒜  is the number of active predictors, q is the number of equality constraints, and 𝒵I

is the number of binding inequality constraints. The unbiased estimator for the degrees of 
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freedom is then 𝒜  − (q + 𝒵I ). This result is intuitive as the degrees of freedom start out as 

the number of active predictors, and then one degree of freedom is lost for each equality 

constraint and each binding inequality constraint. Additionally, when there are no 

constraints, (1) becomes a standard lasso problem with degrees of freedom equal to 𝒜 , 

consistent with the result in Zou et al. (2007). The formula (18) is also consistent with 

results for constrained estimation presented in Zhou and Lange (2013) and Zhou and Wu 

(2014). We use the degrees of freedom when implementing the solution path algorithm to 

terminate the path once the degrees of freedom equal n. The number of degrees of freedom 

is also an important measure that is an input for several metrics used for model assessment 

and selection, such as Mallows’ Cp, AIC, and BIC. Specifically, these criteria can be plotted 

along the path as a function of ρ as a technique for selecting the optimal value for the tuning 

parameter, as alternatives to cross-validation.

4 Simulated Examples

To investigate the performance of the various algorithms outlined in Section 3 for solving a 

constrained lasso problem, we consider three simulated examples. For the simulations, we 

used the three different algorithms discussed in Section 3 to solve (1). As noted in Section 

3.2, the ADMM algorithm includes an additional tuning parameter τ, which we fix at 1/n 
based on initial experiments. Additionally, as pointed out in Boyd et al. (2011), the 

performance of the ADMM method can be greatly impacted by the choice of the algorithm’s 

stopping criteria, which we set to be 10−4 for both the absolute and relative error tolerances. 

When possible (simulations 1 and 2), we also use a user-defined function handle to solve the 

subproblem of projecting onto the constraint set 𝒞 for ADMM as this improves efficiency. 

Two factors of interest in the simulations are the size of the problem, (n, p), and the value of 

the regularization tuning parameter, ρ. Four different levels were used for the size factor, (n, 
p): (50, 100), (100, 500), (500, 1000), and (1000, 2000). For the latter factor, the values of ρ 
were calculated as a fraction of the maximum ρ. The fractions, or ρscale values (i.e., ρ = 

ρscale · ρmax) used in the simulations were 0.2, 0.4, 0.6, and 0.8, to investigate how the 

degree of regularization impacts algorithm performance. To make the results more 

comparable, the total runtimes for the solution path algorithm are averaged across the total 

number of kinks in the path. To generate the data for the first two simulations, the covariates 

in the design matrix, X, were generated as independent and identical (iid) standard normal 

variables, and the response was generated as y = Xβ + ε where ε ∼ N(0n, In). For the third 

simulation setting, the covariates are again generated from a normal distribution with mean 

zero but using a covariance matrix with (i,j) elements given by 0.5|i−j|. As discussed later, the 

third simulation setting is inspired by an example in the literature (Hu et al., 2015a), so we 

follow their data generating process. All simulations used 20 replicates and were conducted 

in MATLAB using the SparseReg toolbox on a computer with an Intel i7–6700 3.4 GHz 

processor and 32 GB memory. Quadratic programming uses the GUROBI OPTIMIZER via the 

MATLAB interface, while ADMM and the solution path algorithm are pure MATLAB 

implementations.
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4.1 Sum-to-zero Constraints

The first simulation involves a sum-to-zero constraint on the true parameter vector, Σj βj = 0. 

Recently, this type of constraint on the lasso has seen increased interest as it has been used 

in the analysis of compositional data as well as analyses involving any biological 

measurement analyzed relative to a reference point (Lin et al., 2014; Shi et al., 2016; 

Altenbuchinger et al., 2017). Written in the constrained lasso formulation (1), this 

corresponds to A = 1p
T and b = 0. For this simulation, the true parameter vector, β, was 

defined such that the first 25% of the entries are 1, the next 25% of the entries are −1, and 

the rest of the elements are 0. Thus the true parameter satisfies the sum-to-zero constraint, 

which we can impose on the estimation using the constraints.

The main results of the simulation are given in Figure 2(a), which plots the average 

algorithm runtime results across different problem sizes, (n, p). The results using quadratic 

programing (QP) and ADMM are each graphed at two values of ρscale, 0.2 and 0.6. In the 

graph we can see that the solution path algorithm was faster than the other methods, and its 

relative performance is even more impressive as the problem size grows. The graph also 

shows the impact of the tuning parameter, ρ, on both QP and ADMM. QP performed 

similarly across both values of ρscale, but that was not the case for ADMM. At ρscale = 0.6, 

ADMM performed very similarly to QP, but ADMM’s performance was much worse at 

smaller values of ρ. Smaller values of ρ correspond to less weight on the ℓ1 penalty which 

results in solutions that are less sparse. The ADMM runtimes are also more variable than the 

other algorithms. estimate at one value of the tuning parameter, ρscale ρmax

While algorithm runtime is the metric of primary interest, a fast algorithm is not of much use 

if it is woefully inaccurate. When we adopt the objective value error relative to QP as a 

measure of accuracy, the solution path algorithm is not only efficient but also accurate. On 

the other hand, the accuracy of ADMM decreases as ρ increases. Part of this is to be 

expected given that the convergence tolerance used for ADMM is less stringent than the one 

used for QP. Regardless, the magnitude of these errors, which is generally less than 0.005%, 

is probably not of practical importance. The plot of the objective value error, both on the 

original scale and a log scale, for the solution path and ADMM for (n,p) = (500,1000) is 

given in Figure A.2 in Appendix A.4. The results from the other problem sizes are 

qualitatively similar and are thus omitted.

4.2 Non-negativity Constraints

The second simulation involves the positive lasso mentioned in Section 1, as to our 

knowledge it is the most common version of the constrained lasso that has appeared in the 

literature. Also referred to as the non-negative lasso, as its name suggests it constrains the 

lasso coefficient estimates to be non-negative. In the constrained lasso formulation (1), the 

positive lasso corresponds to the constraints C = −Ip and d = 0p. For each problem size, the 

true parameter vector was defined as

β j = j, j = 1, …, 10
0, j = 11, …, p

,
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so the true coefficients obey the constraints and the constrained lasso allows us to 

incorporate this prior knowledge into the estimation. Figure 2(b) is a graph of the average 

runtime for each algorithm for the different problem sizes considered. As with simulation 1, 

the results for quadratic programming (QP) and ADMM are graphed at two different values 

of ρ, corresponding to ρscale = ρ/ρmax ∈ {0.2,0.6} to also demonstrate the impact of ρ on the 

estimation time. One noteworthy result is that ADMM fared better relative to QP as the 

problem size grew and was faster than QP for the two larger sizes under investigation, 

whereas ADMM had runtimes that were comparable or slower than QP in the first 

simulation. Since ADMM generally scales more efficiently than QP, we expected ADMM to 

outperform QP for larger problems and this happened more quickly in the second simulated 

setting since the inclusion of p inequality constraints notably increased the complexity of the 

problem. As with the first simulation, another thing that stands out in the results is the strong 

performance of the solution path algorithm, which generally outperformed the other two 

methods. However, for (n, p) = (1000,2000), ADMM and the solution path performed 

similarly, partly due to the initialization of the path algorithm hampering its performance as 

the problem size grows. In terms of accuracy, the objective value errors relative to QP for the 

solution path and ADMM were negligible and are thus omitted.

4.3 Complex Constraints

While the first two simulation settings were motivated by the popularity of the constraints in 

the literature, it is also of interest to see how the algorithms perform when the constraints are 

more complex and involve multiple parameters at a time. To this end, we borrow the 

constraints used in one of the simulations studied by Hu et al. (2015a). The true parameter 

vector is defined as β = (1,0.5,−1,0,…,0,1,0.5,−1,0,…,0)T, so only its 1st, 2nd, 3rd, 11th, 

12th, and 13th elements are nonzero. The constrained lasso is estimated subject to the 

constraints

β1 + β2 + β3 ≥ 0, β1 + β3 + β11 + β13 = 0
β2 + β5 + β11 ≥ 1, β2 + β8 + β12 = 1.

The results for this setting are given in Figure 2(c). For this setting, the performance gap 

between QP and ADMM is even larger than what was observed in simulation 2 as QP is 

much slower for the largest setting. As with the other two simulations, ADMM is much 

more sensitive to the extent of the regularization and does worse as the solutions become 

less sparse. QP, on the other hand, is again invariant to the value of ρ. The solution path 

algorithm is able to handle the more complex constraints in stride and again performs 

noticeably faster than the other methods as the size grows. For even larger problem sizes, the 

pattern in the relative performance of the algorithms is similar but the gap between QP and 

the other methods is even more striking as QP does not scale as well, even when using a 

very efficient commercial solver. Supplemental simulation results that include a larger 

problem size to highlight this pattern are given in Appendix A.5.
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5 Benchmark Data Applications

To highlight the flexibility of the general formulation of the constrained lasso that we have 

studied, we explore four examples from the literature. For the results in this section, the 

constrained lasso is estimated using the solution path algorithm (Section 3.3) since that is 

our main contribution.

5.1 Global Warming Data

For our first application of the constrained lasso on a benchmark dataset, we revisit the 

global temperature data presented in Section 1, which was provided by Jones et al. (2016). 

The dataset consists of annual temperature anomalies from 1850 to 2015, relative to the 

average for 1961–90. As mentioned, there appears to be a monotone trend to the data over 

time, so it is natural to want to incorporate this information when estimating the trend. Wu et 

al. (2001) achieved this on a previous version of the dataset by using isotonic regression, 

which is given by

minimize 1
2‖y − β‖2

2

subject to β1 ≤ ⋯ ≤ βn,
(19)

where y ∈ ℝn is the monotonic data series of interest and β ∈ ℝn is a monotonic sequence of 

coefficients. The lasso analog of isotonic regression, which adds an ℓ1 penalty term to (19), 

can be estimated by the constrained lasso (1) using the constraint matrix C as in (2) and d = 

0 ∈ ℝp−1. In this formulation, the constrained lasso provides an entire family of solutions 

with isotonic regression as a special case when ρ = 0. Figure 1 verifies this result by 

comparing the estimates from the solution path algorithm at ρ = 0 with the isotonic 

regression fit.

5.2 Brain Tumor Data

Our second application of the constrained lasso uses a version of the comparative genomic 

hybridization (CGH) data from Bredel et al. (2005) that was modified and studied by 

Tibshirani and Wang (2008), which can be seen in Figure 3. The dataset contains CGH 

measurements from 2 glioblastoma multiforme (GBM) brain tumors. CGH array 

experiments are used to estimate each gene’s DNA copy number by obtaining the log2 ratio 

of the number of DNA copies of the gene in the tumor cells relative to the number of DNA 

copies in the reference cells. Mutations to cancerous cells result in amplifications or 

deletions of a gene from the chromosome, so the goal of the analysis is to identify these 

gains or losses in the DNA copies of that gene (Michels et al., 2007). Tibshirani and Wang 

(2008) proposed using the sparse fused lasso to approximate the CGH signal by a sparse, 

piecewise constant function in order to determine the areas with non-zero values, as positive 

(negative) CGH values correspond to possible gains (losses). The sparse fused lasso 

(Tibshirani et al., 2005) is given by
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minimize 1
2‖y − β‖2

2 + ρ1‖β‖1 + ρ2 ∑
j = 2

p
β j − β j − 1 , (20)

where the additional penalty term encourages the estimates of neighboring coefficients to be 

similar, resulting in a piecewise constant function. This modification of the lasso was 

originally termed the fused lasso, but in line with Tibshirani and Taylor (2011) we refer to 

(20) as the sparse fused lasso to distinguish it from the related problem that does not include 

the sparsity-inducing ℓ1 norm on the coefficients. Regardless, the sparse fused lasso is a 

special case of the generalized lasso (3) with the penalty matrix

D =
−C
Ip

∈ ℝ(2p − 1) × p,

where C is as in (2) and Ip is the p×p identity matrix. As discussed in Section 2, the sparse 

fused lasso can be reformulated and solved as a constrained lasso problem. Estimates of the 

underlying CGH signal from solving the sparse fused lasso as both a generalized lasso 

(using the genlasso R package (Arnold and Tibshirani, 2014)) and a constrained lasso are 

given in Figure 3. As can be seen, the estimates from the two different methods match, 

providing empirical verification of the transformation derived in Section 2.

5.3 Microbiome Data

Our third data application with the constrained lasso uses microbiome data. The analysis of 

the human microbiome, which consists of the genes from all of the microorganisms in the 

human body, has been made possible by the emergence of next-generation sequencing 

technologies. Microbiome research has garnered much interest as these cells play an 

important role in human health, including energy levels and diseases; see Li (2015) and the 

references therein. Since the number of sequencing reads varies greatly from sample to 

sample, often the counts are normalized to represent the relative abundance of each 

bacterium, resulting in compositional data, which are proportions that sum to one. Motivated 

by this, regression (Shi et al., 2016) and variable selection (Lin et al., 2014) tools for 

compositional covariates have been developed, which amount to imposing sum-to-zero 

constraints on the lasso.

Altenbuchinger et al. (2017) built on this work by demonstrating that a sum-to-zero 

constraint is useful anytime the normalization of data relative to some reference point results 

in proportional data, as is often the case in biological applications, since the analysis using 

the constraint is insensitive to the choice of the reference. Altenbuchinger et al. (2017) 

derived a coordinate descent algorithm for the elastic net with a zero-sum constraint,

Gaines et al. Page 16

J Comput Graph Stat. Author manuscript; available in PMC 2019 August 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



minimize 1
2‖y − Xβ‖2

2 + ρ α‖β‖1 + 1 − α
2 ‖β‖2

2

subject to ∑
j

β j = 0,
(21)

but the focus of their analysis, which they refer to as zero-sum regression, corresponds to α 
= 1, for which (21) reduces to the constrained lasso (1). Altenbuchinger et al. (2017) applied 

zero-sum regression to a microbiome dataset from Weber et al. (2015) to demonstrate zero-

sum regression’s insensitivity to the reference point, which was not the case for the regular 

lasso. The data contains the microbiome composition of patients undergoing allogeneic stem 

cell transplants (ASCT) as well as their urinary levels of 3indoxyl sulfate (3-IS), a 

metabolite of the organic compound indole that is produced in the colon and liver. ASCT 

patients are at high risk for acute graft-versus-host disease and other infectious 

complications, which have been associated with the composition of the microbiome and the 

absence of protective microbiota-born metabolites in the gut (Taur et al., 2012; Holler et al., 

2014; Murphy and Nguyen, 2011). One such protective substance is indole, which is a 

byproduct when gut bacteria breaks down the amino acid tryptophan (Weber et al., 2015).

Of interest, then, is to identify a small subset of the microbiome composition associated with 

3-IS levels, as the presence of relatively more indole-producing bacteria in the intestines is 

expected to result in higher levels of 3-IS in urine. ASCT patients receive antibiotics that kill 

gut bacteria, but with a better understanding of which bacteria produce indole, antibiotics 

that spare those bacteria could be used instead (Altenbuchinger et al., 2017). The dataset 

itself contains information on 160 bacteria genera from 37 patients. Also included in the 

dataset are their urinary 3-IS levels that are normalized against urinary creatinine 

concentration to correct for variations in urine flow rate (Waikar et al., 2010). In order to 

benchmark the performance of the constrained lasso against zero-sum regression, we 

followed the data preprocessing procedure used by Altenbuchinger et al. (2017). After one 

pseudo count was added, the bacteria counts were log2-transformed and then centered. The 

response variable of interest, normalized 3-IS levels, was log2-transformed as well. Figure 

A.4 plots the coefficient estimate solution paths, using both zero-sum regression and the 

constrained lasso. As can be seen in the graphs, the coefficient estimates are nearly 

indistinguishable except for some very minor differences, which are a result of the slightly 

different formulations of the two problems. Since this is a case where n < p, a small ridge 

penalty is added to the constrained lasso objective function (6) as discussed in Section 3, but 

unlike (21), the weight on the ℓ2 penalty does not vary across ρ. The observed versus fitted 

values plot at the optimal ρ is given in Figure A.5 in Appendix A.6. The optimal ρ was 

chosen via the extended Bayesian Information Criterion (EBIC) proposed by Chen and Chen 

(2008, 2012) since the classic BIC generally does not perform well when the number of 

parameters is large relative to the number of observations.

5.4 House Price Data

For the fourth and final data application, we apply the constrained lasso to a housing dataset 

from Ames, Iowa from 2006 to 2010. The Ames Housing data set (De Cock, 2011) contains 
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2,930 residential properties as observations and 80 explanatory variables, which consist of 

23 nominal, 23 ordinal, 14 count, and 20 continuous variables. The predictor variables 

include neighborhood, building type, garage size, lot size, and type of road access to 

property, among others. Although originally used for tax assessment purposes, this data set 

is suitable for predicting or modeling the sale prices of homes using the extensive property 

information available.

Traditionally, factor variables are incorporated into a model through a coding scheme that 

requires the choice of a reference level for each factor. Such a choice is not always obvious 

and also complicates the interpretation of the coefficients in regression analysis. Here we 

take an alternative approach by constructing an indicator variable for each level of a factor 

while imposing sum-to-zero constraints within each factor, which alleviates the need to 

choose a reference level. That is, factor variable i with ki levels is treated as a collection of ki 

indicator variables, and the ki coefficients for each factor are constrained to sum to 0. After 

preprocessing the data and encoding factor variables as dummy variables, the design matrix 

X is a 2925 × 324 matrix with a constraint matrix A of size 48 × 324 and b = 048. Note that 

the ith row of A contains ki 1’s:

Ai, : = 0k1
T 0k2

T ⋯ 1ki
T 0ki + 1

T ⋯ 1k48
T , (22)

where 1ki
∈ ℝ

ki and 0k j
∈ ℝ

ki is a vector of ones and zeros, respectively.

The response variable of interest is the log-transformed sale price, which is then 

standardized to have mean 0 and standard deviation 1. Figure 4 plots the resulting solution 

path coefficient estimates against ρ, as well as the observed vs. fitted values at the optimal ρ 
chosen using the classic Bayesian Information Criterion. The selected features with the 

largest estimated coefficients in absolute value were overall quality score, living area, and 

year built. The predicted R2, based on the PRESS statistic, was equal to 0.893. More details 

are provided in Appendix A.7.

6 Conclusion

We have studied the constrained lasso problem, in which the original lasso problem is 

expanded to include linear equality and inequality constraints. As we have discussed and 

demonstrated through benchmark data applications, as well as other examples cited from the 

literature, the constraints allow users to impose prior knowledge on the coefficient estimates. 

Additionally, we have shown that another flexible lasso variant, the generalized lasso, can 

always be reformulated and solved as a constrained lasso, which greatly enlarges the trove of 

problems the constrained lasso can solve.

We derived and compared three different algorithms for computing the constrained lasso 

solutions as a function of the tuning parameter ρ: quadratic programing (QP), the alternating 

direction method of multipliers (ADMM), and a novel derivation of a solution path 

algorithm. When the entire solution path is desired, the path algorithm outperforms the other 
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methods in terms of estimation time without sacrificing accuracy. Although the initialization 

of the path may obstruct its performance as the problem size grows, the path algorithm is at 

worst comparable to QP and ADMM. For fixed values of ρ in problems of modest size, QP 

is a good candidate since it is competitive with ADMM and invariant to the weight of ℓ1 

penalty. For large and complex problems, however, ADMM is preferred due to its scalability. 

The main caveat to ADMM is its sensitivity to the extent of regularization; ADMM’s 

performance tends to suffer with less sparse true parameters. MATLAB code to implement 

these algorithms is available in the SparseReg toolbox, and an open source implementation 

is available in the Julia package ConstrainedLasso.

There are several possible extensions that have been left for future research. It may be 

possible to improve the efficiency of the solution path algorithm by using the sweep operator 

(Goodnight, 1979) to update (11) along the path, as was done in related work by Zhou and 

Lange (2013). Distributed implementations of the algorithms developed here is another 

direction of research that would improve runtimes. As noted by Boyd et al. (2011), the 

ADMM algorithm is especially well-suited for distributed computing. It also may be of 

interest to extend the algorithms to more general formulations of the constrained lasso. All 

of the algorithms can be extended to handle general convex loss functions, such as a negative 

log likelihood function for a generalized linear model extension, which was already studied 

by James et al. (2013) using a modified coordinate descent algorithm. In this case, an 

extension of the solution path algorithm could be tracked by solving a system of ordinary 

differential equations (ODE) as in Zhou and Wu (2014).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Isotonic regression fit shows a monotone trend in temperature abnormalities. The 

constrained lasso solution at ρ = 0 is identical to isotonic regression.
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Figure 2: 
Different simulation settings show consistently comparable or superior performance of the 

path algorithm whereas performances of ADMM and QP vary depending on the size and 

complexity of the problem. The runtimes for the solution path algorithm are averaged across 

the number of kinks in the path to make the runtimes more comparable to the other 

algorithms estimated at one value of the tuning parameter, ρ = ρscale · ρmax.
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Figure 3: 
Generalized lasso and constrained lasso produce identical sparse fused lasso estimates on the 

brain tumor data
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Figure 4: 
Path algorithm yields the constrained lasso solution path for the Ames housing data with 48 

factors. The dashed line marks the model with the lowest BIC (left panel) as well as the 

identity line (right panel). Here the response is the log-transformed sale price that is 

standardized to have mean 0 and standard deviation 1.
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Table 1:

Solution Path Events

Event Monitor

An active coefficient hits 0
β𝒜

(t) − Δρ d
dρ β𝒜

(t) = 0 𝒜

An inactive coefficient becomes active
ρ(t)s

𝒜c
(t) − Δρ d

dρ ρs
𝒜c = ± ρ(t) − Δρ 1

𝒜c

A strict inequality constraint hits the boundary

r
𝒵I

c
(t) − Δρ d

dρr
𝒵I

c = 0
𝒵I

c

An inequality constraint escapes the boundary

μZI
(t) − Δρ d

dρ μZI
= 0

ZI

Subgradient violations
s j

d
dρ ρs j < 1 for j ∈ 𝒜c with s j = ± 1

J Comput Graph Stat. Author manuscript; available in PMC 2019 August 07.


	Abstract
	Introduction
	Connection to the Generalized Lasso
	Algorithms
	Quadratic Programming
	ADMM

	Algorithm 1:
	Path Algorithm
	Initialization
	Termination


	Simulated Examples
	Sum-to-zero Constraints
	Non-negativity Constraints
	Complex Constraints

	Benchmark Data Applications
	Global Warming Data
	Brain Tumor Data
	Microbiome Data
	House Price Data

	Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Table 1:

