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Abstract

One of the persistent puzzles in understanding human speech perception is how listeners cope with 

talker variability. One thing that might help listeners is structure in talker variability: rather than 

varying randomly, talkers of the same gender, dialect, age, etc. tend to produce language in similar 

ways. Listeners are sensitive to this covariation between linguistic variation and socio-indexical 

variables. In this paper I present new techniques based on ideal observer models to quantify (1) the 

amount and type of structure in talker variation (informativity of a grouping variable), and (2) how 

useful such structure can be for robust speech recognition in the face of talker variability (the 

utility of a grouping variable). I demonstrate these techniques in two phonetic domains—word-

initial stop voicing and vowel identity—and show that these domains have different amounts and 

types of talker variability, consistent with previous, impressionistic findings. An R package 

(phondisttools) accompanies this paper, and the source and data are available from osf.io/zv6e3.
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1. Introduction

The apparent ease and robustness of spoken language understanding belie the considerable 

computational challenges involved in mapping speech input to linguistic categories. One of 

the biggest computational challenges stems from the fact that talkers differ from each other 

in how they pronounce the same phonetic contrast. One talker’s realisation of /s/ (as in 

“seat”), for example, might sound like another talker’s realisation of /ʃ/ (as in “sheet”) 

(Newman, Clouse, & Burnham, 2001). During speech perception, such inter-talker 

variability contributes to the lack of invariance problem, creating uncertainty about the 

mapping between acoustic cues and linguistic categories (Liberman, Cooper, Shankweiler, 

& Studdert-Kennedy, 1967).
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A number of proposals for how listeners overcome this problem have been offered. A 

common theme that has emerged is that listeners seem to take advantage of statistical 

contingencies in the speech signal (for a recent review, see Weatherholtz & Jaeger, 2016). 

These contingencies result in part from the fact that inter-talker variability is not random. 

Rather, inter-talker differences in the cue-to-category mapping are systematically 

conditioned by a range of factors. This includes both talker-specific anatomy of the vocal 

tract (Fitch & Giedd, 1999; Johnson, 1993) and factors pertaining to a talker’s social-

indexical group memberships, such as age (Lee, Potamianos, & Narayanan, 1999), gender 

(Perry, Ohde, & Ashmead, 2001; Peterson & Barney, 1952), and dialect (Labov, Ash, & 

Boberg, 2006).

Listeners seem to draw on these statistical contingencies between linguistic variability on the 

one hand and talker- and group-specific factors on the other. Upon encountering an 

unfamiliar talker, for example, the speech perception system seems to adjust the mapping of 

acoustic cues to linguistic categories to reflect that talker’s specific distributional statistics 

(Bejjanki, Clayards, Knill, & Aslin, 2011; Clayards, Tanenhaus, Aslin, & Jacobs, 2008; 

Idemaru & Holt, 2011; Kraljic & Samuel, 2007; McMurray & Jongman, 2011). Listeners 

also seem to learn and draw on expectations about cue-category mappings based on a 

talker’s socio-indexical group memberships. For example, listeners have been found to 

adjust their speech recognition based on a talker’s inferred regional origin (Hay & Drager, 

2010; Niedzielski, 1999), gender (Johnson, Strand, & D’Imperio, 1999; Strand, 1999), age 

(Walker & Hay, 2011), and individual identity (Mitchel, Gerfen, & Weiss, 2016; Nygaard, 

Sommers, & Pisoni, 1994).

Such talker- and group-specific knowledge is now broadly believed to be critical to speech 

perception (for reviews, see Foulkes & Hay, 2015; Weatherholtz & Jaeger, 2016). An 

important question that has largely remained unaddressed, however, is how listeners 

determine which socio-indexical (and other) talker properties should be used for speech 

perception. In other words, why do listeners group talkers by, for example, age and gender, 

rather than the color of their shirt? A priori, there is an essentially infinite number of ways 

for a listener to group the speech they have experienced in different situations.

Intuitively, we might expect listeners to be sensitive to socio-indexical properties that are 

relevant to speech perception. Some of the possible socio-indexical groupings will be highly 

informative about the future cue-category mappings that a listener can expect, while others 

will be uninformative, or even misleading. This paper seeks to formalise this intuition, in 

order to derive principled quantifiable predictions for future work, drawing on a recently 

proposed computational framework, the ideal adapter (Kleinschmidt & Jaeger, 2015).

The ideal adapter is a computational-level theory of human speech perception (in the sense 

of Marr, 1982). It seeks to explain aspects of speech perception by formalising the goals of 

speech perception and the information available from the world. Like many computational-

level models, it treats speech perception as a problem of inference under uncertainty, 

whereby listeners combine what they know about how speech is generated in order to 

recover (or infer) the most likely explanation for the speech sounds they hear. In this view, 

talker variability is a primary challenge for speech perception because the most likely 
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explanation for a particular acoustic cue depends on the probabilistic distributions of cues 

for each possible explanation, and these distributions differ from talker to talker (e.g. Allen, 

Miller, & DeSteno, 2003; Hillenbrand, Getty, Clark, & Wheeler, 1995; Newman et al., 

2001). The central insight of the ideal adapter is twofold. First, when talker variability is not 

completely random there is a great deal of information available from previous experience 
with other talkers about the probabilistic distribution of acoustic cues that correspond to 

each possible linguistic unit. Second, in order to benefit from this information listeners must 

actively learn the underlying structure of the talker variability that they have previously 

experienced, and this learning can be modelled as statistical inference itself.

In other words, according to the ideal adapter, robust speech perception depends on inferring 
how talkers should be grouped together. Thus far this is just a restatement of the original 

question—which groups of talkers are worth tracking together?—but the ideal adapter also 

provides the theoretical framework for answering it as well. According to the ideal adapter 

this inference depends on two related but distinct factors. The first factor is whether there is 

any statistically reliable grouping to be learned in the first place, or whether a hypothetical 

grouping leads to better predictions about acoustic-phonetic cues. The second is whether 

grouping talkers in a particular way leads to better speech recognition. That is, given a 

particular hypothesis about how previously encountered talkers might be grouped, an ideal 

adapter must ask themselves two questions: is this way of grouping talkers informative about 

the acoustic-phonetic cue distributions that I have heard, and would grouping those 

distributions in this way be useful for recognising a future talker’s linguistic intentions (e.g. 

phonetic categories)?1

The answers to these questions can vary depending on the particular language, hypothetical 

grouping of talkers, and phonetic category, as well as each listener’s idiosyncratic 

experience of talker variability. The goal of this paper is thus to not only show how these 

questions are formalised by the ideal adapter, but also to quantify the amount and structure 
of talker variability across two different phonetic domains (vowel identity and stop voicing).

Note that there are a number of different senses in which talker variability might be 

structured. Here, I focus on the extent to which variability in the acoustic realisation of 

phonetic categories across talkers is predictable and hence support generalisation based on 

previous experience, based on socio-indexical or other grouping variables. This is different 

from structure across categories, as in the covariation in talker-specific mean VOTs for /b/, /

p/, /d/, etc. (e.g. Chodroff & Wilson, 2017), as well as structure across cues, within a single 

category (e.g. VOT and f0 for stop voicing, Clayards, 2018; Kirby & Ladd, 2015; etc.). All 

of these sorts of structure are complimentary because they mean that observations from one 

talker/category/cue dimension are informative about others, and I will return to the 

connection in the general discussion.

1.There are other, potentially important uses for tracking group-specific distributions, even when they don’t aid speech perception per 
se. For instance, listeners could use group-specific phonetic cue distributions to infer the age, gender, regional origin, etc. of an 
unfamiliar talker (Kleinschmidt et al., 2018), and such inferences may play an important role in coordinating group behaviour (e.g. 
Cohen, 2012)
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There are two main motivations for developing and testing these techniques. First, such 

quantitative assessments of the degree and structure of talker variability are a critical missing 

link in the research program set out by the ideal adapter. The ideal adapter makes predictions 

about when listeners should employ different strategies for coping with talker variation—

when they should rapidly adapt, or maintain stable, long-term representations of particular 

talkers, or generalise from experience with one or a group of different talkers. These 

predictions depend in large part on how much and what kind of structure there is in talker 

variability. The techniques I propose here provide the necessary grounding to turn the 

qualitative predictions of Kleinschmidt and Jaeger (2015) into testable, quantitative 

predictions.

Second, these techniques offer a general technique for quantitatively assessing the structure 

of talker variability from speech production data in a variety of contexts, across phonetic 

systems, languages, and even levels of linguistic representation. A further advantage of the 

techniques proposed here is that they are directly, quantitatively comparable across different 

phonetic categories and sets of cues. As such they are, I hope, generally useful to speech 

scientists and sociolinguists in a variety of theoretical frameworks, including exemplar/

episodic accounts (Goldinger, 1998; Johnson, 1997; Pierrehumbert, 2006) and 

normalisation/cue-compensation accounts (e.g. Cole, Linebaugh, Munson, & McMurray, 

2010; Holt, 2005; McMurray & Jongman, 2011). For example, in exemplar/episodic 

accounts, it is sometimes assumed that speech inputs are stored along with “salient” social 

context (e.g. Sumner, Kim, King, & McGowan, 2014). What determines the salience of 

contexts is, however, left unspecified (for related discussion, see Jaeger & Weatherholtz, 

2016). The informativity and utility measures explored here might serve to define and 

quantify salience. Additionally, the specific predictions I derive below pertain to native 

listeners’ perception of native American English. However, this approach is more general, 

extending, for example, to non-native perception, and native perception of foreign-accented 

speech.

In service of this goal, I have developed an R (R Core Team, 2017) package, phondisttools. 

The code that generated this paper is available from osf.io/zv6e3, in the form of an 

RMarkdown document, along with the datasets.

1.1. Outline and preview of results

The rest of this paper is structured as follows. The following section presents the basic logic 

of the ideal adapter, which motivates the measures of informativity and utility. The section 

after that describes the general methods used to estimate phonetic cue distributions, and the 

data sets that are analysed below. The section after that defines and examines the 

informativity of socio-indexical variables about cue distributions themselves (Study 1).

The results of Study 1 show that, at a broad level, vowels show more talker variability than 

stop voicing. This is consistent with previous, impressionistic findings but is based on a 

principled measure that allows direct comparisons between the two phonetic systems, and 

serves as a proof of concept that this measure can be applied in other domains. At a more 

fine-grained level, these results also show that this variability is structured by some socio-

indexical variables, but not all, and that this structure depends on how cues themselves are 
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represented. The fact that structure in talker variability exists does not necessarily mean that 

it will be useful in speech recognition—or, conversely, that ignoring it will be harmful—

which motivates the notion of utility that is defined and evaluated in Study 2.

The results of Study 2 show, first, that informativity largely predicts utility: talker-specific 

cue distributions provide a consistent advantage over nearly every less-specific grouping of 

talkers, and groupings that were more informative than expected by chance also provide 

(often modest) improvements in successful recognition. Second, Study 2 finds that these 

gains in utility are often rather modest. Third, and relatedly, large differences in 

informativity do not always lead to similarly large differences in utility.

Finally, in the general discussion I review the implications of these findings for 

understanding how listeners track talker variability in order to understand speech more 

robustly. On the one hand, these results suggest that there are meaningful groupings of 

talkers exist for listeners to learn from their experience, and that doing so can make speech 

perception more robust. On the other hand, they show that not every socially-indexed way of 

grouping talkers is informative or useful for speech recognition per se, and that informativity 

and utility furthermore depend on the way that acoustic cues are represented.

2. The ideal adapter

This section briefly introduces the logic of the ideal adapter model (for a more detailed 

introduction, see Kleinschmidt & Jaeger, 2015). Figure 1 provides a hypothetical illustration 

of this logic for an /s/-/ʃ/ contrast (loosely based on Newman et al., 2001).

Both the informativity and the utility of a particular grouping of talkers are defined based on 

the linguistic cue-category mappings for each implied group. In the ideal adapter, like other 

ideal observer models, these cue-category mappings are represented as category-specific cue 
distributions, or the probability distribution of observable cues associated with each 

underlying linguistic category (phoneme or phonetic category; Clayards et al., 2008; 

Feldman, Griffiths, & Morgan, 2009; Norris & McQueen, 2008). This is a direct 

consequence of how these models treat perception as a process of inference under 

uncertainty, formalised using Bayes rule:

p category = c cue = x ∝ p cue = x category = c × p category = c

That is, the posterior probability of category c given an observed cue value x is proportional 

to the likelihood that that particular cue value would be generated if the talker intended to 

say c, p(x | c), times the prior probability, or how probable category c is in the current 

context (regardless of the observed cue value). For good performance, the likelihood 

function p(x |c) should be as close as possible to the actual distribution of cues that 

correspond to category c in the current context.

However, these cue distributions potentially differ across contexts, due to talker variability 

(Figure 1(B)), and thus the ideal category boundaries can differ as well (Figure 1(A)). 

Listeners thus must also take into account their limited knowledge about the cue 
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distributions, given what they know about who is currently talking. The central insight of the 

ideal adapter (Kleinschmidt & Jaeger, 2015) is that these uncertain beliefs can be modelled 

as another probability distribution, over the parameters of the category-specific distributions 

themselves θ, given a talker of type t: p(θ | t) (Figure 1 (C)). The type of talker could be a 

member of some socio-indexical group like t = male (blue), or a specific individual t = Jose 

(purple), or even a generic speaker t = American English (gray). In each case, the listener 

will have more or less uncertainty about the cue distributions that this type of talker will 

produce. Treating speech recognition as inference under uncertainty allows us to formalise 

how this additional uncertainty about the category-specific cue distributions affects speech 

recognition by marginalizing over possible cue distributions in order to compute the 

likelihood (Figure 1(B), thick lines):

p x c, t = ∫ p x c, θ p θ t dθ

Marginalization is essentially a weighted average of the likelihood under each possible set of 

cue distributions p(x | c,θ), weighted by how likely those particular distributions are for a 

talker of a particular type, p(θ | t). As an example, the likelihood of a male talker 

producing /s/ with a spectral center of gravity (COG) of exactly 5500 Hz is determined by 

averaging the likelihood of that COG value under a distribution with a mean of 5400 Hz and 

a standard deviation of 80 Hz, with the likelihood under every other possible combination of 

means and variances, each weighted by how likely it is that a male talker would produce that 

particular distribution for /s/. The more consistent male talkers are in their /s/ distributions, 

the less additional variability this averaging will introduce, and the closer the group-level 

likelihood will be to the actual likelihood function.

Thus, if a listener has grouped together all the male talkers they have previously 

encountered, they can use their knowledge of the group-level cue distributions to recognise 

speech from other male talkers they might encounter in the future. The properties of these 

socio-indexically conditioned, category-specific cue distributions provide a natural way to 

measure how much a particular socio-indexical grouping variable is informative or useful 

with respect to a particular set of phonetic categories. As detailed below in Studies 1 and 2, 

informativity is defined based on the group-level distributions themselves (e.g. thick lines in 

Figure 1(B)), while utility is defined based on the classification functions/category 

boundaries those distributions imply (e.g. thick lines in Figure 1(A)). These measure are 

derived directly from treating speech perception as a process of inference under uncertainty 

and talker variability.

3. General methods

3.1. Measuring distributions

The socio-indexically conditioned, category-specific cue distributions were estimated in the 

following way. First, it is assumed that each phonetic category can be modelled as a normal 

distribution over cue values (stop voicing as univariate distributions over VOT, and vowels 

as bivariate distributions of F1 and F2). Each distribution is parameterised by its mean and 

covariance matrix (or, equivalently, variance in the case of VOT). Next, the mean and 
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covariance were fitted to the samples of cue values from the corpora using the standard, 

unbiased estimators for the mean and covariance2. This was done separately for each group/

talker, including the group of all talkers (to estimatethe marginal distributions). For example, 

for gender, one /æ/ distribution was obtained from all the tokens from male talkers, and one 

from all tokens from female talkers. Likewise, for dialect, one distribution was obtained 

based on all tokens from talkers from the North dialect region, another one from tokens from 

Mid-Atlantic talkers, and so on.

Assuming that each category is a normal distribution is not a critical part of the proposed 

approach, but rather a standard and convenient assumption. In particular, the normal 

distribution has a small number of parameters and this allows us to efficiently estimate the 

distribution for each category with a limited amount of data (e.g. five tokens per talker-level 

vowel distribution). But the proposed method is fully general, and works with any 
distribution (including discrete or categorical distributions for phonotactics, syntax, etc.).

An additional simplifying assumption here is that there is no further, talker-specific learning 

that occurs. In the ideal adapter, group-conditioned cue distributions reflect the starting point 
for talker- or situation-specific distributional learning. As I discuss below, the measures I 

present are best thought of as a lower-bound on informativity/utility that is much easier to 

estimate from small quantities of speech production data.

3.2. Data sets

I analyse the informativity and utility for two types of phonological contrasts, vowels 

(e.g. /æ/ and /ε/) and word-initial stop voicing (e.g. /b/ vs. /p/). I chose these two types of 

contrast for two reasons. First, for American English the primary acoustic-phonetic cues to 

vowel identity (formants) and stop voicing (voice onset timing or VOT) are broadly thought 

to exhibit very different patterns of variability across talkers and talker groups. For example, 

vowel formants in American English exhibit substantial variability conditioned on the 

gender and the regional background of the talker (Clopper, Pisoni, & de Jong, 2005; 

Hillenbrand et al., 1995; Labov et al., 2006; Peterson & Barney, 1952, among others). On 

the other hand, word-initial stop VOTs appear to be less variable across talkers in American 

English. Specifically, cross-talker variation in voiceless word-initial stop VOT is roughly 

half of within-category variation: visual inspection of Figure 1 in Chodroff, Godfrey, 

Khudanpur, and Wilson (2015) suggests that the mean standard deviation of /p/ is around 20 

ms, while the standard deviation of the mean VOT of /p/ is less than 10 ms (based on a range 

of 40 ms). Cross-talker variability in vowel formants is approximately double the within-

category variability (based on Figure 4 in Hillenbrand et al., 1995). This qualitative 

difference, and the lack of direct apples-to-apples comparisons between them, makes vowels 

and word initial stops an interesting combination of contrasts to compare for the present 

purpose.

Second, while the overall level of talker variability for word-initial stop VOTs is lower, there 

is some evidence that it is nevertheless structured by age, gender, and dialect, among other 

factors (Stuart-Smith, Sonderegger, & Rathcke, 2015; Torre & Barlow, 2009). I thus expect 

2.Using the mean and cov functions in R 3.4.1 (R Core Team, 2017).
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to find both (1) significant differences in the overall informativity/utility of any socio-

indexical variable when comparing across the two types of contrasts (vowels and word initial 

stops), and (2) significant differences in the informativity/utility within either contrast type 

when comparing across socio-indexical variables.

For vowels, I further assess the consequences of normalisation on the informativity/utility of 

different socio-indexical variables. Vowel formants vary based on physiological differences 

between talkers (e.g. the size of the vocal tract), and there is evidence that vowel recognition 

draws on normalised formants—transformations of the raw formant values that adjust for 

physiological differences (e.g. Lobanov, 1971; Loyd, 1890; Monahan & Idsardi, 2010; for 

review, see Weatherholtz & Jaeger, 2016). This approach allows us to compare the 

informativity/utility of socio-indexical variables for raw vs. normalised vowel formants.

The particular datasets I analyse here are drawn from three publicly available sources: two 

collections of elicited vowel productions (Clopper et al., 2005; Heald & Nusbaum, 2015) 

and one of word-initial voiced and voiceless stops from unscripted speech (Nelson & Wedel, 

2017).3 These sources were selected because they are annotated for the acoustic-phonetic 

cues that are standardly considered to be the primary cues to the relevant phonological 

contrasts (i.e. formants for the vowel productions, voice onset timing for the stop 

productions), measured under sufficiently controlled conditions to allow meaningful 

comparisons across talkers, and contain enough tokens from multiple phonetic categories 

produced by a sufficiently large and diverse population of talkers. The last property is 

particularly important for the goal of assessing the joint statistical contingencies between 

socio-indexical variables, linguistic categories, and acoustic-phonetic cues.

3.2.1. Vowels—For vowels, I used two datasets. The first is from the Nationwide Speech 

Project (NSP; Clopper & Pisoni, 2006b). I analysed first and second formant frequencies 

(F1×F2, measured in Hertz) recorded at vowel midpoints in isolated, read “hVd” words (e.g. 

“head”, “hid”, “had”, etc.). This corpus contains 48 talkers, 4 male and female from each of 

6 regional varieties of American English: North, New England, Midland, Mid-Atlantic, 

South, and West (see map and summary of typical patterns of variation in Clopper et al., 

2005; regions based on Labov et al., 2006). Each talker provided approximately 5 repetitions 

of each of 11 English monophthong vowels /i, ɪ, e, ɛ, æ, ʌ, u, ʊ, o, ɔ, ɑ/, for a total of 2659 

observations. Talkers were recorded in the early 2000s, and were all of approximately the 

same age, so age-graded sound changes are not likely to be detectable from this dataset.

The second is from a study by Heald and Nusbaum (2015). Eight talkers (5 female and 3 

male) produced 90 repetitions of 7 monophthong American English vowels /i, ɪ, e, æ, ʌ, u, 

ɑ/ over 9 sessions. Due to Human Subject Protocols, this dataset is only available in the 

form of F1×F2 means and covariance matrices for each category, conditioned on talker, 

gender, and the marginal distributions. Unlike the NSP, the talkers recorded by Heald and 

Nusbaum (2015) are all from the same American English dialect region (Inland North), and 

so there is likely less talker variability overall relative to the NSP talkers.

3.All three are available as R packages on Github: nspvowels, healdvowels, and votcorpora (which contains additional VOT 
measurements from other sources as well).
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3.2.1.1 Vowel normalisation.: One main goal of this paper is to assess not just the degree 

but the structure of talker variability. Much of the variability in vowel formants is due to 

physiological differences between talkers’ vocal tract size, which increase or decrease all 

resonant frequencies together (Loyd, 1890). This produces global shifts in talkers’ vowel 

spaces, that apply relatively uniformly across all vowels. In contrast, sociolinguistic factors 

like dialect can affect the cue-category mapping for individual vowels. Even gender-based 

differences in the cue-category mappings of vowels have been found to vary cross-

linguistically, suggesting that they are partially stylistic (Johnson, 2006).

In order to assess how much these category-general shifts contribute to talker variability in 

vowel formant distributions, I analyse formant frequencies from the NSP4 represented in 

raw Hz, and also in Lobanov-normalised form. Lobanov normalisation z-scores F1 and F2 

separately for each talker (Lobanov, 1971), which effectively aligns each talker’s vowel 

space at its center of gravity, and scales it so they have the same size (as measured by 

standard deviation). This controls for overall offset in formant frequencies caused by varying 

vocal tract sizes (from both gender differences and individual variation). It does this while 

preserving the structure of each talker’s vowel space, so that (for instance) dialect-specific 

vowel shifts are maintained, as we will see below.

Note that this is one of many possible normalisation methods (see Adank, Smits, & van 

Hout, 2004; Flynn & Foulkes, 2011), and it is used here as a methodological tool, rather than 

a cognitive model of how normalisation might work itself. The selection of this particular 

normalisation method was driven primarily by methodological constraints: it provides good 

alignment of talker’s overall vowel spaces, and does not require additional cues that are not 

included in our data sources (like fundamental frequencies and higher formants required by 

vowel-intrinsic normalisation methods Flynn & Foulkes, 2011; Weatherholtz & Jaeger, 

2016). Normalisation and learning (adaptation) are often framed as alternative models for 

how listeners cope with talker variability, but they are not mutually exclusive (Weatherholtz 

& Jaeger, 2016) and “hybrid models” may even be possible (as I briefly discuss in the 

general discussion).

3.2.2. Stop voicing—I also analysed data on word-initial stop consonant voicing in 

conversational speech from the Buckeye corpus (Pitt et al., 2007; extracted by Nelson & 

Wedel, 2017; Wedel, Nelson, & Sharp, 2018). Nelson and Wedel (2017) manually measured 

VOT for 5984 word initial, stops with labial (/p,b/ ), coronal (/t,d/), or dorsal (/k,g/) places of 

articulation. Of these, 2264 were voiced and 3720 were voiceless. Data came from 24 

talkers, who were (approximately) balanced male and female and younger than 30/older than 

40 years (Table 1). On average, each talker produced 42 tokens for word-initial stop 

phoneme (range of 5–156). Nelson and Wedel (2017) excluded words with more than two 

syllables, function words, as well as words that began an utterance, followed a filled pause, 

disfluency, or another consonant. They also excluded tokens with VOT or closure length 

“more than 3 standard deviations from the speaker-specific mean for that stop” Nelson and 

Wedel (2017, p. 8). They did not, unlike many previous studies on VOT, exclude words with 

complex onsets (a stop followed by a liquid or a glide).

4.Without access to the raw data, it is not possible to normalise the Heald and Nusbaum (2015) vowels.
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In modelling VOT as a cue to voicing, I chose to model each place of articulation separately. 

This is because there is some variation in VOT as a result of place of articulation, and 

treating, for instance, voiceless tokens from all three places as coming from the same 

distribution could obscure talker-level variation and bias the results against detecting talker- 

or group-level variation in VOT. Moreover, VOT in English can vary as a result of speaking 

rate, both at the level of the talker and individual tokens (Solé, 2007). In principle, it would 

be interesting to investigate the effect of using normalised VOT. However, in order to 

meaningfully compare with normalised vowel formants investigated here, a token-extrinsic 

(or talker-level) normalisation procedure is needed, because a token-intrinsic procedure 

would eliminate token-to-token variation in speaking rate as well as overall talker effects, 

while the Lobanov normalisation used for vowels eliminates only talker-level effects. Using 

a Lobanov-like z-scoring technique may lead to artefacts because of the large differences in 

the variance of voiced and voiceless distributions. As a result, investigating the effect of 

normalisation on informativity and utility for voicing is left for future work.

3.3. Socio-indexical grouping variables

Based on the variables annotated in the available data, I consider cue distributions for each 

phonetic category conditioned on the following socio-indexical grouping variables, roughly 

in order of specificity (number of talkers in each group):

• Marginal: control grouping, which includes all tokens for the category from all 

talkers. This serves as a baseline against which more specific group distributions 

can be compared, and as a lower bound for speech recognition accuracy.

• Gender: coded as male/female for both vowels and stop voicing, allowing us to 

compare the role of gender-specific variation for two different contrasts.

• Age: coded as older than 40/younger than 30 for VOT (in the Buckeye corpus). 

Not applicable to vowels, because the talkers are uniformly young by this cutoff.

• Dialect: the NSP contains data from talkers from six dialect regions (see above 

for details). Not applicable to VOT or to vowels from Heald and Nusbaum 

(2015).

• Dialect+Gender: Clopper and Pisoni (2006b) found that gender modulates dialect 

differences, so I also examined cue distributions conditioned on dialect and 

gender together (12 levels).

• Talker: for all corpora, talker-specific cue distributions serve as an upper bound 

on informativity and utility.

Note that when considering one socio-indexical grouping like age, this method ignores other 

grouping variables dialect, gender, or talker. That is, when asking how informative or useful 

the variable of age is, we are asking what a listener would gain by knowing only the age 

(group) of an unfamiliar talker.

Next, I present two studies which apply the two measures of structure in talker variability to 

these data-sets. First, I show how to assess the informativity of these different grouping 
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variables about the cue distributions themselves. Then, I assess the utility of these different 

grouping variables, in terms of how they affect the accuracy of correct recognition.

4. Study 1: How informative are socio-indexical groups about vowel 

formant and VOT distributions?

The first method I propose for assessing structure in talker variability is to measure how 

informative socio-indexical variables are about the category-specific cue distributions.

One way to quantify how informative a socio-indexical grouping variable is about cue 

distributions is by comparing the group-level cue distributions with the marginal distribution 

of cues from all groups. The reason for this is that if a socio-indexical grouping variable 

(e.g. gender) is not informative about cue distributions, then the cue distributions for each 

group (e.g. male and female talkers) will be indistinguishable from the overall “marginal” 

cue distribution (e.g. Figure 2(B)). If, on the other hand, a socio-indexical variable is 

informative about cue distributions, then the distribution for each group will deviate 

substantially from other groups, and by extension from the marginal distribution as well 

(Figure 2(A)). The particular measure I use to compare distributions is the Kullback–Leibler 

(KL) divergence.

This measure is intuitively similar to the proportion of variance explained by a socio-

indexical grouping variable (e.g. for gender and region in Dutch vowels Adank et al., 2004; 

for various contextual variables including talker in American fricatives McMurray & 

Jongman, 2011). However, it is a more general approach that does not require that we 

assume that the underlying distributions are normal distributions, and can be applied even to 

categorical variables (like distributions of words or syntactic structures). It also naturally 

extends to multidimensional cue spaces, taking into account the correlations between cues, 

and supporting comparisons to other cue spaces.

4.1. Methods

The KL divergence is a measure of how much a probability distribution Q diverges from a 

“true” distribution P. In this case, the distributions are over phonetic cues (VOT or F1×F2), 

and the “true” distribution is the distribution conditioned on a socio-indexical variable (e.g. 

gender) while the comparison distribution is the marginal distribution, which ignores any 

socio-indexical grouping.

Intuitively, the KL divergence measures a loss of information when you use a code 

optimised for Q to encode values from P. For instance, the frequencies of letters in English 

sentences are very different from French sentences. If we use a binary representation of 

letters that is optimised to make the representation of French sentences as short as possible 

(while still unambiguous), applying the same representation to English sentences will result 

in longer forms than a code that is optimised for the frequencies of English letters (and vice 

versa). That difference is the KL divergence (measured in bits) of the distribution of letters 

in French from that of English. Similarly, the code optimised for the marginal distribution of 

letters from both French and English combined will result in suboptimal encoding for both 
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English and French sentences, and the degree of sub-optimality provides a measure of how 

much the language matters in understanding the distribution of letters.

Here, the KL divergence is used in an analogous way to measure the informativity of a 

socio-indexical variable (e.g. gender) with respect to phonetic cue distributions (e.g. VOT). 

Specifically, informativity is defined as the KL divergence of the marginal distribution of 

phonetic cues (e.g. p(VOT | category)) from each of the socio-indexically-conditioned 

distributions (e.g. p(VOT | category,gender)).

4.1.1. Procedure—For each phonological category (e.g. /b/), I calculate the KL 

divergence of each group’s cue distribution (e.g. /b/-specific VOTs for male talkers) from the 

marginal distribution of cues from all talkers (e.g. /b/-specific VOTs regardless of the 

talker’s gender). I then average across the category-specific KL divergences for all 

phonological categories (e.g. /b,p,t,d,k,g/) to calculate the average KL divergence for that 

phonetic cue (e.g. VOT) and group (e.g. male). Finally, for each grouping variable, I further 

average these group-specific divergences (e.g. male and female) to get the overall 

informativity for the grouping variable (gender).

I average over categories for two reasons. First, it’s mathematically convenient, because the 

KL between two normal distributions can be computed in closed form, whereas for a 

mixture of multiple distributions it would have to be estimated through computationally 

costly numerical integration. Second, averaging over categories naturally adjusts for 

differences in the number of vowel (7–11) and stop voicing (2) categories.

4.1.2. Technical details—The KL divergence measures how much better the “true” 

distribution predicts data that is actually drawn from that distribution than the candidate 

distribution predicts it. Mathematically, the KL divergence of Q from P is defined to be

DL Q P = ∫ p x log p x
q x dx (1)

(with density functions q and p respectively). The log p(x)/q(x) is how much more (or less, if 

negative) probability P assigns to a point x than Q. The KL divergence is the average of this 

over all data that could be generated by P, weighted by the probability that each x would be 

generated by P, p(x). The KL divergence increases as Q diverges more from P, and has a 

minimum value of zero, which is only achieved when P=Q, i.e. when the two distributions 

are identical (MacKay, 2003, p. 34).

In this case, P = 𝒩𝒢 is a multivariate Normal cue distribution conditioned on a socio-

indexical group, with mean μG and covariance ΣG, while Q = 𝒩ℳ is the marginal (not 

conditioned on group) cue distribution with mean μM and covariance ΣM. With some 

simplification,5 the KL divergence of the marginal from the group distribution works out to 

be
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DL 𝒩ℳ 𝒩𝒢 = 1
2 tr ΣM

−1ΣG + μM − μG ΣM
−1 μM − μG − d + log

ΣM
ΣG

(2)

where d is the dimensionality of the distribution (i.e. 1 for stop VOTs and 2 for vowel 

F1×F2). The base of the logarithm in Equation (1) determines the units. For ease of 

interpretation, I report KL in bits, which corresponds to using base-2 logarithms in Equation 

(1) and dividing Equation (2) bylog (2).

4.1.3. Hypothesis testing by permutation test—To assess whether any particular 

KL divergence is different from chance, I re-ran the same analysis on 1000 random 

permutations of the dataset, where talkers are randomly re-assigned to groups (or tokens to 

talkers, for talker as a grouping variable). The permutation test p value for a particular 

measure is the proportion of these randomly permuted data sets that led to a value of that 

measure that was as high or higher than the real assignment of talker to groups (or tokens to 

talkers). There are a number of advantages to this technique for directly estimating the 

distribution of the test statistic (informativity or KL divergence) under the null hypothesis 

that the assignment of talkers to groups does not matter. First, it controls for the differences 

in group size. For instance, in the NSP, there are 6 talkers per dialect, but 24 per gender. 

Fewer talkers means that there will be fewer tokens per category, which leads to more 

variable estimates and higher average diversion from the marginal distributions. Second, it 

accounts for the intrinsic asymmetry in KL divergence, which is always greater than 0. 

Third, it is flexible enough to support arbitrary test statistics, including the grouping 

variable-level summary score (average over groups), single-group score (averaged over 

phonetic categories), and individual group-category scores (e.g. particular dialect-vowel 

combinations).

4.2. Results

I first report and discuss the broad patterns for the informativity of different grouping 

variables in the three vowel and stop voicing databases described above. In short, the results 

show first that there is more talker variability in vowels than stop voicing, and is reasonably 

consistent across two vowel corpora. Second, this talker variability is also structured for 

vowels: grouping talkers according to gender, dialect, or the combination thereof leads to 

more informative groupings than random groupings of the same number of talkers. The 

same is not true for voicing. Finally, I illustrate how the proposed informativity measure 

captures well-documented dialectal variation in vowels.

Figure 3 shows the informativity of gender, dialect, and talker identity, as measured by the 

average KL divergence between cue distributions of each phonetic category conditioned on 

these factors from the overall (marginal) cue distributions. I make three observations.

5.See, for instance, http://stanford.edu/jduchi/projects/general_notes.pdf, p. 13. The math is the same for the univariate special case, as 
with VOT.
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First, there are major differences in talker variability between vowels and stop consonant 

voicing: talker identity is an order of magnitude more informative about vowel distributions 

than about VOT distributions.6 That is, knowing a talker’s identity provides significantly 

more information about their vowel formant frequency distributions than it does about their 

VOT distributions. This quantitatively confirms the qualitative understanding that there is 

less talker variability in VOT than in formant frequencies (e.g. Allen et al., 2003; Lisker & 

Abramson, 1964; vs. Hillenbrand et al., 1995; Peterson & Barney, 1952). Strikingly, the 

most informative variable for VOT—talker identity—is roughly as informative as the least 
informative variable for any vowels (Gender for Lobanov-normalised F1×F2).

Across the two vowel corpora, the level of talker variability appears to be lower in the HN15 

data than the NSP data, but not so low as in the VOT data. One possible explanation of this 

discrepancy is that all the HN15 talkers are all from the same dialect region, while Clopper 

and Pisoni (2006b) intentionally recruited talkers to demonstrate dialect variability. And, 

indeed, individual NSP talkers’ distributions diverge less from the corresponding dialect 

distributions (3.0 bits, 95% CI [2.8–3.1]) than they do from the marginal distributions (3.3 

bits, 95% CI [3.2–3.5]). But this divergence is still substantially more than the average for 

the HN15 talkers (2.3 bits, 95% CI [1.9–2.7]), suggesting that this is not the only 

explanation. Another possibility is that because of the smaller number of tokens from each 

NSP talker means that the individual talker distribution estimates are noisy. Unfortunately, 

without access to the underlying single-token F1×F2 values for HN15 talkers it is difficult to 

assess this.

The informativity of gender, on the other hand, is similar across the two datasets. This 

suggests that the size of these datasets is sufficient to replicate estimates of informativity of 

gender.

Second, with one notable exception, I find that grouping variables with fewer talkers are 

more informative than groupings with more talkers: talker identity is the most informative, 

followed by (for NSP vowels) dialect+gender and dialect, then gender and age. The one 

exception is that for un-normalised formants, gender is substantially more informative than 

dialect is, even though it is one of the most general grouping variables, with each group 

including half the talkers. This is to be expected: gender differences (either stylistic or 

physiological, like vocal tract length) change formant frequencies for all vowels by large 

amounts (Johnson, 2006), while dialect variation is limited to certain dialect-vowel 

combinations (Clopper et al., 2005; Labov et al., 2006).

My third observation is about the effect of normalisation. As is to be expected, Lobanov 

normalisation substantially reduces the informativity of gender. This is, after all, one of the 

purposes of normalisation—to remove differences between male and female vowel 

distributions that are due to the overall shifts in formant frequencies. However, gender still 

carries some information about Lobanov-normalised vowel distributions. This is in line with 

previous observations that Lobanov normalisation—while among the most effective 

6.This is true even when considering just F1 or F2 in isolation. The KL divergence for distributions of two, independent cues is the 
sum of the independent cues. For vowels, the F1×F2 informativity is approximately equal to the sum of the individual F1 and F2 
informativities.
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normalisations—is not perfect (e.g. Escudero & Bion Hoffmann, 2007; Flynn & Foulkes, 

2011). Additionally, there is still substantial talker variability even in normalised vowel 

distributions. This and the non-zero informativity of gender support arguments against 

(Lobanov) normalisation as the sole mechanism by which listeners overcome talker 

variability (see Johnson, 2005, for discussion).

Finally, even for normalised vowel distributions, the informativity of dialect and gender 

together is still higher than the informativity of dialect alone. This suggests that dialect 

differences themselves are modulated by gender (as noted by Clopper et al., 2005).

4.2.1. Informativity and dialect variation—One advantage of the proposed measure 

of informativity is that it can assess whether a grouping variable is equally informative about 

all categories, or whether a particular grouping is particularly informative about specific 

types of categories. Figure 3 illustrates this for vowel, compared to stop, categories. In this 

section, I show how this same approach can be used to investigate difference in the 

informativity of a grouping factor for different vowels. This provides a principled 

quantitative measure of, for example, vowel-specific dialectal variation. If factors like dialect 

are differentially informative about the distributions of some vowels versus others, then 

listeners may track dialect-specific distributions for only some vowels and not for others.

As Figure 4 shows, informativity varies quite a bit by vowel. Dialect (and Dialect+Gender) 

is particularly informative for, and /ɑ/, /æ/, /ɛ/, /u/, vowels with distinctive variants in at least 

one of the dialect regions from the NSP (see Clopper et al., 2005, for a summary of variation 

in American English vowels across these dialect regions). These results are consistent with 

what has been noted in the sociolinguistic literature (e.g. Labov et al., 2006): /ɑ/ is merged 

with /ɔ/ in some regions, /æ/ /ɛ/, and /ɑ/ participate in the Northern Cities Chain Shift, 

and /u/ is fronted in some regions (and in others only by female talkers; Clopper et al., 

2005).

Figure 5 shows the informativity by vowel and dialect individually. This shows that dialects 

do indeed vary in how informative they are, both overall (left) and by vowel (right). Some of 

this variability corresponds to known patterns of dialect variability. In particular, talkers 

from the North dialect region produce vowels—/æ/ and /ɑ/ in particular—with formant 

distributions that deviate markedly more from the marginal distributions (across all dialects) 

than any of the other dialects. Both of these vowels participate in the Northern Cities Shift, 

and in a sense are foundation of this shift, being at the root of the Northern Cities Shift’s 

implicational hierarchy (Clopper et al., 2005; Labov et al., 2006). The Mid-Atlantic /ɑ/ is, 

like the Northern /ɑ/, non-merged with /ɔ/ (Clopper et al., 2005) and hence deviates from the 

marginal substantially. New England talkers produce a low-variance /u/ distribution with a 

lower mean F1 than other dialects, which may reflect a lack of /u/-fronting and is consistent 

with a conservative /u/ in New England (Labov et al., 2006).7

The only particularly high divergence identified as significant by permutation test that does 

not correspond to known sociolinguistic variants is Mid-Atlantic /e/, which is slightly higher 

7.Thanks to Rory Turnbull for suggesting this interpretation.
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and fronter than the marginal distribution. There are also well-documented dialect effects 

that appear to be missing from these results. For instance, none of the individual vowels 

involved in the Southern Vowel Shift—/i, ɪ, e, ɛ, o, u/—diverge from the marginal 

distributions reliably. However, as Figure 5 (left) shows, the entire vowel space of Southern 

speakers does diverge from the marginal distributions, suggesting that even though the 

individual vowels do not differ dramatically from marginal, the combination of subtle 

differences is in fact reliable across talkers. Moreover, the individual vowels that diverge the 

most for Southern speakers are /ɛ, u, ɔ, o, e/, all of which (except /ɔ/, which likely reflects 

the lack of the caught-cot merger) are associated with the Southern Vowel Shift by Clopper 

et al. (2005) and all of which are significant before correcting for multiple comparisons 

(except for /ɛ/, p=0.07). Also, the lack of reliable evidence for individual Southern Vowel 

Shifts is consistent with the results from Clopper et al. (2005) using the same data: mean F1 

and F2 for Southern speakers for these vowels were not found to consistently differ 

significantly from the other dialects or the overall means (although there were some 

combinations of gender and dialect that did yield significant differences).

This asymmetry in informativity across both dialects and vowels raises the question of how 

listeners adapt to variation across categories and cue dimensions. All else being equal, a 

listener should be more confident in their prior beliefs about a category that varies less 

across talkers, and hence adapt less flexibly (Kleinschmidt & Jaeger, 2015). But it is not 

clear at what level listeners track variability for the purpose of determining how quickly to 

adapt. For instance, as we have seen, vowels overall vary substantially more across talkers 

than stop categories, but there are differences in how much individual vowels vary. It 

remains to be seen whether listeners adapt to all vowels with the same degree of flexibility, 

or are sensitive to these vowel-specific differences in cross-talker variability.

4.3. Discussion

The measure of informativity I have proposed here quantifies the amount and structure of 

talker variability using an information-theoretic measure of how much talker-or group-

specific cue distributions diverge from the overall (marginal) distributions. This measure 

allows talker variability for different phonetic categories, and even different cues, to be 

compared directly. As a proof of concept, the results here quantify previous qualitative 

findings8 that in American English there is an order of magnitude less talker variability in 

the realisation of word-initial stop voicing than in vowels. Moreover, there are qualitative 

differences in the structure of this variability: gender is no more informative about VOT 

distributions than random groupings of talkers of the same size, while gender-specific F1×F2 

distributions are reliably more informative than random groupings, even after Lobanov 

normalization.

Informativity also allows fine-grained investigation of dialect variation. The same measure 

can be applied at the level of individual phonetic categories (e.g. vowels, Figure 4), groups 

(e.g. a particular dialect), or even particular combinations the two (as in Figure 5). This 

8.I refer to previous evidence for more talker variability in vowels than stop voicing as “qualitative” because no attempt has been made 
to measure talker variability in a directly comparable way across the two systems, even though there have been quantitative 
measurements of talker variability in each system.
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measure takes into account the entire distribution of cues, and so it is more comprehensive 

than standard statistical techniques like regression or ANOVAs which usually compare the 

mean values of particular cues across groups or categories (for a comparable analysis of the 

NSP data, see Clopper et al., 2005).

The usefulness of this measure does not come at the expense of grounding in first principles: 

it corresponds directly to the amount of information that a listener leaves on the table if they 

ignore a grouping variable (including talker identity) and treat all tokens of a phonetic 

category as generated from the same underlying distribution. Ideal listener models (Clayards 

et al., 2008; Feldman et al., 2009; Norris & McQueen, 2008) identify knowledge of these 

distributions as a fundamental constraint on accurate and efficient speech perception. 

Furthermore, the ideal adapter model (Kleinschmidt & Jaeger, 2015) motivates the use of 

talker- or group-specific cue distributions as a constraint on the ability of listeners to 

effectively generalise from previous experience: if a grouping variable like talker identity or 

gender is not informative about cue distributions, then there is little possible benefit to 

tracking group-specific distributions. However, just because a grouping variable is 

informative about cue distributions does not necessarily mean that tracking those group-

specific distributions leads to any benefit for recognising a talker’s intended category. This 

motivates the notion of utility, investigated in study 2.

5. Study 2: How useful are socio-indexical groups for recognising vowels 

and stop voicing

The results of Study 1 show that socio-indexical variables like age, gender, dialect, and 

talker identity are informative about phonetic cue distributions. That is, the category-specific 

distributions of acoustic-phonetic cues are reliably different for differing values of at least 

some socio-indexical variables. However, these differences in cue distributions do not 

necessarily correspond to differences in the ability to recover a talker’s intended phonetic 

category. Even if there is some structure in talker variability for listeners to learn, that 

learning might not be useful for speech recognition.

This motivates the notion of utility that I develop and explore in Study 2. Where 

informativity concerns how well a listener could probabilistically predict the cues 

themselves, utility measures how well a listener could use those cue distributions to infer a 

talker’s intended phonetic category. A socio-indexical variable must be informative for it to 

be more useful than the overall, marginal distributions, but the converse is not necessarily 

true. For example, if talkers vary in a way that does not lead the marginal distributions of 

different phonetic categories to overlap much more than for individual talkers, then the 

inferences that an ideal listener would draw based on the marginal distributions are 

essentially the same as from the talker-specific distributions.

5.1. Methods

The utility of a socio-indexical grouping variable is defined based on how often an ideal 

listener would successfully recognise a talker’s intended category, given cue distributions 

estimated based on a particular group of talkers (g). Specifically, I use the posterior 

Kleinschmidt Page 17

Lang Cogn Neurosci. Author manuscript; available in PMC 2019 July 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



probability of the talker’s intended category cintended given the cue value they actually 

produced x.9 This, in turn, depends on the cue distributions produced by group g as 

described by Bayes’ rule:

p c = cintended x, g ∝ p x c = cintended, g p c = cintended

Bayes Rule can, with some algebra, be restated as an equality of odds ratios:

p c = cintended x, g

p c ≠ cintended x, g
=

p x c = cintended, g

p x c ≠ cintended, g
×

p c = cintended
p c ≠ cintended

Like the standard form of Bayes Rule, this has a straightforward interpretation: the posterior 
odds of correctly recognising c = cintended are the prior odds times the likelihood ratio, or 

how much more likely it is that x was generated by the true category cintended than all the 

other categories combined. If the likelihood ratio is greater than 1, then we have gained 

evidence in favour of the true category; and if it is less than 1, we have gained evidence in 

favour of an erroneous category. This interpretation holds regardless of whether there is 

contextual information that favours one category over another, which would only change the 

prior odds. It is also not sensitive to the number of categories, which would also manifest in 

changes in the prior odds. Moreover, if we take the logarithm of both sides, the prior and 

likelihood log-odds ratios add together to produce the posterior log-odds.10 Thus, the log-

likelihood ratio

log
p x c = cintended, g

p x c ≠ cintended, g

provides a measure of the information gained11 about what a talker is trying to say by 

interpreting cues x using the category-specific cue distributions of group g. It can be 

calculated from the posterior probability of the correct (talker’s intended) category relative 

to chance:

9.An ideal observer’s actual responses (and thus its accuracy) in, e.g. a phonetic classification task additionally depend on the decision 
rule (or loss function). However, any reasonable decision rule will be constrained by the amount of evidence in favour of the talker’s 
intended category, and so the posterior probability of that category is a reasonable proxy for the current purpose. Also, note that using 
a winner-take-all decision rule with likelihood derived from normal distributions is the same as quadratic discriminant analysis, as 
used for instance by Adank et al. (2004) in assessing the effectiveness of various vowel normalisation techniques.
10.This is true even in the presence of additional (independent) cues.
11.This quantity is not exactly information in the information-theoretic sense because it’s not weighted by the probability of observing 
cue x under the true category model.
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log
p x c = cintended, g
p x c ≠ cintended, g

= log
p c = cintended x, g
p c ≠ cintended x, g

− log
p c = cintended
p c ≠ cintended

= log accuracy
1 − accuracy

− log chance
1 − chance

(4)

By comparing information gain from different groups’ distributions, we can estimate the 

utility of these different groupings. For instance, we can ask how much additional 

information is gained by knowing a talker is male by looking at the information gain from 

cue distributions estimated from other male talkers (g = male), compared to all male and 

female talkers together (g = all). The same approach can also address changes in the prior 
probability of a category based on socio-indexical variables (e.g. higher or lower frequency 

of voiced stops in a particular dialect).

Talker-specific cue distributions ought to provide the most information about a talker’s own 

productions, and the marginal cue distributions (over all talkers) the least. The difference 

between them, though, depends on the amount of talker variability. I expect other groupings 

to yield information gains that are somewhat less than talker-specific distributions, but more 

than marginal distributions. Where exactly between these extremes is a measure of how 

much utility there is in tracking group-specific cue distributions: if a listener gains just as 

much information about what a talker was trying to say by using cue distributions based on 

other talkers of the same gender, age, dialect, etc., then there is little need to learn talker-

specific cue distributions. Where the informativity of a particular grouping (Study 1) 

measures how much there is to learn about group-specific distributions, the utility of the 

grouping (Study 2) measures how much benefit a listener would gain from doing that 

learning.

For vowels, I classified vowel categories directly. For voicing, the only cue available in this 

dataset is VOT, which does not (reliably) distinguish place of articulation. Thus, I classified 

voicing separately for each place of articulation, and then average the resulting accuracy.

5.1.1. Assumptions—Utility measures the maximum possible improvement in the 

accuracy of speech perception that is possible under the specific set of assumptions made in 

the ideal observer model. One particularly important assumption that this method makes is 

that the listener knows the socio-indexical group for a talker. I make this assumption for two 

reasons.
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First, in many cases listeners do, in fact, have a good deal of socio-indexical information 

about a talker. This may come from non-linguistic cues (or world knowledge), or even from 

other linguistic features that the listener produces (Kleinschmidt, Weatherholtz, & Jaeger, 

2018). Moreover, this assumption is not inherent in the method I propose, and it is possible 

to simultaneously infer the intended category and the socio-indexical group. In preliminary 

simulations, defining utility in this way has surprisingly little effect on the results, but it 

makes the simulations substantially more computationally demanding.

Second, and more importantly, I define utility assuming that the socio-indexical group of a 

talker is known because this provides an estimate of the in-principle benefit of tracking 

group-specific phonetic cue distributions.12 This is a defining feature of rational analyses of 

cognition (for the value of such clearly defined, in-principle bounds on performance, see 

also Massaro & Friedman, 1990).

5.1.2. Procedure—The utility of a grouping variable (e.g. gender) is calculated by first 

calculating the utility of that variable for each talker, which is done as follows. First, a 

training data set is constructed. For the NSP data, this was done by sampling three other 

talkers from the same group (e.g. three other male talkers). This subsampling is done to 

avoid biases in accuracy from group size, since groups with fewer talkers have more 

unstable estimates of their cue distributions, and lower accuracy on average (see James, 

Witten, Tibshirani, & Hastie, 2013, Section 2.2.2). The most specific grouping in the NSP is 

Dialect +Gender, which has four talkers per group. Including the talker’s own test data in the 

training data set will also artificially increase accuracy (James et al., 2013, Section 5.1), so 

three talkers are used to form the training set. For the other datasets, all other talkers from 

the same group were used for the training set, since the VOT data is (approximately) 

balanced by age and gender, and the HN15 data only groups talkers by gender. Based on this 

training data set, category-specific distributions are estimated in the same way as study 1, 

using the unbiased estimators of the mean and (co-)variance of the tokens from each 

phonetic category.

Second, the overall accuracy for the test talker is determined in the following way. Bayes 

rule is used to compute the posterior probability of the talker’s intended category for each of 

the tokens produced by the test talker, using the likelihood functions of each category from 

the training data. The mean of these posterior probabilities is the talker’s overall accuracy.

Third, and finally, the accuracy p for each talker is converted to utility by transforming to 

log-odds log (p/(1 − p)) and subtracting the log-odds of responding correctly by guessing 

uniformly, which is log (1/(n − 1)) if there are n response options. The overall utility of the 

grouping variable is the mean of these talker-specific utilities.

Because the training sets are sampled at random (except for dialect+gender), the whole 

procedure is repeated 100 times and averaged at the level of talker-specific utility to obtain 

12.This benefit is for first encountering a novel talker from a socio-indexical group prior to further adaptation. In the general 
discussion, I return to this point and why the utility measure might underestimate the benefit of implicit knowledge about group-
specific category distributions, as this knowledge likely serves as the starting point for talker-specific adaptation (Kleinschmidt & 
Jaeger, 2015).
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more reliable results. For talker as a grouping-variable, six-fold cross-validation was used 

instead, where each talker’s tokens were divided up into 6 roughly equal partitions (within 

category). The accuracy for each partition’s tokens was determined using the other 5 as 

training data.

Bootstrap resampling was used to estimate the reliability of these estimates. 1000 simulated 

populations of talkers were sampled with replacement, and the average utility for each 

grouping variable, and the differences between them, were re-computed each time. The 

reliability of differences between, for example, the utility of dialect and gender can be 

estimated in this way by looking at how frequently the resampled populations result in a 

difference in utility between dialect and gender with the same sign as the real sample of 

talkers. This is similar to a paired t-test but does not assume that talkers’ utilities are 

normally distributed.

Because the vowel corpus from Heald and Nusbaum (2015) only includes summary 

statistics, I computed utility based on a sample 100 F1×F2 pairs per category for each talker.

Differences in the composition of these corpora mean that care must be taken in making 

comparisons across corpora. The group-size bias is especially problematic when looking for 

subtle effects of groupings with small sample sizes, like dialect or dialect+gender (which 

contain 8 and 4 talkers per group, respectively). The sub-sampling procedure results in 

changes in accuracy of only a few percentage points, but doesn’t change the overall order of 

magnitude. Thus, gross, qualitative comparisons across corpora are still reasonable, even if 

fine-grained comparisons are not.

5.2. Results

First, I report and discuss the overall utility of the different grouping variables for the stop 

voicing and the two vowel databases I used. Second, I discuss the effect of vowel 

normalisation on utility. Third and finally, I examine how utility varies across dialects and 

individual vowels

Utility can be measured with respect to a number of baselines. First, by measuring 

information gain relative to chance performance (random guessing), we get a measure of the 

absolute utility of a particular socio-indexical grouping. This measure is plotted in Figure 6. 

All grouping variables—even the marginal grouping which considers all talkers together—

provide some information gain over random guessing, between 2 and 4 log-odds. Moreover, 

marginal distributions for vowels (with un-normalised F1×F2) and stop voicing show similar 

amounts of information gain over random guessing, despite different numbers of categories 

and cues and very different levels of overall accuracy (Figure 6, bottom panel). This suggests 

that information gain could be a useful metric for utility across different phonetic categories 

and cues.

Second, by comparing information gain between different grouping variables, we get a 

measure of relative utility, or how much additional information a listener would gain about 

the talker’s intended category by tracking (and using) these distributions. As expected, 
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within each contrast/cue combination, the marginal cue distributions (from all talkers) 

provide the least information gain, while talker-specific distributions provide the most.

Despite similar levels of utility for marginal distributions, vowels and stop voicing show 

very different levels of utility for group- or talker-specific distributions. For voicing (VOT), 

there is minimal—if any—additional benefit to using cue distributions from more specific 

groupings; only talker-specific distributions provide any additional information gain over 

marginal, and this gain is small (log-odds of 0.26, 95% CI [0.16–0.36]). At the other 

extreme, for vowels, using talker-specific F1×F2 distributions increases utility over marginal 

distributions by log-odds of 1.51 (95% CI [1.37–1.65]) for the NSP data and 1.39 (95% CI 

[0.89–2.33]) for the HN15 data. Even less-specific groupings like gender still have reliable 

additional utility over marginal distributions for vowels (NSP: log-odds of 0.59, 95% CI 

[0.28–1.03]; HN15: log-odds of 0.54, 95% CI [0.45–0.61]).

5.2.1. Normalisation of vowel formants—The results of study 1 showed that 

Lobanov normalisation make talker-specific formant distributions less informative, relative 

to marginal. Thus, we might expect that there will be lower utility for talker-specific 

distributions as well. However, as Figure 6 shows, the utility of talker-specific distributions 

per se is not lower for Lobanov vs. raw F1×F2. Nevertheless, the additional utility of talker-

specific over marginal distributions goes down because the baseline utility of marginal 

distributions goes up. Lobanov normalisation removes much of the across-talker variability, 

leading to less overlap between the marginal distributions for individual vowels, less 

confusion between categories, and higher accuracy. But for individual talkers considered 

alone, linear transformations like Lobanov normalisation have no effect, since they leave the 

relative positions and sizes of the category distributions unchanged. Hence, the utility of 

talker-specific distributions is exactly the same for raw and Lobanov normalised F1×F2.

While the reduction in additional utility for talker-specific distributions is predictable based 

on the lower informativity (study 1), the extent of this reduction in surprising: using talker-

specific distributions of raw F1×F2 Hz provides additional information gain of 1.51 (95% CI 

[1.37–1.65]), which drops to 0.36 (95% CI [0.24–0.48]) after Lobanov normalisation. This is 

comparable to the additional utility of talker-specific VOT distributions (0.26, 95% CI 

[0.16–0.36]). That is, after normalisation to remove overall shifts in F1×F2, the 

consequences of talker variability in vowel and stop voicing distributions for speech 
recognition may actually be more comparable than suggested by the informativity measured 

in study 1.

As with informativity, Lobanov normalisation also reveals additional structure in that talker 

variability. For raw F1×F2, dialect provides only weakly reliable additional utility over 

marginal distributions (log-odds of 0.07, 95% CI [0.01–0.12]). For Lobanov-normalised 

F1×F2, the additional utility of dialect is both larger and more reliable (log-odds of 0.18, 

95% CI [0.10–0.25]).

5.2.2. Dialect—Study 1 found that the informativity of dialect about formant 

distributions depended on both the dialect and specific vowel. Similarly, the utility of using 

dialect-specific cue distributions (relative to marginal or gender-specific) varies by dialect 
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(Figure 7) and vowel (Figure 8). Talkers from the North dialect region have a consistent 

additional information gain from using dialect- or dialect+gender-specific cue distributions, 

regardless of normalisation. This likely reflects the fact that under the Northern Cities Shift 

the /æ/ vowel is raised, making it highly overlapping with the /ɛ/ from talkers of other 

dialects and leading to reduced accuracy. With un-normalised F1×F2, no other dialects show 

a consistent benefit from dialect-specific cue distributions (either alone or with dialect

+gender). However, with Lobanov-normalised F1×F2, using dialect-specific distributions 

does lead to better vowel recognition (on the order of log odds of 0.4) for many—but not all

—dialects, especially when additionally considering gender.

Somewhat surprisingly, even with normalised F1×F2, there is no consistent information gain 

for using dialect-specific cue distributions for Southern speakers. Clopper et al. (2005) found 

that these same speakers demonstrated many of the vowel shifts that are characteristic of this 

dialect region (Labov et al., 2006), and the results of study 1 (Figure 5, left) show that on 

average Southern speakers distributions do diverge from the marginal. But study 1 also 
found that no individual Southern vowel distributions diverged enough from the marginal to 

be significantly more informative than a random grouping of talkers (5, right), at least after 

correcting for multiple comparisons.

As with individual dialects, individual vowels vary in the extent to which conditioning on 

dialect provides additional information. Figure 8 shows that for most vowels, there is little 

evidence that conditioning on dialect consistently provides additional information gain 

across dialect. There is weak evidence that a few vowels may get a reliable boost with 

normalised formants, like /æ/, /ɛ/, and /ɑ/, all of which are undergoing sound change in at 

least one dialect, and also show high informativity across dialects (Figure 5).13

5.3. Discussion

Despite dramatic differences between vowels and stop voicing in the informativity of talker- 

and group-conditioned distributions (study 1), the results of this study show that the utility 
of conditioning phonetic category judgements on talker or group are more comparable, 

especially for normalised formants. Using talker-specific cue distributions improves correct 

recognition of stop voicing and vowels by about log-odds of 0.5, except for un-normalised 

formants, where the improvement is more like 1.5 log odds. This seems like a relatively 

small information gain, especially since marginal distributions themselves provide more than 

4–6 times that much information gain over random guessing. However, when converted back 

to error percentage, the information gain from talker-specific distributions corresponds to 

avoiding about one out of every five errors: a change in error rate from 26% to 20% for 

(normalized) NSP vowels, and from 11% to 9% for stop voicing. These errors would not 

always lead to high-level misunderstanding, but avoiding them nevertheless reduces the 

burden on the listener to reconcile conflicting lexical, contextual, or phonetic information.

13.I do not report on significance of individual vowel effects here because they are estimated using a randomised procedure—both at 
the level of subsampling talkers to estimate the accuracy, and at the level of bootstrapping to estimate statistical significance—and all 
p>0.01 after correcting for false discovery rate. I found that, even with a reasonably large number of subsampling and bootstrap 
iterations (100 and 1000, respectively), individual effects that are weakly significant in one run (0.05>p>0.01) are often only 
“marginally significant” (0.1>p>0.05) in another. Properly assessing the reliability of these effects is best left to future experiments 
designed to detect them.
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While helpful, these differences in error rates show that using talker- or group-specific 

distributions is not a make-or-break factor in recognising vowels or stop voicing. Rather, 

they make comprehension more robust and efficient. One major caveat is that this is only 

true for normalized vowel formants. For raw Hz, using talker-specific distributions 

eliminates nearly two out of every three errors (53% vs. 20%). Using gender-specific 

distributions is only moderately helpful (error rate of 40%). This means that listeners can 

benefit greatly from extracting some talker-specific factor. Whether that factor is separate 

means and variances of each category, or the overall mean and variance of each cue (as is 

used in Lobanov normalisation) is a question that reminds to be addressed in future work. As 

I discuss more in the discussion below, either of these is compatible with Bayesian models 

like the ideal adapter that learn from experience.

6. General discussion

Recent theories of speech recognition propose that listeners deal with talker variability by 

taking advantage of statistical contingencies between socio-indexical variables (talker 

identity, gender, dialect, etc.) and acoustic-phonetic cue distributions (Kleinschmidt & 

Jaeger, 2015; McMurray & Jongman, 2011; Sumner et al., 2014). A major question that 

these theories raise is which contingencies listeners should learn and use. Listeners cannot 

learn and use every possible contingency, since they are limited by finite cognitive resources. 

Moreover, as I discuss below, listeners should not draw on every possible contingency given 

their finite experience.

As a first step towards answering this question, I used computational methods from ideal 

observer/adapter models to quantify the degree and structure of talker variability. I measured 

the extent to which a range of socio-indexical variables are (1) informative about category-

specific cue distributions and (2) useful for recognising phonetic categories, in two phonetic 

domains: vowels and word-initial stop voicing. Overall, I found that there is less talker 

variability for VOT than for vowel formants, and talker variability for VOT is less structured, 

at least according to the socio-indexical grouping variables investigated here. Variability in 

vowel formant distributions is structured, and a talker’s dialect, gender, or the combination 

thereof are each informative about vowel-specific cue distributions. Moreover, tracking 

group- or talker-specific cue distributions also improves vowel recognition, although the 

biggest gains by far come from tracking the overall mean and variance of a talker’s formants 

(disregarding category)—that is, the information required to normalise for overall shifts in 

formants.

In the remainder of this paper, I discuss the implications of these results. First, the ideal 

adapter generally predicts that listeners should track conditional distributions for groups that 

are informative and useful for speech recognition. By directly quantifying the utility and 

informativity of a number of grouping variables, these results are a step towards making 

more specific predictions about what group-level representations listeners should maintain 

if, as assumed by the ideal adapter, they are taking advantage of the structure that is actually 

present in cross-talker variability. Second, I argue that my results shed light on why studies 

on perceptual learning have obtained seemingly conflicting results for different phonetic 

contrasts. Third and finally, I discuss how these measures of the informativity/utility of 
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socio-indexical variables like gender, age, and dialect correspond to a starting point for 

talker-specific learning.

6.1. What to track?

Even without taking into account processing limitations, an ideal adapter should not track 

everything. Rather, listeners should only track the joint distributions of variables that are 

informative/useful. At the level of phonetic categories themselves, this means that (for 

instance) there is no reason for listeners to track vowel-specific distributions of temperature 

or barometric pressure. Likewise for socio-indexical grouping variables: listeners get no 

benefit for tracking separate distributions for different groups of talkers for a cue that does 

not systematically vary between those groups.

In fact, it can actually hurt a listener to track cue distributions at a level that’s not 

informative. The reason for this is related to one of the most central challenges to learning, 

the bias-variance trade-off (James et al., 2013, Section 2.2.2). In general, the bias-variance 

trade-off says that accuracy is a function of two things: the bias of your model (e.g. from 

being too simple or having the wrong structure) and the variance of the model’s parameter 

estimates (e.g. from not having enough data).

For the present purpose, this means that tracking multiple distributions will thus result in 

noisier, less accurate estimates than lumping together all the observations in a single 

distribution. This price may be worth paying for a listener when there are large enough 

differences between groups that treating all observations as coming from the same 

distribution biases the estimates of the underlying distribution (and hence the inferences that 

listeners make based on those distributions) far enough away from the true structure of the 

data. To take a concrete example, modelling each vowel as a single distribution of (un-

normalised) formants across all talkers results in broad, overlapping distributions which have 

low recognition accuracy. But modelling them as two distributions—one for males, and one 

for females—provides more specific estimates and higher classification accuracy, as shown 

by Figures 3 and 6.

Thus, the ideal adapter predicts that listeners should learn separate cue distributions for 

levels of a socio-indexical grouping variable when that variable has high informativity about 

some categories’ cue distributions and high utility for speech recognition. To be precise, this 

is the prediction if the goal of speech perception is the robust inference of linguistic 

categories (such as phonetic or phonological categories, words, or phrases). Listeners also 

extract, for example, social and emotional information from the speech signal. 

Sociolinguistic research has recognised that, in many cases, the communication of social 

information is just as—if not more—important than the communication of linguistic 

information (Clopper & Pisoni, 2006a, 2007; Cohen, 2012; Eckert, 2012; Labov, 1972; 

Remez, Fellowes, & Rubin, 1997; Thomas, 2002). Groupings that are socially meaningful 
can thus be informative and useful to track with respect to the overall communicative goal, 

which might include the robust transmission of social identity, emotional states, and more. 

This means that knowledge of the joint distribution of acoustic-phonetic cues and a socio-

indexical grouping can have high utility, even if ignoring that grouping has a negligible 

effect on speech recognition, as long as the corresponding cue distributions carry some 
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information about relevant social variables. Kleinschmidt et al. (2018) discuss this further 

and extend the ideal adapter to social inferences. That work—based on the same datasets I 

analyse here— found two examples where a socio-indexical variable can be inferred based 

on cue distributions, but which I found here to provide little if any additional utility for 

speech recognition. The first is dialect (based on vowel F1×F2) and the second is age (older 

than 40/younger than 30, based on VOT distributions).

An additional consideration is that listeners are not simply told which variables are 

informative and which are not. They must actually learn what distributions are actually 

worth tracking. Moreover, every listener’s experience with talker variability will be different, 

and so a variable that is informative in one listener’s experience may be irrelevant in 

another’s. For example, the predictions I have derived here about the relative utility of 

different grouping variables for speech recognition would hold for listeners whose language 

experience is similar to that represented in the databases I employed. This has a two main 

consequences for the predictions that the ideal adapter makes. First, this means that 

listeners’ response to talker variability should depend on their own, particular experience 

with talker variability. Clopper and Pisoni (2006a) shows some evidence that this is indeed 

the case. Second, in order to derive predictions for a specific listener, we would need to 

know more details of their own personal history with talker variability. This is a difficult 

task, but the ideal adapter also provides tools to probe listeners’ prior beliefs directly (for 

first steps, see Kleinschmidt & Jaeger, 2016b).

Finally, I note that listeners’ associations between linguistic and socio-indexical variables do 

not always seem to be based on objective informativity of those variables. Rather, some 

variants can become disproportionately salient or enregistered (Eckert, 2012; Foulkes & 

Hay, 2015; Jaeger & Weatherholtz, 2016; Levon, 2014; Podesva, 2007; Podesva, Roberts, & 

Campbell-Kibler, 2001). These deviations between objective informativity and subjective 

salience remain to be explained and specified in more detail, as well as what connection—if 

any—there is between listeners explicit social perceptions and their ability to adapt to 

socially-indexed linguistic variation. The methods proposed here provide a set of tools for 

assessing objective informativity/utility, a critical first step in understanding this 

relationship.

6.2. Consequences for adapting to unfamiliar talkers

The results of this study also speak to how listeners might adapt to an unfamiliar talker. The 

ideal adapter links informativity and utility to adaptation, and the results here allow us to 

make more specific predictions based on the ideal adapter, in two ways.

First, the informativity of talker identity is a measure of the variability across talkers. When 

talker identity is highly informative, there is more variability across talkers, and the ideal 

adapter predicts that prior experience with other talkers will be less relevant, resulting in 

faster and more complete adaptation to an unfamiliar talker. I found here that talker identity 

is less informative about VOT distributions than it is for vowel formant distributions. Hence, 

the ideal adapter predicts that listeners will adapt to talker-specific VOT distributions more 

slowly, and be more constrained by prior experience with other talkers, compared to talker-

specific formant distributions.
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While I am not aware of a direct quantitative test of this specific prediction, existing 

evidence provides indirect support for it. Kraljic and Samuel (2007) found much smaller 

recalibration effects for a VOT contrast (on the order of 5% changes in classification) 

compared to a fricative contrast (around 30%) with the same amount of exposure to each. 

Studies on recalibration of a word-medial /b/-/d/ contrast—which is partially cued by 

formant frequencies, like vowel identity—show recalibration effects of similar magnitudes 

to fricatives (Kleinschmidt & Jaeger, 2015; Vroomen, van Linden, de Gelder, & Bertelson, 

2007). This prediction is also borne out indirectly by studies that have inferred the strength 

of listeners’ prior expectations based on their adaptation behaviour (Kleinschmidt & Jaeger, 

2015, 2016b). That work finds that listeners’ prior expectations are stronger—as measured 

by an “effective prior sample size”— when adapting to a voicing contrast (like /b/-/p/) than a 

stop consonant place of articular contrast (like /b/-/d/).

Second, the informativity of socio-indexical grouping variables is linked to generalization 
across talkers: if two talkers are from groups that tend to differ, listeners should be more 

inclined a priori to treat them separately and not generalise from experience with one talker 

to the other. Likewise, if two talkers are from the same group, listeners should generalise. I 

found that talker gender is informative about vowel formant distributions, but not about 

VOT, which means that listeners should (absent other information) generalise from a male to 

a female talker (and vice-versa) for a voicing contrast, but not for a vowel contrast. Listeners 

do, in fact, tend to generalise voicing recalibration across talkers of different genders 

(Kraljic & Samuel 2006, 2007). While there is to my knowledge no data on cross-talker 

generalisation for vowel recalibration, listeners tend not to generalise across talkers for 

recalibration of fricatives (Eisner & McQueen, 2005; Kraljic & Samuel, 2007), which (like 

vowels) are cued by spectral cues that vary across talkers and by gender (Jongman, Wayland, 

& Wong, 2000; McMurray & Jongman, 2011; Newman et al., 2001).

Third, and conversely, listeners should be more likely to generalise between two talkers who 

are both members of the same informative group. In the absence of evidence that two talkers 

from the same group (e.g. two males) produce a contrast differently, experience with one 

provides an informative starting point for comprehending (and adapting to) the other. There 

is evidence along these lines as well: van der Zande, Jesse, and Cutler (2014) found that 

listeners generalise from experience with one male talker’s pronunciation of a /b/-/d/ 

contrast to another, unfamiliar male. Note that such generalisation should depend on how 

informative (and variable) a grouping variable like gender is across contexts, since 

generalisation from experience with one other male talker in an experimental context is very 

different from generalisation from all other male talkers across all contexts.

Finally, these predictions are best thought of as prior biases that might be overcome with 

enough of the right kind of evidence (Kleinschmidt & Jaeger, 2015). For instance, listeners 

can overcome their bias to generalise experience with VOT and learn talker-specific VOT 

distributions, but it requires hundreds of observations from talkers who produce very 

different VOT distributions (Munson, 2011). Likewise, listeners will general-ise 

recalibration of a fricative contrast from a female to a male talker when test stimuli are 

selected to increase perceptual similarity between the two test continua (Reinisch & Holt, 

2014).
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6.3. A lower bound

These results constitute a lower bound on the informativity or utility of different levels of 

socio-indexical grouping. This is the case above and beyond the limitations imposed by the 

database that I discussed above (which required subsampling talkers in order to 

meaningfully compare accuracy across grouping variables).

Here, cue distributions for a particular group are modelled as a single normal distribution 

over observed cue values. In reality, a hierarchical model is more appropriate, since different 

levels of grouping can nest within each other, or combine orthogonally. For instance, each 

dialect group is likely better modelled as a mixture of talker-specific distributions, which 

each exhibit dialect features to a varying degree. This is especially important for adaptation 
to an unfamiliar talker, since a group-level distribution conflates within and between talker 

variation, both of which have separate roles to play in belief updating.

The approach to group-level modelling that I take here is roughly equivalent to the posterior 
predictive distribution of a fully hierarchical model, which integrates over lower levels of 

grouping to provide a single distribution of cues given the group (and phonetic category). 

This corresponds to the best guess a listener would have before hearing anything from an 

unfamiliar talker, if the only information they had about that talker was their group 

membership. As the listener hears more cue values from the talker, the hierarchical nature of 

grouping structure becomes more important and can provide (in principle) a significant 

advantage over what I measured here. But modelling this process is quite a bit more 

complicated and is left for future work. Nevertheless, modelling each category as a single, 

“flat” distribution per group may well prove a useful approximation, or even a boundedly-

rational model of how listeners take advantage of different levels of grouping structure (and 

similar approaches have been used in, e.g. motor control; Kandörding et al., 2007).

6.4. Consequences for perspectives on normalisation

Normalizing vowel formants with respect to each talker’s overall mean and variance 

substantially reduces the amount of talker variability, and also changes the structure of that 

variability: gender matters much less, while the effects of dialect become more apparent. 

Much of the work on vowel normalisation treats normalisation as a low-level auditory 

adaptation or habituation process that eliminates the need for active inferences on the 

listener’s part (e.g. Holt, 2006; Huang & Holt, 2012; Laing, Liu, Lotto, & Holt, 2012; 

Nearey, 1989; for a review see Weatherholtz & Jaeger, 2016). But low-level sensory 

adaptation is increasingly recognised as a sort of distributional learning, much like the ideal 

adapter proposes for speech recognition (for a review of these parallels, see Kleinschmidt & 

Jaeger, 2016a).

I used normalisation as a methodological tool, but it would be possible to treat the 

normalisation parameters as another aspect of a talker’s particular language model that must 

be inferred, just like the means and (co-)variances of various individual vowel distributions. 

That is, it is possible that an ideal adapter would do better by learning talker-/group-specific 

distributions in a normalised space, and additionally inferring the normalisation factors 

(shift, scaling, etc.) for each talker they encounter. If this parallel is appropriate, then it 
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suggests a more complex interaction between normalisation and adaptation/perceptual 

learning as strategies for coping with talker variability, and makes a number of predictions. 

For instance, instead of just taking a running average of recent spectral content (Huang & 

Holt, 2012) or using extreme vowels as “anchors” (as in many normalisation methods; Flynn 

& Foulkes, 2011), normalisation could be accomplished much more efficiently by leveraging 

category-level information (which is often provided by, e.g. lexical context) and knowledge 

of cue distributions in normalised space: a single token of any vowel (with the category 

known) can provide enough information to get a reasonably good guess about the talker’s 

normalisation factors. This in turn predicts sensitivity to both the un-normalised formant 

frequencies and the normalised ones. In this case, group-level expectations that are only 

informative about distributions in normalised space (e.g. dialect for vowels) could 

nevertheless help with adaptation, even before a talker’s entire cue space is known.

Furthermore, Chodroff and Wilson (2017) found that talker variation in VOT could also be 

largely characterised in terms of overall shifts/scaling of VOT distributions (as evidenced by 

large, positive correlations across talkers between the means and variances of different 

categories). This suggests that tracking talker-specific normalisation factors may be a 

generally useful strategy across different phonetic contrasts (or even features). That is, 

listeners may benefit from factoring talker variation into components that are shared across 

categories and components that are shared across talkers (as I’ve examined here). But this 

parallel remains to be investigated in future work.

7. Conclusion

I have demonstrated methods to quantify the amount and structure of talker variability in 

phonetic category-specific cue distributions. These methods are derived directly from the 

ideal adapter framework (Kleinschmidt & Jaeger, 2015) which treats speech perception as a 

process of inference under uncertainty and variability. The results I present here for word-

initial stop voicing (cued by VOT) and vowel identity (cued by F1×F2) are a first step 

towards making quantitative predictions with the ideal adapter about how listeners cope with 

different aspects of talker variability. They also provide a way of formalising the salience or 

relevance of socio-indexical information that exemplar/episodic theories propose is stored 

alongside acoustic traces (e.g. Sumner et al., 2014). Finally, together with similar work 

showing that socio-indexical judgements can be modelled as the same kind of inference 

under uncertainty (Kleinschmidt et al., 2018), this work suggests a framework for unifying 

psycholinguistic and sociolinguistic perspectives on talker variability.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
How well a listener can recognise the phonetic category (A, e.g. /s/ vs. /ʃ/; loosely based on 

Newman et al., 2001) a talker is producing depends on what the listener knows about the 

underlying cue distributions (B). These distributions vary across talkers, which results in 

variability in the best category boundary. Each talker’s cue distributions can be characterised 

by their parameters (C; e.g. the mean of /s/, mean of /ʃ/, variance of /s/, etc.; together 

denoted θ). Each point in C corresponds to a pair of distributions in B and one category 

boundary in A. Groups of talkers are thus distributions in this high-dimensional space (C, 

ellipses); marginalising (averaging) over a group smears out the category-specific 

distributions (thick lines in B) and thus the category boundary (A). Thus, Jose’s /s/ and /ʃ/ 
are best classified using his own distributions (purple), in the sense that this leads to a 

steeper boundary at a different cue value compared to the boundary from the marginal 
distributions over all talkers (gray) or other males (light blue).
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Figure 2. 
Gender-specific distributions of vowel formants for /i/ appear to diverge from the overall 

(marginal) distributions (A), whereas for VOT the gender-specific distributions are 

essentially indistinguishable from the marginal distributions. Intuitively, this makes gender 

informative for vowel formants, but not for VOT (see also vowels in Perry et al., 2001; vs. 

VOT in Morris, McCrea, & Herring, 2008). The proposed approach formalises this intuition 

in a quantitative measure that can be applied to directly compare talker variability across 

different cues, phonetic contrasts, and socio-indexical grouping variables. Vowel data is 

drawn from the Nationwide Speech Project, and VOT from the Buckeye corpus (see below 

for more details).
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Figure 3. 
Socio-indexical variables are more informative about cue distributions for vowel formants 

(HN15, Heald & Nusbaum, 2015; NSP, Clopper & Pisoni, 2006b) than for stop voicing 

(VOT), even after Lobanov normalisation. On top of this, more specific groupings (like 

Talker and Dialect+Gender) are more informative than broader groupings (Gender). Each 

open point shows one group (e.g. male for Gender), while shaded points show the average 

over groups. Gray violins show the null distribution of average informativity (KL estimated 

from 1000 datasets with randomly permuted group labels), and stars show significance of 

the variable’s average KL with respect to this null distribution 

(*p<0.05,**p<0.01,***p<0.001).
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Figure 4. 
Individual vowels vary substantially in the informativity of grouping variables about their 

cue distributions. Only normalised F1×F2 is shown to emphasise dialect effects. Large dots 

show the average over dialects (+genders), while the small dots show individual dialects 

(+genders) (see Figure 5 for detailed breakdown of individual dialect effects). The grey 

violins show the vowel-specific null distributions of the averages, estimated based on 1000 

datasets with randomly permuted group labels, and stars show permutation test p value 

(proportion of random permutations with the same or larger KL divergence), with false 

discovery rate correction for multiple comparisons (Benjamini & Hochberg, 1995).
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Figure 5. 
Breaking down the overall informativity of dialect by individual dialects (left) and dialect-

vowel combinations (right). Some dialects are more informative about Lobanov-normalised 

vowel distributions than random groupings of the same number of talkers (grey violins), but 

some are not (at least in the current sample of talkers). Likewise for individual vowels within 

dialects. Moreover, dialects be informative on average but not have any individual vowels 

that are informative alone (e.g. South), and vice-versa (e.g. Midland). Stars show p values 

from permutation test (*p<0.05,**p<0.01,***p<0.001) corrected for false-discovery rate 

across all dialects/dialect-vowel combinations (Benjamini & Hochberg, 1995).
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Figure 6. 
Average information-gain in log-odds relative to chance (top) measures the utility of each 

grouping variable. Bottom shows posterior probability of correct category for comparison. 

Small points show individual talkers. Large points and lines show mean and bootstrapped 

95% CIs over talkers (see text for details).
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Figure 7. 
The advantage of knowing a talker’s dialect varies by dialect. Knowing a talker comes from 

the North regions provides a consistent benefit, regardless of cues (Hz or Lobanov-

normalised) or baseline (marginal or gender). Otherwise, dialect does not provide consistent 

information gain except when using Lobanov-normalised cue values, and even then it varies 

by dialect. Each point shows one talker, the error bars bootstrapped 95% CIs by talker, and 

the stars bootstrapped p-values adjusted for false discovery rate (Benjamini & Hochberg, 

1995).
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Figure 8. 
The information gained from knowing a talker’s dialect also varies by the particular vowel. 

Vowels undergoing active sound change in multple dialects of American English (like /æ/, /

ɛ/, /ɑ/, and /u/) tend to benefit more from knowing dialect. (Single talker estimates of 

information gain are not shown because the small sample size n ≤ 5 for individual talkers 

makes them numerically unstable, while the overall log-odds ratios calculated from the 

mean accuarcies are more stable.) CIs are 95% bootstrapped CIs for the mean over talkers. 

All p>0.01 (corrected for false discovery rate), and whether an individual p value is less or 

greater than p=0.05 is sensitive to the bootstrap and subsampling randomisation so stars are 

not shown.
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