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Abstract

Leptin is a pro-inflammatory cytokine that plays an important role in energy homeostasis. 

Emerging evidence suggests that leptin levels are altered in children with autism spectrum disorder 

(ASD); however this has not been studied prospectively. Rapid growth during infancy and early 

childhood has been implicated in ASD, but the evidence is inconsistent. Since leptin is involved in 

growth and is a potential risk factor for ASD, we explored the associations between 1) cord, early 

childhood leptin and ASD; and 2) birth weight for gestational age, early childhood weight gain 

and ASD. We also assessed the mediating role of leptin in the relationship between weight gain 

during infancy and ASD. This study was conducted in a sample of 822 subjects from the Boston 

Birth Cohort. ASD was defined from diagnostic codes in electronic medical records. Extremely 

rapid weight gain during infancy was associated with a greater ASD risk and this persisted after 

adjusting for potential confounders (aOR: 3.11; 95% CI: 1.37, 7.07). Similarly, children that had 

higher plasma leptin levels, prior to ASD diagnosis, had an increased ASD risk in both unadjusted 
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and adjusted models (aOR: 7.87; 95% CI: 2.06, 30.04). Further, early childhood leptin indirectly 

mediated the relationship between rapid weight gain and ASD. No associations were found 

between birth weight for gestational age, cord leptin and risk of ASD. Our findings provide a basis 

to further explore whether the combination of early life growth pattern and a biomarker such as 

leptin can predict ASD earlier.

Lay Summary:

Is early life growth and a biomarker leptin related to ASD risk? To answer this question, we 

followed 822 children from birth and found that those who gained weight very quickly in infancy, 

had higher leptin levels in early childhood, had a greater chance of later ASD diagnosis. More 

research is needed to see if infant’s weight gain pattern along with a biomarker (such as leptin) can 

be used to identify children with ASD sooner.
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Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental conditions characterized by 

impairments in sociability and communication, as well as increased repetitive and/or 

restrictive behaviors and interests (Jeste, 2015; Leitner, 2014; Murray, 2010; Schaevitz, 

Berger-Sweeney, & Ricceri, 2014; Zhubi, Cook, Guidotti, & Grayson, 2014). ASD 

prevalence in the U.S. has increased dramatically since 1996 and now, 1 in 68 children are 

diagnosed with ASD (Krakowiak et al., 2012; Van Naarden Braun et al., 2015). The precise 

cause of ASD is largely unknown (Moore, Kneitel, Walker, Gilbert, & Xing, 2012). 

Numerous studies have demonstrated associations with genetic, environmental, perinatal and 

immunological risk factors, leading to a hypothesis that ASD likely has a multifactorial 

pathogenesis or is a common end point of multiple causal pathways (Limperopoulos, 2009; 

Moore et al., 2012).

Among the perinatal risk factors, preterm birth and small for gestational age (SGA) have 

been studied extensively in the context of ASD (Joseph et al., 2017; Moore et al., 2012; 

Padilla et al., 2017; Schieve et al., 2014). SGA is a proxy for intrauterine growth restriction 

(Hunter et al., 2016) and studies have reported that SGA children are at increased risk of 

ASD (Lampi et al., 2012; Larsson et al., 2005; Moore et al., 2012); however, the results are 

inconsistent (Glasson et al., 2004; Larsson et al., 2005; Schendel & Bhasin, 2008). Many 

children that are small at birth tend to have rapid catch-up growth during early postnatal 

period (Castanys-Munoz et al., 2017; Ong, 2007). Rapid growth during first year of life has 

been shown to be associated with ASD (Dementieva et al., 2005; Dissanayake, Bui, 

Huggins, & Loesch, 2006; Torrey, Dhavale, Lawlor, & Yolken, 2004), although not all 

studies have confirmed these findings (Courchesne, Carper, & Akshoomoff, 2003; 

Rommelse et al., 2011). While abnormal birth weight percentiles and rapid early growth 

have been identified as independent risk factors of ASD, the combined effect of SGA with 

rapid postnatal weight gain has not been explored. Most studies previously conducted on 
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SGA infants have not accounted for the rate of postnatal growth, and vice versa. Further, the 

biological mechanisms behind SGA and rapid weight gain and ASD risk have not been 

clearly elucidated (Sacco et al., 2007; Suren et al., 2013).

Leptin is a peptide hormone that is predominantly secreted by the white adipose tissue and 

has been studied in the context of fetal growth and early childhood weight gain (Blardi et al., 

2010; Karakosta et al., 2011). Studies have found that children with SGA have lower leptin 

levels possibly reflecting a lower fat mass as a result of intrauterine restricted fetal weight 

gain (Catov et al., 2007; Harigaya, Nagashima, Nako, & Morikawa, 1997; Koistinen et al., 

1997; Pighetti et al., 2003). Metabolically, lower cord blood leptin levels are known to 

predict rapid weight gain in infancy (Kettaneh et al., 2007; S. Li et al., 2016; Ong et al., 

1999; Perng et al., 2016). Beyond leptin’s role in prenatal and postnatal weight gain, this 

pleiotropic cytokine has been shown to be important in the regulation of the immune system, 

neurodevelopment including neuron excitability, synaptic plasticity, neural differentiation 

and promoting migration of neuronal lineage cells to the cortical plate (Ashwood et al., 

2008; Blardi et al., 2010; Harvey, 2007; Harvey, Solovyova, & Irving, 2006; Paz-Filho et al., 

2008). Emerging evidence suggests that children (2–15 years) with ASD have significantly 

higher plasma leptin levels than controls (Al-Zaid, Alhader, & Al-Ayadhi, 2014; Ashwood et 

al., 2008; Blardi et al., 2010; Essa M.M. et al., 2011; Rodrigues et al., 2014). Among a few 

studies that have researched leptin-ASD association in children, most were done after ASD 

diagnosis (Ashwood et al., 2008; Blardi et al., 2010), thus unable to assess the temporal 

relationship. To our knowledge, none of the studies have assessed cord and early childhood 

leptin levels independently and simultaneously in relation to ASD in a prospective birth 

cohort.

Despite studies observing cytokine involvement in ASD (Krakowiak et al., 2017; Masi, 

Glozier, Dale, & Guastella, 2017; Rodrigues et al., 2014; N. Xu, Li, & Zhong, 2015) and the 

knowledge about the role of fetal and infant growth and ASD (Dementieva et al., 2005; 

Dissanayake et al., 2006; Torrey et al., 2004), existing studies have not evaluated the 

potential link between growth and leptin levels related to ASD. We set out to understand 

whether elevated leptin levels observed in people with ASD are related to rapid weight gain 

during infancy, and whether leptin has a mechanistic role in explaining the early growth-

ASD relationship. Specifically, in this report we sought to explore the relationship between – 

1) birth weight for gestational age, weight gain during first year of life and ASD risk; 2) cord 

and early childhood leptin and ASD risk; and 3) the potential of leptin mediating the 

relationship between weight gain during first year and ASD risk. We analyzed the 

longitudinal data from the Boston Birth Cohort (BBC), a predominantly urban low-income 

minority population.

Methods

Participation and data collection procedure

As illustrated in supplemental figure 1, this study included 822 children from the BBC, who 

were recruited at birth (between 1998 and 2009), were followed prospectively until 2015 and 

had a median length of follow-up of 7.5 years (interquartile range: 5.2 – 9.8 years). Mothers 

of newborns were invited to participate in the study 24–72 hours after birth. Over 90% of 
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those that were approached agreed to participate and were initiated into the study (G. Wang 

et al., 2014; X. Wang et al., 2002). For every preterm (defined as <37 weeks of gestation) 

and/or low birth weight baby (defined as <2,500 g), approximately two term and normal 

birth weight babies (and their mothers) were enrolled in the study (X. Wang et al., 2002). 

The exclusion criterion for initial enrolment was multiple-gestation pregnancies and 

newborns with major birth defects. Participants and non-participants did not differ on 

characteristics such as infant birth weight, maternal ethnicity, or other sociodemographic 

characteristics (X. Wang et al., 2002). A sub-set of the participants were enrolled in the 

follow-up study that began in 2003 and children not planning to receive pediatric care at the 

Boston Medical Center were not included in the postnatal follow-up. There were no major 

differences in baseline demographic characteristics between those with and without 

postnatal follow-up (M. Li et al., 2016).

Of 2,932 that were eligible for postnatal follow-up, 2,110 were excluded for the following 

reasons: 1,589 did not have at least one of the exposure variables (cord leptin, early 

childhood leptin) and 521 had other competing diagnosis such as ADHD, intellectual 

disabilities (ID) or other developmental disabilities (DD). Electronic Medical Records 

(EMR) containing clinicians’ primary and secondary diagnoses using ICD-9 codes were 

obtained for every postnatal clinical visit since 2003. The study was approved by the 

Institutional Review Boards of the Johns Hopkins Bloomberg School of Public Health and 

Boston University Medical Center.

Identification of children with ASD

Based on EMR, children that were ever diagnosed with autism (ICD-9 code 299.00), 

Asperger syndrome (299.80) and/or pervasive developmental disorder not otherwise 

specified (299.90) were categorized as having ASD. Neurotypical children were those that 

were never diagnosed with ASD, ADHD, ID and other DD. When children had concurrent 

diagnosis, such as ASD and ADHD or ASD and ID or ASD and other DD, they were 

classified as having ASD. Two separate sensitivity analyses were conducted - 1) using a 

stringent criteria, defined as having ASD diagnosis on more than two separate occasions in 

the EMR and one visit to specialists such as behavioral pediatrician, pediatric neurologist or 

child psychologist; and 2) using a stringent control that additionally excluded children who 

did not have other competing diagnoses (Conduct disorder (312.0 – 312.9), Emotional 

disturbances of childhood or adolescence including Oppositional Defiant Disorder (313.0 – 

313.9), Congenital Anomalies (740 – 759.9)).

Exposure variables

Birth weight for gestational age was defined as follows: SGA (<10th percentile), appropriate 

for gestational age (AGA) (≥10th – 90th percentile) and large for gestational age (LGA) 

(>90th percentile) (G. Wang et al., 2014). Child’s length (<2 years) and height and weight 

were measured during the well-child visits at the Boston Medical Center. WHO reference 

values was used to calculate weight-for-age z-scores and was defined as the change in 

weight-for-age z-scores from birth until the target time-point. Weight-for-age z-score was 

categorized into the following groups: slow (weight gain z-score <−0.67), on track (−0.67 to 

0.67), rapid (>0.67 to 1.28), and extremely rapid (>1.28) (G. Wang, Johnson, et al., 2016).
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Umbilical cord blood sample was collected at delivery and non-fasting early childhood 

venous blood sample were collected during subsequent follow-up visits. The median age of 

early childhood leptin measurement was 18.4 months (IQR: 10.3–49.2 months). All the 

blood samples were processed immediately after collection and plasma samples were stored 

in a freezer at −80°C. Only children with blood samples obtained prior to ASD diagnosis 

were included in the early childhood biomarker analysis. As mentioned elsewhere, plasma 

leptin levels were measured in duplicates using a sandwich immunoassay based on flow 

metric xMAP technology on Luminex 200 machines (Luminex Corp., Austin, TX). The 

interassay coefficient of variation was 4.5% (G. Wang, Johnson, et al., 2016). Unlikely leptin 

levels, defined as greater than 3 SD, were observed in 8 and 7 subjects for cord and early 

childhood leptin, respectively and were re-assigned a value of 3SD (G. Wang, Hu, et al., 

2016).

Statistical Analyses

The outcome variable was ASD and major exposure variables were 1) birth weight for 

gestational age and weight gain during first year of life and 2) cord blood and early 

childhood leptin levels. Correlation between cord and early childhood leptin was minimal 

(0.02). Normality of the data was assessed using Shapiro-Wilk test and both cord and early 

childhood leptin levels were log transformed because of the skewed distribution. Data 

analyses were performed to compare neurotypical children and those with ASD using chi-

square tests for categorical variables and ANOVA for continuous variables. Logistic 

regression models were applied to estimate the crude and adjusted associations between 

weight gain during first year of life, log-transformed leptin levels at birth and early 

childhood (X, independent variables) and ASD (Y, dependent variable). All results are 

presented as odds ratio. Throughout, we used 2-sided statistical tests with a significance 

level of 0.05. Data were analyzed using STATA version 13.0 (StataCorp, College Station, 

TX).

Mediation analysis: The role of leptin as a potential mediator of the association between 

weight gain during infancy and ASD risk was examined. KHB command in STATA was 

used to decompose the total effect of weight gain in infancy into natural direct and indirect 

effects, mediated by early childhood leptin levels (Breen, Karlson, & Holm, 2013). The total 

effect (defined as the effect of weight gain during infancy on ASD without the mediating 

variable early childhood leptin) was decomposed into direct effect (the effect of weight gain 

during infancy on ASD when controlling for early childhood leptin, the mediator) and 

indirect effect (the effect of weight gain during infancy on ASD through early childhood 

leptin, the mediator). The proportion of mediating effect among the total effect was 

calculated as indirect effect divided by the total effect.

Other covariates

Covariates were selected a priori based on the existing literature, including our own work in 

the BBC (M. Li et al., 2016; Raghavan et al., 2017; G. Wang et al., 2014; G. Wang, Hu, et 

al., 2016). Following covariates were adjusted in the analysis: maternal age at delivery, 

smoking during pregnancy (ever smoked 3 months before pregnancy/during pregnancy vs. 

not smoked before pregnancy/during pregnancy), parity (not including the index pregnancy), 
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maternal education (high school or less vs. some college or more), maternal pre-pregnancy 

BMI, maternal diabetes status (defined below), maternal age at delivery, race/ethnicity, 

child’s sex (female vs. male), gestational age at birth (defined below), year of the baby’s 

birth (1998–2006 vs. 2007–2013), mode of feeding (defined below), age at which early 

childhood blood was drawn and follow-up time for each subject.

Maternal diabetes status was classified into the following: 1) no preexisting diabetes mellitus 

(DM) or gestational diabetes mellitus (GDM), 2) preexisting DM, and 3) GDM. Subjects 

were categorized as having preexisting DM if any of the following criteria were met before 

pregnancy: (a) diabetes diagnosis by a physician; (b) received a ICD-9 code of “250.x” or 

“648.0x”; (c) fasting plasma glucose level ≥126 mg/dl (7.0 mmol/l) or a casual plasma 

glucose≥200 mg/dl (11.1 mmol/l); (d) treatment with anti-diabetes medicines (oral 

medicines or insulin). Subjects were categorized as having GDM if there was no evidence of 

preexisting diabetes (as defined above) and met any of the following criteria: (a) physician 

diagnoses of GDM; (b) received a ICD code of “648.8x”; (c) fasting plasma glucose level 

≥126 mg/dl (7.0 mmol/l) or casual plasma glucose≥200 mg/dl (11.1 mmol/l); (d) two or 

more of the following plasma glucose values in oral glucose tolerance test (OGTT) were met 

or exceeded: i) Fasting: 95 mg/dL (5.3 mmol/L); ii) 1 h: 180 mg/dL (10.0 mmol/L); iii) 2 h: 

155 mg/dL (8.6 mmol/L); iv) 3-h 140mg/dL (7.8mmol/L); v) treatment with anti-diabetes 

medicines (oral medicines or insulin) (American Diabetes, 2003, 2016; Organization).

Neonates who were delivered ≥ 37 completed weeks of gestation were categorized as term, 

while those delivered <34 weeks, and ≥34 but <37 weeks of gestation were considered early 

and late preterm, respectively. Race/ethnicity was categorized into black, white, Hispanic 

and Other. Data on mode of feeding was collected from mothers using a standardized 

questionnaire during a follow-up visit in the first few years of life. Mode of feeding was 

categorized into the following: 1) formula only, 2) both formula and breastfeeding, and 3) 

breastfeeding only. When mothers had multiple follow-up visits, data collected during the 

first visit was used (Hong et al., 2011).

Results

Table 1 describes the characteristics of mothers and children by child’s case status 

(neurotypical vs. ASD). As expected, previously recognized risk factors were more prevalent 

among children with ASD compared to neurotypical children, including male sex, advanced 

maternal age, preterm birth and lower birth weight. Consistent with the literature (Mantzoros 

et al., 2009; Tome et al., 1997), girls had higher cord and early childhood plasma leptin 

levels than boys (Supplemental Table 1). Children that were SGA had lower cord leptin 

levels and were more likely to have extremely rapid weight gain (Supplemental tables 1 and 

2). Children with most rapid weight gain during infancy were also likely to have higher early 

childhood leptin levels, but the latter did not differ by birth weight for gestational age 

(Supplemental table 1).

Birth weight for gestational age and ASD risk

A total of 599 children had birth weight for gestational age data, of which 47 were later 

diagnosed with ASD (Supplemental Figure 1). Five of these 47 ASD subjects had co-
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occurring ID. Compared to children with AGA, neither SGA children nor LGA children 

were at a greater risk of ASD, before or after the adjustment of covariates including maternal 

age at delivery, parity, smoking status, education, race, maternal BMI, maternal diabetes, 

child’s sex, follow-up time and gestational age (Table 2).

Weight gain during infancy and ASD risk

A total of 573 children had weight gain during infancy data, of which 46 were later 

diagnosed with ASD (Supplemental Figure 1). Five of these 46 subjects had co-occurring 

ID. Prenatal determinants of weight gain during infancy are presented in Supplemental Table 

2, and preterm birth was a major determinant of infant excessive weight gain. When 

compared to children whose growth was on track based on weight gain z-scores, children 

that had slow weight gain or rapid weight gain did not have an increased ASD risk (ORslow: 

1.52; 95% CI: 0.49, 4.71, ORrapid: 1.33; 95% CI: 0.46, 3.86) (Table 2). However, extremely 

rapid weight gain during infancy was associated with an increased risk of ASD 

(ORextremely rapid: 2.64; 95% CI: 1.20, 5.78). This association persisted after adjusting for 

covariates (child’s sex, race, follow-up time and breastfeeding status) in model 3 

(aORextremely rapid: 3.11; 95% CI: 1.37, 7.07). Next, we sequentially added birth weight for 

gestational age to model 3 covariates and observed a consistent association (Table 2). 

However, the significance attenuated after adjusting for gestational age in addition to model 

3 covariates (aOR: 2.08; 95% CI: 0.84, 5.13). The association did not attenuate after 

adjusting for prenatal determinants such as maternal BMI, diabetes status and age at the time 

of delivery, in addition to covariates specified in model 3 (Table 2). Sensitivity analyses 

using stringent comparators or cases showed a consistent association between birth weight 

for gestational age, weight gain during infancy and risk of ASD (supplemental tables 3 and 

4).

Cord leptin and ASD risk

A total of 655 children had data on cord leptin levels, of which 39 were later diagnosed with 

ASD (Supplemental Figure 1). Two of these 39 ASD subjects had co-occurring ID. Prenatal 

and perinatal determinants of cord leptin are presented in Supplemental Table 1. The mean 

cord leptin levels were 38.23 pg/mL in children with neurotypical development and 27.37 

pg/mL in children with ASD (Table 1). As observed in other cohorts (Mantzoros et al., 

2009), higher cord blood leptin levels correlated with increase in gestational age. In the 

unadjusted model, cord leptin levels (stratified into quartiles) were not associated with the 

risk of ASD (Table 3). Similarly, no associations were observed after adjusting for covariates 

in models 1 and 2. The relationship between cord leptin and ASD was not altered, 

irrespective of whether cord leptin was assessed as a continuous or a categorical variable 

(Supplement table 5).

Early childhood leptin and ASD risk

A total of 652 children were included in the analyses, of which 36 were later diagnosed with 

ASD (Supplemental Figure 1). Four of these 36 ASD subjects had co-occurring ID. Figure 1 

provides a distribution of early childhood leptin levels among neurotypical children and 

those with ASD, showing a shift in distribution towards right for children with ASD. 

Supplemental figure 2 provides a distribution of when early childhood leptin levels were 
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measured. When compared to children that had the lowest leptin levels (quartile 1), children 

with highest leptin levels (quartile 4) had an increased ASD risk (OR: 5.41; 95% CI: 1.53, 

19.05) (Table 3). The association remained significant after adjusting for covariates (model 

3) including child’s sex, race, child’s age when leptin was measured, follow-up time and 

breastfeeding status (aOR: 7.87; 95% CI: 2.06, 30.04). Further adjusting for gestational age 

(model 4), cord leptin levels (model 5) or prenatal determinants such as maternal BMI, 

diabetes status and age at the time of delivery (model 6) did not attenuate the association 

between early childhood leptin and ASD. Analysis using early childhood plasma leptin 

levels as a continuous variable or categorical variable yielded consistent findings 

(Supplement table 5). Sensitivity analyses using stringent controls or cases showed similar 

trends in association between cord, early childhood leptin and ASD risk (Supplemental 

tables 6 and 7). Results from alternative analyses using Cox proportional hazard regression 

for birth weight for gestational age, weight gain during infancy, cord and early childhood 

leptin, and ASD risk (supplemental tables 8 and 9) were consistent in direction and 

statistical significance.

Early childhood leptin mediating the relationship between weight gain during infancy and 
ASD risk

A total 476 children had both weight gain during infancy data and early childhood leptin 

measurements (Table 4). In the unadjusted model that assessed the role of early childhood 

leptin as a mediator of the relationship between weight gain during infancy and risk of ASD, 

the total effect of extremely rapid weight gain was statistically significant (OR: 2.80; 95% 

CI: 1.07, 7.28). Both direct (OR: 2.22; 95% CI: 0.84, 5.87) and indirect effects (OR: 1.26; 

95% CI: 0.95, 1.67) were non-significant. In the adjusted model, the total effect attenuated 

(aOR: 1.80; 95% CI: 0.55, 5.90). However, the indirect effect became significant (aOR: 

1.56; 95% CI: 1.01, 2.42), suggesting an indirect-only mediation (Zhao, Lynch, & Chen, 

2010) and that the early childhood leptin potentially mediates 76.03% of the total 

relationship between extreme rapid weight gain and ASD, after adjusting for confounders. 

Other weight gain categories such as slow and rapid weight gain were not significantly 

associated with ASD and adjusting for early childhood leptin levels did not alter their 

association with ASD.

Discussion

In this prospective cohort study, our results showed that extremely rapid weight gain during 

infancy and elevated early childhood leptin levels measured prior to ASD diagnosis were 

associated with an increased ASD risk in childhood. Our findings are in line with several 

studies that have reported that rapid weight gain during infancy is a potential indicator of 

early autism risk (Chawarska et al., 2011; Dissanayake et al., 2006; Sacco et al., 2007; Suren 

et al., 2013; Torrey et al., 2004). We extend the previous findings and suggest that the 

association between rapid weight gain and ASD is potentially mediated, at least indirectly, 

by early childhood plasma leptin. To our knowledge, this is the first study to assess the 

interrelationships between birth weight, infancy weight gain and leptin in the context of 

ASD in a prospective birth cohort.
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Conceptual Framework of ASD risk factors from prenatal to early childhood:

Epidemiological studies and animal models have consistently showed that an adverse in-

utero environment may lead to altered programming of tissue structure and function, 

predisposing to later behavioral problems, learning difficulties, abnormal or delayed 

cognitive development and other conditions (Van den Bergh, 2011; Vickers, 2007). Sub-

optimal prenatal environmental influences could induce permanent fetal adaptations that are 

beneficial for short-term survival, but increases the vulnerability to later pathogenic 

environmental stimuli (Krechowec, Vickers, Gertler, & Breier, 2006; Vickers & Sloboda, 

2012). As illustrated in Figure 2, based on the findings by us and others, postnatal influences 

such as extremely rapid weight gain and elevated leptin levels may not be isolated stand-

alone occurrences during the first year of life; but could rather be a compensatory event to an 

adverse prenatal condition or deviation in biological mechanism (Courchesne et al., 2003; 

Karaolis-Danckert et al., 2008; G. Wang, Johnson, et al., 2016). In support of this argument, 

we observed that children that were exposed to maternal diabetes or overweight/obesity 

during pregnancy and those that were SGA or early preterm, were more likely to have 

extremely rapid weight gain during infancy. Further, in line with the existing evidence (Ong, 

Ahmed, Emmett, Preece, & Dunger, 2000), low concentrations of cord blood leptin were 

associated with rapid weight gain during the first year of life suggesting that cord leptin 

could serve as a signal for catch-up growth. Taken together, it can be inferred that the 

incongruent prenatal (e.g. SGA) and postnatal milieu (rapid catch up growth) associated 

with endocrinologic alterations (early childhood leptin levels) may have a negative impact 

on the brain architecture and circuits, which could predispose an individual to adverse 

neurobehavioral outcomes (Pylipow et al., 2009; Van den Bergh, 2011). Given this context, 

we further elaborate our findings and discuss how they compare to the previous studies and 

provide possible explanations.

Many studies, in addition to ours, reported an inconsistent association between fetal growth 

and ASD (Glasson et al., 2004; Langridge et al., 2013; Larsson et al., 2005; Schendel & 

Bhasin, 2008). Langridge et al. demonstrated that the percentage of optimal birth weight, a 

measure of fetal growth (Blair, Liu, de Klerk, & Lawrence, 2005), was not associated with 

ASD, especially among those with intellectual disability (Langridge et al., 2013). Glasson et 

al. also showed no association between SGA and ASD (Glasson et al., 2004), while 

Schnedel et al., noted that the relationship was observed only in girls and not in boys 

(Schendel & Bhasin, 2008). Similarly, Larrson et al. observed that the association between 

fetal growth and ASD attenuated after adjusting for other covariates (Larsson et al., 2005). 

In contrast, a few studies showed that SGA children had elevated risk of ASD (Lampi et al., 

2012; Maimburg & Vaeth, 2006; Moore et al., 2012). A possible explanation for the lack of 

association between fetal growth and ASD is likely due to the heterogeneity in the SGA 

group related to the timing of onset. Fetal growth restriction may have different clinical 

manifestation and sequelae depending on whether the onset of growth restriction is early or 

late during gestation (Dall’Asta, Brunelli, Prefumo, Frusca, & Lees, 2017; Savchev et al., 

2014). In our study, considering SGA as a homogenous group could have possibly blurred 

the association between fetal growth and ASD. We do not have data in the current study to 

tease apart this association, but can be explored further in future studies. Other potential 

reasons including methodological differences, lack of control for confounding factors, and 
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sample size variations could explain some of the inconsistencies (Lampi et al., 2012; 

Schendel & Bhasin, 2008).

Consistent with our findings, several studies have shown that children who are later 

diagnosed with ASD have accelerated weight gain during infancy and early childhood 

(Dissanayake et al., 2006; Mraz, Green, Dumont-Mathieu, Makin, & Fein, 2007; Sacco et 

al., 2007; Torrey et al., 2004). This accelerated weight gain may not be a distinct 

morphological feature, but is suggestive of a broader autistic phenotype characterized by 

rapid increase in head circumference, height and weight (Dissanayake et al., 2006; 

Fukumoto et al., 2008; Mraz et al., 2007; Sacco, Gabriele, & Persico, 2015; Sacco et al., 

2007; van Daalen, Swinkels, Dietz, van Engeland, & Buitelaar, 2007). In support of this 

hypothesis, studies have shown that head circumference is well correlated with weight and 

height in ASD children(Dementieva et al., 2005; Mraz et al., 2007; Sacco et al., 2007). 

Rapid increase in head circumference in children with ASD is one of the most consistent 

findings that many studies have demonstrated (Chawarska et al., 2011; Courchesne et al., 

2003; Dementieva et al., 2005; Dissanayake et al., 2006; Fukumoto et al., 2008; Sacco et al., 

2015; Sacco et al., 2007). Although we did not analyze head circumferences due to 

incomplete data, weight has been shown to be the strongest predictor of head circumference 

during most of infancy (Mraz et al., 2007). Taken together, our findings support the existing 

evidence that extremely rapid weight gain during infancy is associated with ASD, possibly 

indicative of an overall growth dysfunction. There are many speculations about why rapid 

weight gain is observed in children with ASD. Studies have posited that an abnormality in 

factors (such as metabolism, growth or neurotrophic factors and hormone levels) may 

predispose an individual to overall accelerated growth as well as ASD (Dissanayake et al., 

2006; Fukumoto et al., 2008; Mraz et al., 2007; Torrey et al., 2004).

Our study showed that early childhood leptin levels were altered in children with ASD. 

While prior studies assessing this relationship were mainly cross-sectional, our prospective 

study for the first time showed that elevated leptin levels are observed even prior to ASD 

diagnosis. Considering the role of leptin in neurocognition, elevated leptin and associated 

leptin resistance during the critical periods of postnatal brain development may have 

permanent adverse implications (Glavas et al., 2010; Valleau & Sullivan, 2014). While the 

mechanism behind leptin resistance is still being understood, it is believed to involve 

reduced transport of leptin to the brain, poor negative feedback mechanism, endoplasmic 

reticulum stress and an intracellular leptin signaling system that is saturable (Boeke et al., 

2013; Glavas et al., 2010; Mantzoros et al., 2011).

Similar to other studies (Dulloo, 2008; Ong et al., 1999), we noted that low cord leptin levels 

closely reflected birth weight and also predicted the greatest weight gain during infancy. 

However, cord blood leptin was not associated with ASD. This finding may be intriguing 

especially in the context that early childhood leptin is associated with ASD; however, our 

results are consistent with the existing evidence that cord and early childhood leptin may 

have different roles to play (Boeke et al., 2013; Zhang et al., 2017).

Cord blood leptin is derived primarily from the fetal tissue and is reflective of fetal adiposity 

(Catov et al., 2007; Hauguel-de Mouzon, Lepercq, & Catalano, 2006; Mellati et al., 2010; 
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Tessier, Ferraro, & Gruslin, 2013). While leptin is detectable in the fetus at around 18 

weeks, rapid increase in leptin levels are observed after 34 weeks, in tandem with increase in 

fetal adipose tissues (Grisaru-Granovsky, Samueloff, & Elstein, 2008; Mellati et al., 2010). 

Perinatal and neonatal periods are considered to be a window of maximum leptin sensitivity 

with normal neonates having two to three times higher leptin when compared to adults 

(Bouret, 2012, 2013; Paz-Filho et al., 2008; Valleau & Sullivan, 2014). Neonatal leptin has a 

different physiological response and promotes hyperphagia and swallowing activity in 

newborn and may not inhibit growth, food intake or energy expenditure (Alexe, Syridou, & 

Petridou, 2006; Bouret & Simerly, 2004; El-Haddad, Desai, Gayle, & Ross, 2004; Vickers & 

Sloboda, 2012). However, leptin sensitivity declines with age (Boeke et al., 2013; Levin, 

Dunn-Meynell, & Banks, 2004).

After closure of the critical window, higher leptin does not protect against adiposity and 

some children even develop leptin tolerance (Boeke et al., 2013). Thus, leptin, once 

positively associated with birth weight and less adiposity during early childhood (Boeke et 

al., 2013; Karakosta et al., 2011; Mantzoros et al., 2009) no longer possesses the same effect 

– demonstrating that the effect of leptin in perinatal period is distinct from that of later life 

(Cottrell et al., 2009). One study that longitudinally measured cord and early childhood 

leptin showed that while high cord blood leptin was initially shown to be protective against 

adiposity, it was subsequently associated with weight gain and adiposity at age 7 (Boeke et 

al., 2013). These age-specific effects of leptin have been linked to developmental changes in 

leptin receptor expression – which are widely expressed in the central nervous system 

starting from mid-gestation (Cottrell, Mercer, & Ozanne, 2010). While these findings are 

related to adiposity, it is plausible to believe that leptin’s role may be similar with 

neurocognitive outcomes.

Leptin as a mediator:

After establishing independent associations between ASD and 1) extremely rapid weight 

gain during infancy, and 2) early childhood leptin, we showed that children with extremely 

rapid weight gain during infancy had elevated leptin levels. In support of this, animal models 

that have shown that rapid catch-up growth in early childhood is associated with leptin 

resistance and this occurs independent of postnatal diet induced obesity (Coupe, Grit, Hulin, 

Randuineau, & Parnet, 2012; Krechowec et al., 2006; Yura et al., 2005). It has been 

hypothesized that proinflammatory cytokines may mediate the relationship between rapid 

postnatal growth and ASD (Pylipow et al., 2009). As a proof of concept, our study was able 

to demonstrate the mediating effect of leptin in the association between extremely rapid 

weight gain and ASD. However, in our dataset, cord leptin did not possess any mediating 

effects unlike early childhood leptin.

Mechanism of leptin in ASD:

Inflammation is a possible mechanism through which leptin may impact the 

psychopathology of ASD. Leptin, a pro-inflammatory cytokine may play a role in the 

pathophysiology of conditions such as schizophrenia (Haupt et al., 2005; Stubbs, Wang, 

Vancampfort, & Miller, 2016) and ASD (Ashwood et al., 2011; Goines & Ashwood, 2013). 

A variety of independent studies have linked cytokine dysregulation to ASD (Goines & 

Raghavan et al. Page 11

Autism Res. Author manuscript; available in PMC 2019 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ashwood, 2013). Cytokines act as immune mediators and their imbalance during 

development and throughout life can adversely impact neural activity and mediate 

behavioral aspect of the disorder (Goines & Ashwood, 2013). Inflammatory cytokines are 

implicated in higher neurological functions such as memory and cognition, in addition to 

being involved in brain development, synaptic functioning including processes of 

differentiation, migration, proliferation and impairments in behavior (Tonhajzerova et al., 

2015). Thus, abnormal inflammatory activity and imbalance of cytokines during 

development can adversely impact neural activity and could contribute to behavioral and 

neurological dysfunction in ASD (Goines & Ashwood, 2013; Tonhajzerova et al., 2015).

Altered leptin levels can also impact brain structure and function. For example, leptin levels 

are increased at the site of inflammation in the post-mortem brain tissue (Ashwood et al., 

2008). Leptin deficient and leptin resistant state is associated with lower brain weight, 

protein content, reduction in brain myelin, neuronal soma size and several synaptic proteins. 

Reduced brain weight is observed in animals that lacked leptin signaling (Bouret & Simerly, 

2004). A study conducted on autopsy tissues showed that there is a marked increase in leptin 

levels in anterior cingulate gyrus among those that had ASD (Vargas, Nascimbene, 

Krishnan, Zimmerman, & Pardo, 2005). In a small subset of patients, genetic correlation was 

observed between ASD and leptin coding (Bochukova et al., 2010). Leptin is involved in 

long-term potentiation and long-term depression (Bliss, Collingridge, & Morris, 2014) and 

dysregulation of this function is implicated in ASD (Bliss et al., 2014). Further, leptin is also 

known to suppress serotonin synthesis, which is reported in ASD, possibly suggesting 

another biological pathway through which leptin can be involved in ASD (Valleau & 

Sullivan, 2014).

In our earlier report in the BBC, we showed that maternal obesity and diabetes was 

associated with increased risk of ASD in offspring (M. Li et al., 2016). Our results, along 

with consistent findings across diverse populations (Y. M. Li et al., 2016; Nahum Sacks et 

al., 2016; Xiang et al., 2015; G. Xu, Jing, Bowers, Liu, & Bao, 2014) raised the possibility 

of early metabolic dysfunction in the development of ASD. Studies have posited that early 

life manipulations of leptin in animal models alter susceptibility to subsequent obesity and 

metabolic disorders (Dulloo, 2008; Vickers & Sloboda, 2012). Periods of hypo- or 

hyperleptinemia may induce metabolic adaptations, which could be the basis of 

developmental programming (Vickers & Sloboda, 2012). In this context, the role of leptin as 

a potential mediator of the developmental programming of ASD (Cottrell et al., 2009) may 

be a novel proposition for ASD, but requires further investigation. Additional research is 

warranted on the role of other hormones with leptin opposing action, so as to better 

understand the metabolic milieu involved in ASD. Similarly, future studies should also 

examine variants in leptin and leptin receptors to better understand the biological pathways 

of leptin in ASD.

Limitations and Strengths

Although our study stemmed from a rigorously designed prospective birth cohort, the 

findings may be tempered due to some limitations. First, case and neurotypical development 

classification of children was based on EMR data and it is possible that there may be 
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outcome misclassification. However, this misclassification may not be differential given the 

prospective study design. Second, the relatively small number of cases in our prospective 

cohort design could have resulted in wide confidence intervals and imprecise estimates. 

Third, although our models accounted for breastfeeding vs. formula feeding, more research 

is needed to examine the role of perinatal nutrition and its influences on weight gain, early 

childhood leptin and ASD. Fourth, we could not directly assess fat mass at the time of leptin 

measurement and this could have resulted in some residual confounding. Fifth, plasma leptin 

levels follow a circadian rhythm (Mantzoros et al., 2011) and may be impacted by fasting 

status; although, the timing of plasma sample collection for leptin measurements was 

random, the distribution was comparable between ASD and neurotypical groups. Finally, our 

study population consisted mainly of urban low-income minority populations that were also 

at high risk for conditions such as SGA and preterm births and thus, the results may not be 

generalizable to the U.S. population.

Despite these limitations, our study has a number of strengths. This is one of the first 

longitudinal studies that addressed leptin levels at birth and in early childhood in the context 

of ASD. Infant weight gain was assessed as part of well-child visit during first year of life, 

when child’s ASD status was not known. By using a sample of children that have weight 

gain data as well as data on cord and early childhood leptin, we were uniquely poised to 

examine the inter-relationship of these variables in the development of ASD.

Conclusion

In the BBC, we showed that extremely rapid weight gain during infancy and elevated leptin 

levels during early childhood were independently associated with greater ASD risk and early 

childhood plasma leptin levels at least indirectly mediated the relationship between early 

childhood weight gain and ASD. Furthermore, the prenatal and postnatal risk factors for 

ASD are interrelated and act along a continuum from prenatal to postnatal periods. An 

important implication of these findings is that in addition to prenatal factors, pathogenic 

processes underlying ASD likely continue during the postnatal period, including infancy and 

possibly extending to early childhood (Sacco et al., 2007). Even though accelerated weight 

gain in early life, combined with elevated plasma leptin may not be a unique biomarker for 

ASD, our preliminary findings provide a basis from which to further explore the relationship 

between prenatal events, infancy rapid weight gain, leptin and ASD under a life course 

framework (Courchesne et al., 2003). Additional research is needed to understand if a 

combination of prenatal and early childhood anthropometric, biological, genetic variables 

and behavioral signs together can accurately predict ASD sooner. If proven to be useful by 

future studies, this will provide an opportunity to start intervention earlier thereby 

potentially halting or mitigating the progression towards ASD (Allely, Gillberg, & Wilson, 

2014; Courchesne et al., 2003; Dissanayake et al., 2006).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Distribution of cord and early childhood plasma leptin levels (log transformed) in children 

categorized by ASD status
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Figure 2: 
Illustration of Prenatal, perinatal and early childhood determinants of ASD in a life course 

framework
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Table 1:

Maternal and child characteristics by child’s status (neurotypical vs. ASD) in the BBC

Neurotypical (n=769) ASD (n=53) p value

Characteristics

Mothers

Age at birth (yrs), mean (SD) 28.21 (6.51) 30.35 (6.28) 0.02

Parity (%) 0.92

 0 331 (41.74) 21 (39.62)

 1 or more 447 (58.13) 32 (60.38)

 Missing 1 (0.13) 0 (0.0)

Mother’s education (%) 0.43

 High School or less 498 (64.76) 31 (58.49)

 Some college or more 266 (34.59) 21 (39.62)

 Missing 5 (0.65) 1 (1.89)

Maternal BMI (%) 0.16

 Underweight (<18.5) + Normal Weight (≥18.5-<25) 371 (48.24) 19 (35.85)

 Overweight (25–29.9) 235 (30.56) 18 (33.96)

 Obesity (≥30) 163 (21.20) 16 (30.19)

Diabetes mellitus (%) 0.19

 No 688 (89.47) 45 (84.91)

 Gestational 53 (6.89) 3 (5.66)

 Pre-gestational diabetes 27 (3.51) 5 (9.43)

 Missing 1 (0.13) 0 (0.0)

Smoking during & 3 months prior to pregnancy (%) 0.17

 No 659 (85.70) 41 (77.36)

 Yes 105 (13.65) 12 (22.64)

 Missing 5 (0.65) 0 (0.00)

Offspring

Sex (%) <0.001

 Male 327 (42.52) 39 (73.58)

 Female 442 (57.48) 14 (26.42)

Race-ethnicity (%) 0.91

 Black 434 (56.44) 32 (60.38)

 White 46 (5.98) 4 (7.55)

 Hispanic 185 (24.06) 11 (20.75)

 Other 99 (12.87) 6 (11.32)

 Missing 5 (0.65) 0 (0.0)

Gestational age (%) 0.007

 Term 579 (75.29) 32 (60.38)

 Late preterm (≥34 - <37 weeks) 126 (16.38) 10 (18.87)
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Neurotypical (n=769) ASD (n=53) p value

 Early preterm (<34 weeks) 64 (8.32) 11 (20.75)

Birthweight (g) 3009.07 (714.09) 2782.26 (886.18) 0.03

Year of birth (%) 0.70

 1998–2006 400 (52.02) 29 (54.72)

 2007–2013 369 (46.98) 24 (45.28)

Birth weight for gestational age (%)
a,b

0.73

 Appropriate for gestational age (AGA) 442 (80.07) 36 (76.60)

 Small for gestational age (SGA) 59 (10.69) 5 (10.64)

 Large for gestational age (LGA) 51 (9.24) 6 (12.77)

Weight gain during infancy (%)
c, d

0.06

 On target 178 (33.78) 9 (19.57)

 Slow 65 (12.33) 5 (10.87)

 Rapid weight gain 89 (16.89) 6 (13.04)

 Extremely rapid weight gain 195 (37.00) 26 (56.52)

Cord blood leptin (SD)
e

38.23 (34.01) 27.37 (19.94) 0.05

Early childhood leptin (SD)
f

4.22 (5.60) 5.88 (5.68) 0.08

Mode of feeding (%) 0.62

 Formula 177 (23.02) 10 (18.87)

 Both 537 (69.83) 37 (69.81)

 Breastfeeding 49 (6.37) 5 (9.43)

 Missing 6 (0.78) 1 (1.89)

a
Fetal growth defined as AGA (≥10th – 90th percentile); SGA (<10th percentile), and LGA (>90th percentile)

b
n =599 (Neurotypical n=552; ASD n=47)

c
Weight gain z-scores during the first year of life were defined as the change in weight-for-age z-scores from birth until the target time-point and 

was categorized into the following groups: slow (weight gain z-score <−0.67), on track (−0.67 to 0.67), rapid (>0.67 to 1.28), and extremely rapid 
(>1.28)

d
n=573 (Neurotypical n=527; ASD n=46)

e
n=655 (Neurotypical n=616; ASD n=39)

f
n=652 (Neurotypical n=616; ASD n=36)
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Table 2:

Association between in-utero growth, weight gain during infancy and ASD risk in children in the BBC

Total n ASD n OR 95% CI p value

Birth weight for gestational age
a

Unadjusted

 AGA 478 36 Ref

 SGA 64 5 1.04 0.39, 2.76 0.94

 LGA 57 6 1.44 0.58, 3.59 0.43

Model 1

 AGA 478 36 Ref

 SGA 64 5 0.81 0.28, 2.34 0.70

 LGA 57 6 1.23 0.44, 3.47 0.69

Model 2

 AGA 478 36 Ref

 SGA 64 5 0.86 0.29, 2.54 0.79

 LGA 57 6 1.37 0.48, 3.91 0.55

Weight gain during infancy
b

Unadjusted

 On target 187 9 Ref

 Slow 70 5 1.52 0.49, 4.71 0.47

 Rapid weight gain 95 6 1.33 0.46, 3.86 0.60

 Extremely rapid weight gain 221 26 2.64 1.20, 5.78 0.02

Model 3

 On target 187 9 Ref

 Slow 70 5 1.71 0.53, 5.52 0.37

 Rapid weight gain 95 6 1.39 0.43, 4.44 0.58

 Extremely rapid weight gain 221 26 3.11 1.37, 7.07 0.007

Model 4

 On target 187 9 Ref

 Slow 70 5 1.55 0.46, 5.24 0.48

 Rapid weight gain 95 6 1.50 0.46, 4.88 0.50

 Extremely rapid weight gain 221 26 3.33 1.44, 7.72 0.005

Model 5

 On target 187 9 Ref

 Slow 70 5 1.74 0.54, 5.66 0.36

 Rapid weight gain 95 6 1.32 0.41, 4.24 0.64

 Extremely rapid weight gain 221 26 2.08 0.84, 5.13 0.11

Model 6

 On target 187 9 Ref
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Total n ASD n OR 95% CI p value

 Slow 70 5 1.40 0.40, 4.86 0.59

 Over growth 95 6 1.22 0.36, 4.14 0.75

 Extremely rapid weight gain 221 26 3.33 1.40, 7.89 0.006

a
In-utero growth defined as Appropriate for gestational age (≥10th – 90th percentile); Small for gestational age (<10th percentile), and Large for 

gestational age (>90th percentile)

b
Weight gain during infancy defined as the change in weight-for-age z-scores from birth until the target time-point and was categorized into the 

following groups: slow (weight gain z-score <−0.67), on track (−0.67 to 0.67), rapid (>0.67 to 1.28), and extremely rapid (>1.28)

Model 1: Adjusted for maternal age at delivery, parity, smoking, education, maternal BMI, maternal diabetes status, race, child’s sex and follow-up 
time

Model 2: Adjusted for Model 1 + gestational age

Model 3: Adjusted for child’s sex, race, follow-up time and breastfeeding status

Model 4: Adjusted for Model 3 + birth weight for gestational age

Model 5: Adjusted for Model 3 + gestational age

Model 6: Adjusted for Model 3 + maternal age, maternal diabetes status, maternal BMI
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Table 3:

Association between cord, early childhood plasma leptin levels and ASD risk in children in the BBC

Total n ASD n OR 95% CI p value

Cord leptin

Unadjusted

 Q1 164 10 Ref

 Q2 163 11 1.11 0.46, 2.70 0.81

 Q3 164 11 1.11 0.46, 2.68 0.82

 Q4 164 7 0.69 0.25, 1.85 0.46

Model 1

 Q1 164 10 Ref

 Q2 163 11 1.44 0.53, 3.87 0.48

 Q3 164 11 1.76 0.66, 4.69 0.26

 Q4 164 7 0.96 0.31, 2.94 0.94

Model 2

 Q1 164 10 Ref

 Q2 163 11 2.01 0.68, 5.92 0.21

 Q3 164 11 2.74 0.90, 8.31 0.08

 Q4 164 7 1.40 0.42, 4.66 0.58

Early childhood leptin Unadjusted

Unadjusted

 Q1 163 3 Ref

 Q2 163 8 2.75 0.72, 10.57 0.14

 Q3 163 10 3.49 0.94, 12.91 0.06

 Q4 163 15 5.41 1.53, 19.05 0.009

Model 3

 Q1 163 3 Ref

 Q2 163 8 3.32 0.83, 13.37 0.09

 Q3 163 10 4.61 1.17, 18.22 0.03

 Q4 163 15 7.87 2.06, 30.04 0.003

Model 4

 Q1 163 3 Ref

 Q2 163 8 3.30 0.81, 13.41 0.10

 Q3 163 10 4.93 1.23, 19.77 0.02

 Q4 163 15 7.89 2.05, 30.44 0.003

Model 5

 Q1 163 3 Ref

 Q2 163 8 3.59 0.68, 18.96 0.13

 Q3 163 10 4.18 0.79, 22.19 0.09

 Q4 163 15 8.41 1.69, 41.81 0.009
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Total n ASD n OR 95% CI p value

Cord leptin

Model 6

 Q1 163 3 Ref

 Q2 163 8 3.43 0.84, 13.94 0.09

 Q3 163 10 5.09 1.28, 20.21 0.02

 Q4 163 15 7.46 1.93, 28.82 0.004

Model 1: Adjusted for maternal characteristics such as maternal age at delivery, parity, smoking, maternal BMI, maternal diabetes status, education, 
race, child’s sex and follow-up time

Model 2: Adjusted for Model 1 + gestational age

Model 3: Adjusted for child’s sex, race, age of leptin measurement, follow-up time and breastfeeding status

Model 4: Adjusted for Model 3 + gestational age

Model 5: Adjusted for Model 3 + cord leptin levels

Model 6: Adjusted for Model 3 + maternal age, maternal BMI, maternal diabetes status
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Table 4:

Mediation analysis – Leptin as a mediator in the relationship between weight gain during first year of life and 

ASD risk

Total Effect, OR (95% CI) Direct Effect, OR (95% 
CI)

Indirect effect, OR (95% 
CI)

Percentage 
mediated by early 
childhood leptin 

(%)

Unadjusted (Total N=476; ASD=32)

On track Ref

Slow 1.92 (0.52, 7.11) 1.93 (0.52, 7.16) 0.99 (0.81, 1.22)

Rapid weight gain 1.39 (0.38, 5.11) 1.17 (0.32, 4.32) 1.19 (0.93, 1.52)

Extreme rapid weight gain 2.80 (1.08, 7.28) 2.22 (0.84, 5.87) 1.26 (0.95, 1.67)

Model 1: Adjusted

On track Ref

Slow 1.80 (0.44, 7.47) 1.81 (0.44, 7.49) 1.00 (0.72, 1.39)

Rapid weight gain 1.06 (0.23, 4.85) 0.82 (0.18, 3.78) 1.29 (0.89, 1.87)

Extreme rapid weight gain 1.80 (0.55, 5.90) 1.15 (0.34, 3.88) 1.56 (1.01, 2.42) 76.03

Model 1: Adjusted for child’s sex, race, breast-feeding category, age of leptin measurement, follow-up time and gestational age

A causal inference framework was used to estimate ORs and 95% CI for total, direct and indirect effects. A logistic regression model was fit using 
categorical exposure (weight gain during infancy) and continuous mediator (leptin).
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