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Percolation transition is widely observed in networks ranging
from biology to engineering. While much attention has been paid
to network topologies, studies rarely focus on critical percolation
phenomena driven by network dynamics. Using extensive real
data, we study the critical percolation properties in city traffic
dynamics. Our results suggest that two modes of different critical
percolation behaviors are switching in the same network topol-
ogy under different traffic dynamics. One mode of city traffic
(during nonrush hours or days off) has similar critical percola-
tion characteristics as small world networks, while the other
mode (during rush hours on working days) tends to behave as
a 2D lattice. This switching behavior can be understood by the
fact that the high-speed urban roads during nonrush hours or
days off (that are congested during rush hours) represent effec-
tive long-range connections, like in small world networks. Our
results might be useful for understanding and improving traffic
resilience.
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Critical phenomena of complex networks ranging from biology
to engineering have attracted much attention (1). Studies on

percolation (2, 3), epidemic spreading (4, 5), the Ising model
(6), etc. have uncovered the state transition process of different
complex systems. As a typical dynamic complex system, traffic
is frequently observed to have transitions between free flow and
congestion states (7–10), where the critical transition point marks
the possible balance between traffic supply and demand (11).
With the rising traffic demand during urban agglomeration, the
inescapable congestion will cost not only huge economic losses
but also, generate pollutions and even psychological stress from
road rage. Accordingly, many models have been applied to ana-
lyze the dynamic properties of traffic systems at macro (12–15)
or micro (16–18) levels.

Different transition processes can be characterized by a
unified approach if they have the same critical exponents, a
characterization called “universality class” (19, 20). These crit-
ical exponents determine the system behavior near the critical
point of transition, which may help us to understand the sys-
tem robustness and design a resilient system (21–23). For a
given instance, urban traffic is organized as a network of local
flows, which will become disintegrated under increasing per-
turbations. The system behavior near the critical point of this
disintegration process determines the global operating efficiency
of urban traffic and also, the possible mitigation strategies
above the transition point. This urges us to explore the tran-
sition type of urban traffic, especially the unique way of its
disintegration.

Instead of a 1D highway, urban traffic is the result of 2D spa-
tial organization of functional roads, which can be described as
a percolation process. The giant component of traffic percola-
tion spanning over the whole-city traffic network will disintegrate
into small clusters when only considering functional roads above
a critical velocity threshold. Since a percolation transition can be
characterized by critical exponents, a fundamental question can

be raised: whether the percolation disintegration of city traffic
during different traffic periods, such as rush hours and nonrush
hours, belongs to the same or different universality classes. While
previous studies have focused on effects of static network topol-
ogy on critical exponents, the critical percolation behaviors of
dynamic traffic network, to the best of our knowledge, have not
been studied. The answer to the above question can help us to
better understand the relation between formation and dissipa-
tion of traffic congestion. As we show here, our results indicate
that the two modes are found to belong to different universality
classes characterized by different critical exponents.

Results
The traffic network is considered reliable only when it can con-
vey flows to their destination within a reasonable time. In this
sense, congested roads in the network become dysfunctional,
and a dynamic network composed of only noncongested roads
is available for the driver. The structure of this dynamic net-
work is changing with time, which determines the drivers’ travel
time and the whole-network performance. From a starting node,
the reachable area (or a distance) for a driver is always constant
within a given time for a static network, while this is not the case
for a traffic dynamic network (24). Our dataset covers the road
network of the Beijing central area, which contains more than
50,000 roads as network links and around 27,000 intersections
as network nodes. The velocity dataset covers real-time velocity
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With the same static road network, it is essentially unknown
for urban traffic if traffic flows have the same spatial orga-
nization properties for different hours. Based on real-time
high-resolution GPS data on the city scale, our results indicate
two distinct modes characterized by different percolation crit-
ical exponents. The mode during rush hours on working days
behaves like a 2D lattice with mainly short-range links, while
the mode for other instants behaves like a small world (i.e.,
a lattice with long-range links). The difference between these
two modes is explained here by the free flow on urban high-
ways during nonrush hours, which is like adding long-range
links in a 2D lattice. In contrast, during rush hours, such links
almost disappear.
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records of road segments in October 2015, including a represen-
tative holiday period in China, the National Day (from October
1 to October 7). Velocity (kilometers per hour) is recorded by
GPS devices in floating cars (e.g., taxies and private cars), with
resolution of 1 min. We demonstrate in Fig. 1 the reachable area
as a function of travel time starting from a typical node near the
city center. As time increases, the driver can visit larger areas
until reaching the whole network. Between workday and holi-
day, the reachable area changes significantly for a given travel
time. For example, in a holiday shown in Fig. 1A, the driver can
reach within 15 min an average distance of around 11 km, and
this reachable area will be extended to over 600 km2 (a radius
of over 25 km) in 30 min. However, for rush hours during a
working day, heavy traffic slows down the velocities and signif-
icantly reduces the possible area that one can visit in the same
duration (Fig. 1B). One can see from Fig. 1C that the reach-
able area fraction (indicated by the number of reachable nodes
divided by the total number of nodes in the road network) will
undergo a major decrease at a rush hour instance on a working
day compared with the same time on a holiday. Similar results
are shown in Fig. 1D; for the dynamic traffic network during the
holiday, drivers can visit a much farther distance in the func-
tional network with higher velocities and less traffic than on
workdays.

Evolution of the dynamic traffic network influences not only
the travel efficiency but also, the robustness of this functional
network. For holiday, this dynamic network has few link losses
(which are below the typical velocity of about 40 km/h) and is
close to the original (structural) road network due to the free
traffic (Fig. 2A). For rush hours during workdays, many urban

highways and other roads become congested due to intensified
demand. The large amount of congestion disintegrates the whole
dynamic traffic network into isolated functional clusters (con-
nected roads with high speed) (Fig. 2B). As shown in Fig. 2C,
the number of isolated functional clusters is increasing during
rush hours on both workdays and days off; however, the network
is significantly more fragmented on workdays during rush hours,
with a much larger number of clusters.

To further investigate the differences in the dynamic organiza-
tion of the traffic network in the two phases (i.e., rush hours and
nonrush hours), we perform a percolation analysis (by calculat-
ing the size of the giant component) by deleting the roads with
velocity (relative to the maximum velocity) (SI Appendix) below
q from the original road network. In this way, the giant percola-
tion cluster decreases as we increase q. The giant component in
Fig. 2D shows a phase transition with increasing q and becomes
fragmented at a critical point (SI Appendix, Fig. S1 has more
examples). Note that the giant component is decreasing lower
and much faster at a morning rush hour instance (8:00 AM)
during a workday than during a holiday. This has been further
supported with good statistics (SI Appendix, Fig. S2) that the
giant component during days off and workdays has different
distribution at rush hours, raising the possibility of two perco-
lation modes for traffic.

Next, we calculate the size distribution of finite clusters of free
flows near the critical threshold for the different periods. Fig. 3 A
and B demonstrates on the workdays the variation of size distri-
bution of finite clusters in the percolation during rush hours and
nonrush hours, respectively. At criticality, it is suggested that the
size distribution of finite clusters follows a power law (2):

A B

C D

Fig. 1. Reachable area in the dynamic traffic network from a typical site. Starting from a given site (e.g., Zhichun Road here) in Beijing (marked as a blue
circle), the reachable area that one can access within a certain time (i.e., 15 min, 30 min, etc.) at a morning instance on (A) a holiday (October 1) and (B)
a workday (October 15). (C) The size of the 30-min reachable area fraction (indicated by the number of reachable nodes divided by the total number of
nodes in the road network) for a traveler from a given site in Beijing on the above holiday (squares) and workday (triangles). (D) Average path length at the
boundary of the 30-min reachable area on the above holiday (squares) and workday (triangles). The results of (C and D) are averaged by 100 realizations
(100 randomly chosen starting sites).
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Fig. 2. Robustness of the traffic dynamic network. (A and B) Breakdown of traffic clusters under a given value of removed fraction (q = 0.55) at the same
morning instance during different days. A shows a holiday, while B shows a working day. (C) The number of functional traffic clusters (with high speed) as
a function of time. The result is averaged over 12 d off and 17 working days. (D) Percolation process [i.e., the giant component of city traffic at a rush hour
time on the above holiday (squares) and working day (circles)].

ns ∼ s−τ . [1]

Here, s is the cluster size, ns is the ratio between the number
of s-sized clusters and the total number of clusters, and τ is the

corresponding critical percolation exponent. This power law fea-
ture can also be seen in day off results in Fig. 3C. As seen in Fig. 3
A and B, above the threshold [i.e., qc(t) + 0.1, qc(t) + 0.2], only
small clusters composed of high-speed links exist, and the size

Fig. 3. Percolation critical exponents of cluster size distribution. (A and B) Size distribution of traffic flow clusters near criticality during (A) rush hours
and (B) nonrush hours on 17 workdays. Results include size distribution at qc(t) (squares), qc(t) − 0.1 (circles), qc(t) − 0.2 (up triangles), qc(t) + 0.1 (down
triangles), and qc(t) + 0.2 (diamonds). (C) Size distribution of traffic flow clusters at criticality during rush hours (circles) and nonrush hours (crosses) on 12 d
off. (D) Values of τ at specific periods of every day, including rush hours on days off (solid triangles), rush hours on workdays (solid circles), nonrush hours
on days off (open triangles), and nonrush hours on workdays (open circles). Rush hours here mean 7:30–8:30 AM and 5:30–6:30 PM, while nonrush hours
are from 11:00 AM to 1:00 PM every day. The theoretical results of high-dimensional mean field for small world (τ = 2.50) and 2D lattice percolation (τ =
2.05) are also marked as horizontal lines.

Zeng et al. PNAS | January 2, 2019 | vol. 116 | no. 1 | 25



distribution seems to decay faster than a power law. The change
from a power law at criticality to a stronger decay when further
from criticality is a sign of qc(t) being a critical point (2, 3). As
q approaches the critical threshold qc(t), a large cluster (i.e.,
the giant component) appears, representing the global traffic
flow in the traffic network. The same happens when q decreases
below qc(t) [i.e., qc(t) − 0.1, qc(t) − 0.2]; the scale of the giant
component increases, since more finite clusters are merged into
the giant component. Accordingly, the number of finite clusters
decreases, leading to a more skewed tail in the size distribution.
This behavior further supports the critical percolation hypothesis
of traffic flows.

Focusing on the traffic percolation behavior at criticality,
we find that the critical exponent of cluster size distribution
(denoted by τ) during rush hours on workdays is in general
smaller than that during nonrush hours, with values of about 2.07
and 2.33, respectively. However, this difference of critical behav-
ior during different periods does not appear in days off as seen
in Fig. 3C. Moreover, the critical exponent during nonrush hours
on working days is almost the same as that during days off. These
results, therefore, indicate that two modes of percolation criti-
cal behaviors exist, suggesting different universality classes for
different periods.

Furthermore, we calculate the specific critical exponents of
each period for 29 d in 2015 as shown in Fig. 3D. We can see
systematic differences in τ between rush hours on working days
and other time periods. Note that, although October 10 was a
Saturday, but the exponent τ is like on a working day. This can
be understood by the fact that this specific Saturday was indeed
a workday according to the day off compensation policy. It is
interesting to note that our results for τ are generally with val-
ues between the theoretical results of high dimension (2.50; e.g.,
small world or Erdős–Rényi networks) and lattice percolation
(2.05; e.g., 2D regular lattice), respectively (2, 3). During rush
hours on working days, the critical exponents are much smaller
compared with during other periods, with the value of τ closer
to the limiting case of lattices; on the contrary, during nonrush
hours, the values of τ are significantly and systematically higher.

Moreover, some values of τ during the national holidays are
approaching the mean field limit. We show (SI Appendix, Fig. S3)
that similar findings with different exponents between rush hours
and nonrush hours also appear in another large city, Shenzhen.
All of these results suggest that the dynamics of city traffic is run-
ning at different modes between high-dimensional (mean field)
percolation and 2D lattice percolation. Therefore, our results
suggest that the value of τ in real data can be used to classify
different traffic modes, which should be managed through dif-
ferent strategies. For cities with only a few highways, like Jinan,
we observe (SI Appendix, Fig. S5) only the type of percolation
transition close to the 2D case.

Thus, the following question can be naturally raised: why do
the critical properties behave differently at different periods,
although the network structural topology of the roads is the
same? A hint to answer the question can come from the knowl-
edge that, for spatially embedded networks (25), the appearance
of long-range connections (26, 27) can alter the critical percola-
tion exponents. We suggest here that, for transportation systems,
the highways during nonrush hours or days off play the role
of effective long-range connections in the traffic network from
a dynamic perspective. The highways normally connect distant
places and are designed for higher velocities. For a driver, dur-
ing nonrush hours and days off (in contrast to rush hours), it is
usually faster to reach a distant place by highways rather than by
other roads. Thus, a plausible hypothesis for the different modes
is that, during days off or nonrush hours on working days, there
exist more effective long-range connections (high-speed high-
ways) that relax the spatial 2D constraints of the original system.
During these periods, the traffic system approaches the traits
of small world networks, which behave like a high-dimensional
(mean field) system. However, with heavy traffic congestion dur-
ing rush hours on working days, the highways become congested
and are effectively removed from original system.

To test and demonstrate our assumption, we select the high-
ways of the road network and register their speed during rush
hours on workdays and days off. Indeed, we find that the number
of highways with high velocities (faster than 70 km/h) is indeed

A B

C D

Fig. 4. Effective long-range (high-speed) connections. (A and B) Highways with average speed faster than 70 km/h (colored in olive) during rush hours on
(A) days off and (B) workdays. The district shown is a part of the city of Beijing. (C) Cumulative velocity distribution of highways on days off (olive) and
workdays (orange) in the traffic network. We only focus on velocities faster than 60 km/h. (D) Critical exponent τ as a function of the fraction of rewiring
links for percolation in a small world model.
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significantly different during the two periods as shown in Fig. 4
A and B. During days off, fraction of high-speed highways are
found larger in Fig. 4C and effectively form long-range connec-
tions, which do not exist during workdays (shown in SI Appendix,
Fig. S4). We also test our hypothesis by exploring the influence of
long-range connections in a lattice percolation model. For that,
we apply a link-rewiring model of a 2D small world network (26)
and study its critical properties. The model network is a lattice
with a given fraction f of rewired long-range connections, consis-
tent with the fact that the total number of links is kept constant
in a city traffic network during different periods. At every step,
we randomly choose a node and disconnect one of its links; then,
we rewire it to a random node in the whole 2D network. This
process continues until the fraction f of rewiring links meets the
given value.

After constructing the model network, we analyze its percola-
tion properties. The results are shown in Fig. 4D. It suggests that
the value of τ increases with the increasing fraction of rewired
links. We can see that the values of τ are basically changing from
2.05 to 2.50, corresponding to the universality classes of lattice
percolation and mean field, respectively. Moreover, τ changes
rapidly as the fraction f increases toward 0.2. The larger fraction
of links rewired in the lattice, the more similar the network is to
the ER network (28). Therefore, our model results support the
hypothesis that, during rush hours on workdays, the dynamic per-
colation of city traffic has a stronger tendency toward 2D lattice
percolation, since it is nearly under a zero fraction of long-range
connections. Systems with high fractions of long-range connec-
tions can exhibit pronounced dynamic effects, which will not
occur in systems with short-range interactions only. The exis-
tence of long-range connections can result in quasistationary
states with slow relaxation toward steady states in driven dynam-
ics (29). As seen here (Fig. 4D), a small fraction of long-range
connection can affect the critical percolation exponents, result-
ing in changes of the system university class (30). In analogy, for
example, studies have been conducted on the behavior of the
Ising model in a small world network (31), and they find that
the introduction of long-range connections (reflected by rewiring
probability f of network links) results in changing the system
universality class from a pure low-dimensional system for f =
0 to a mean field-like region for f > 0. For city traffic systems,
this change is self-organized with the variant high-speed roads
that represent effective long-range connections (results are in
SI Appendix, Fig. S6), leading to the mode switching. Thus, by
adjusting effective high-speed connections, one may change the
system to the desired universality class of city traffic (like dur-
ing nonrush hours or days off). Note that our results here are
obtained for percolation, neglecting the correlation presence in
the congestion scenario of real traffic. However, it is suggested
(32) that several percolation critical exponents, including expo-
nent τ of cluster size distribution, almost do not change with the
introduction of correlations.

Conclusion
While the growth of urbanization is expected to strain urban
infrastructure across all transportation modes, different smart
city frameworks have been proposed to combat this chal-
lenge. One of the core tasks for city resurgence is to build
a resilient transportation system that can adapt to various
perturbations and recover from major congestions efficiently.
On this task, one fundamental question is how urban traffic
will break when approaching its critical point. City traffic is
generally a spatial–temporal system (33); hence, it is essen-
tial to focus not only on the static structure of a road net-
work but also, on the dynamic organization of traffic in which
demand changes from time to time and place to place during
a day. Here, we study the percolation transition classification
of city traffic dynamics using high-resolution real-time traffic
data. By analyzing the cluster size distribution of city traf-
fic, we find that the disintegration transition of urban traffic
can be characterized by two sets of percolation critical expo-
nents. During workday rush hours, the critical percolation expo-
nent is close to that of 2D lattice percolation, while during
other periods, it is closer to the high-dimensional small world
systems.

Our findings suggest that a key point affecting the critical
exponent of traffic dynamics is the fraction of the effective
long-range connections represented by the connected roads of
high speed. Thus, with the aid of dynamic traffic management
methods, it may be possible to shift the system to the desired
critical universality class by adjusting the amount of effec-
tive long-range connections. For demonstration, if appropriate
actions can keep the fraction of effective long-range connec-
tions above 0.1, we may expect percolation critical exponents
to be around 2.4, which represents a universality class of sig-
nificantly better and more smoothly fragmented global traffic.
While the effective long-range connections are the products
of structural urban highways, their management also requires
much effort on the design of corresponding management strat-
egy along with signal control (34) or road pricing (35). In
this sense, our study may be useful for modeling and design-
ing traffic resilience in the realization of the smart city. Fur-
thermore, our approach is general and can be applied to
other critical infrastructures that are aiming to transfer flow of
different types.
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