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Abstract

Automatic segmentation of cell nuclei is critical in several high-throughput cytometry applications 

whereas manual segmentation is laborious and irreproducible. One such emerging application is 

measuring the spatial organization (radial and relative distances) of fluorescence in situ 

hybridization (FISH) DNA sequences, where recent investigations strongly suggest a correlation 

between nonrandom arrangement of genes to carcinogenesis. Current automatic segmentation 

methods have varying performance in the presence of nonuniform illumination and clustering, and 

boundary accuracy is seldom assessed, which makes them suboptimal for this application. The 

authors propose a modular and model-based algorithm for extracting individual nuclei. It uses 

multiscale edge reconstruction for contrast stretching and edge enhancement as well as a 

multiscale entropy-based thresholding for handling nonuniform intensity variations. Nuclei are 

initially oversegmented and then merged based on area followed by automatic multistage 

classification into single nuclei and clustered nuclei. Estimation of input parameters and training 

of the classifiers is automatic. The algorithm was tested on 4,181 lymphoblast nuclei with varying 

degree of background nonuniformity and clustering. It extracted 3,515 individual nuclei and 

identified single nuclei and individual nuclei in clusters with 99.8 ± 0.3% and 95.5 ± 5.1% 

accuracy, respectively. Segmented boundaries of the individual nuclei were accurate when 

compared with manual segmentation with an average RMS deviation of 0.26 μm (~2 pixels). The 

proposed segmentation method is efficient, robust, and accurate for segmenting individual nuclei 

from fluorescence images containing clustered and isolated nuclei. The algorithm allows complete 

automation and facilitates reproducible and unbiased spatial analysis of DNA sequences.
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IN recent years, investigations on nuclear architecture (spatial organization of nuclear 

organelles into well-defined compartments) and nonrandom gene positioning show 

significant impact on protein expression and cell functions (1–4). In these studies, the 

investigators used 2-D spatial distributions of relative and radial distances of fluorescence in 

situ hybridization (FISH)-labeled DNA sequences in interphase nuclei. They established the 

correlation between the spatial proximity of translocation prone genes and carcinogenesis 

(5–7). The motivation for this article stems from this interesting application in genomic 

organization. Our ultimate goal is to develop an exploratory data analysis system for 

studying the correlation between genomic organization and carcinogenesis (8). Naturally, 

such a system requires a segmentation method that can efficiently extract nuclei from 

fluorescence images and also possesses a high degree of segmentation accuracy (inaccurate 

segmentation can bias the spatial analysis of genes). The central theme of this article is to 

address these requirements for 2-D images.

Segmentation of cells or cell nuclei is a key component in most quantitative microscopic 

image analysis. Post segmentation, one can measure features relating to cell morphology, 

spatial organization of cells, and the distribution of specific molecules inside and on the 

surface of individual cells. On one hand, these quantitative measures can be used to do 

simple tasks, e.g., counting the number of cells (nuclei) and identify different cell types and 

cell-cycle phases. On the other hand, these measures can also be utilized in answering 

complex questions, such as the underlying mechanism of cell-cell communication processes 

(9) and spatial organization of subcellular structures (7,10). Additionally, the information 

from quantitative analysis can also serve as input(s) for testing data-driven mathematical 

models of the underlying physical processes (11). Such quantification can potentially shed 

insight into various cellular and molecular mechanisms and improve diagnosis and treatment 

of major human diseases, such as cancer.

In the past few years, numerous cell and cell nuclei segmentation algorithms have been 

proposed for a wide range of cytometry applications. For example, detection and 

enumeration of tumor cells (12–14), cell tracking and tracking individual fluorescent 

particles inside single cells (15–18), classification and identification of different mitotic 

phenotypes (19,20), and spatial statistical analysis of DNA sequences and nuclear structures 

(8,21). The most prominent segmentation techniques used for cell and nuclei delineation 

include gradient-curvature-driven methods, viz., active snakes, active contours, deformable 

models (19,22–24); levelsets (25–28); dynamic programming-based methods (29–33); 

graph-cut methods (34); and watershed and region-growing methods (35–37) combined with 

region-merging methods (38–41).

The energy minimization-based formulations, e.g., gradient-curvature-driven methods and 

levelsets-based methods, begin with a user-initiated boundary (contour or control points) and 

then calculate force fields, both stretching (repulsive force) and bending (attractive force), 

over the image domain using the generalized diffusion equation. The final object boundary is 

identified by “balancing” the stretching and bending forces extracted from the image data. 

Such approaches, however, are based on local optimization, either in a discrete setting or 

using partial differential equations and curve evolution. The main advantages of these 

methods are that they detect sharp changes in the object’s topology (concavities) and are 
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easily extendable (at least levelsets-based methods) to handle higher-dimension images. 

However, these methods are sensitive to initialization since the energy minimization is 

subject to local minima and also to the force constants and the regularization terms.

Dynamic-programming and graph-cut methods also start with user-initiated control points, 

but they find a globally optimal path between two points in 2-D, based on an a priori figure 

of merit, typically the summation of weights of the pixels (edges) that are cut. Dynamic-

programming-based methods have been successfully applied for 2-D segmentation whereas 

graph search techniques have been extended for 2-D and higher dimensions. Unlike 

gradient-curvature-based methods, conventional dynamic-programming and graph-cut 

methods are not iterative. These methods also have the particular advantage of being 

extremely robust, virtually insensitive to initialization and noise levels, and highly accurate 

(the user can interactively correct). But they come at the price of automation, and they also 

have “leaking” problem when an object has a weak boundary condition or is grouped 

together with another object having a similar intensity and also have a tendency to “bend” 

across sharp corners because of curvature limitations.

The most commonly used cell nuclei segmentation algorithms use the combination of 

region-growing and region-merging approach. The main advantage of these methods is the 

automation of the entire segmentation process, and this has been exploited to great success 

in several high-throughput applications for segmenting cells and cell nuclei from 

fluorescence images (15,20,42–48). However, region-growing (e.g., watershed algorithm) 

methods suffer from oversegmentation problem, especially, when the grey-level intensities 

of the objects in the fluorescence vary spatially. This can be circumvented, at least to a 

certain degree, by using region-merging methods based on adjacency-, size-, shape-, and 

intensity-based descriptors. But that makes the process ineffective when applied to new 

datasets because the user needs to carefully adjust (or guess) these parameters for merging. 

Additionally, these methods also have a tendency to inaccurately (over/under) segment 

(overlapping) nuclei with weak edge information. In most cases, the weak edges may be due 

to the intrinsic optical resolution limits of the acquisition system. Deconvolution methods 

(49) or contrast stretching methods (50,51) (e.g., windowing, histogram equalization) can be 

used to enhance the signal strength along the edges, but both these approaches also have 

their own demerits. For instance, deconvolution requires estimation of experimental point 

spread function, which can be extremely laborious and subjective, whereas (linear) contrast 

stretching can saturate pixels which fall outside the window and since the intensity values 

often drift across the image either prior knowledge or intensive human interaction is needed 

to choose the right window at each part of the image. In this aspect, multiscale techniques 

have shown promising results because of their ability to analyze the edges at different spatial 

scales (52–55) and will be explored in this article. Furthermore, most segmentation 

algorithms typically aim for segmenting all nuclei (high sensitivity) and at the cost of 

segmentation accuracy, which might not be optimal for some applications.

In this article, we address the aforementioned short comings commonly associated with 2-D 

high-throughput cell nuclei segmentation applications, namely, weak edge information, 

varying background intensities, and the requirement of input parameters. Consequently, we 

choose a model-based, region-growing and region-merging approach along with three novel 
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concepts for our high-throughput cell nuclei segmentation. First, we use a modified 

multiscale (wavelet based) technique for enhancing the signal strength (intensity) at the 

boundaries of clustered nuclei (CN). Second, we propose and develop a multiscale 

thresholding technique based on entropy information from multiple scales for handling 

nonuniform background intensity variations. Last, we use statistical pattern recognition tools 

to automatically derive or estimate the input parameters required for segmenting CN. 

Furthermore, we also perform rigorous quantitative assessment using various measures (e.g., 

classification accuracy, segmentation accuracy) on approximately 4,200 cell nuclei from 

seven datasets of 2-D fluorescence images with varying degrees of clustering and 

background noise.

Methods and Materials

Overview of Segmentation

The algorithm starts with a 2-D fluorescence image with nuclear staining, for example, the 

DNA dye 4′, 6-diamidino-2-phenylindole (DAPI). In the first module, multiscale edge 

enhancement (MEE) technique is used for enhancing the boundaries of the nuclei in the 

nuclear staining channel. A particular advantage of this method is that it allows selective 

enhancement the edges of different sized objects and it also controls and suppresses the 

magnification of background noise. Next, the reconstructed image from MEE, Ie, is thresh-

olded to extract nuclei (foreground objects) from the background using a multiscale entropy-

based approach (MET). The entropy information measure, calculated over an adaptive 

window size, allows the proposed thresholding technique to extract foreground objects from 

background for nonuniformly illuminated samples. This thresholded image is used as a 

binary mask in all downstream operations. The third module of the algorithm estimates the 

minimum nuclear area (Δmin) from the thresholded objects using K-means clustering. Then, 

the nuclei are (over-) segmented using watershed, a morphological region-growing 

technique, from the gradient magnitude of the reconstructed image. This is followed by 

region merging, based on minimum area (Δmin) and maximum depth (dmax) constraints, to 

resolve the problem of oversegmentation. Finally, the algorithm calculates a 6-D feature 

vector for each segmented object and uses a multistage classifier to automatically classify 

the segmented objects (Sa) into clustered nuclei (Sa,CN) and single nuclei (Sa,SN). The flow 

diagram for the proposed modular high-throughput segmentation of clustered cell nuclei 

from 2-D fluorescence images is shown in Figure 1.

Edge Enhancement Using Multiscale Edge Representation

The multiscale edge representation of signals was first described by Mallat (52), and since 

then it has evolved into two main formulations, namely, multiscale zero crossings and 

multiscale gradient maxima. The latter approach, which is used in this article, was originally 

developed by Mallat and Zhong (54) and expanded to a tree structured representation by Lu 

(56). The MEE technique comprises to two stages. In the first stage, the input signal is 

decomposed into several scales using wavelet transform (WT). The edges in each scale, 

identified using the gradient information (modulus maxima along the gradient direction), are 

enhanced using a user-defined stretching factor. In the second phase, the enhanced 
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multiscale edges are used to reconstruct the image using an iterative alternating projection 

algorithm.

Decomposition.—The first step of multiscale edge representation involves applying a WT 

with a particular class of (non-orthogonal) separable spline wavelets (i.e., scaling and 

oriented functions) on the input image. The separable spline scaling function ϕ(x, y) plays 

the role of a smoothing filter, and the corresponding oriented wavelets are given by its partial 

derivatives:

ψ1 x, y = ∂
∂x ϕ x, y  and ψ2 x, y = ∂

∂y ϕ x, y . (1)

The associated 2-D dyadic WT of intensity image I(x, y), size of I(x, y) is N × N and N = 2J, 

at scale 2j for position (x, y) and in orientation k is defined in the usual way:

W
2 j
k I x, y = I ∗ ψ

2 j
k x, y ,  k = 1, 2 and ψ

2 j
k (x, y) = 1

4 j ψ
k x

2 j ,
y
2 j . (2)

The result is a representation of I(x, y) as a sequence of vector fields indexed by scale j, 

W
2 jI x, y

j
, where

W
2 jI x, y = W

2 j
1 I x, y , W

2 j
2 I x, y . (3)

An important feature of this representation is the information it provides about the gradient 

(edges) in I(x, y). From Eqs. (1)–(3), it can be easily shown that the 2-D WT gives the 

gradient of I(x, y) smoothed by ϕ(x, y) at dyadic scales. We call this representation 

multiscale gradient, and it is formally defined as

∇
2 jI(x, y) = W

2 jI(x, y) = W
2 j
1 I(x, y), W

2 j
2 I(x, y)

= 1
22 j ∇ ϕ

2 j * I (x, y)

= 1
22 j ∇I * ϕ

2 j(x, y)

(4)

This multiscale gradient representation of I(x, y) is complete and redundant (the total 

number of coefficients in ∇2jI(x, y) is more than the original signal). These wavelets are not 

orthogonal; however, they do form a frame (53), and I(x, y) can be recovered (to be 

explained shortly), with minimal error, from Eq. (3) through the use of an associated family 

of synthesis wavelets. Furthermore, for discrete data (e.g., digital images), these calculations 

can be done in an efficient and stable manner (52,54).
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For the intensity image, I(x, y), the positions of rapid variations are of interest, i.e., edge 

points; therefore we consider the local maxima of the gradient magnitude at various scales:

ρ
2JI x, y = ∇

2 jI x, y = W
2 jI x, y

                  = W
2 j
1 I x, y

2
+ W

2 j
2 I x, y

2
.

(5)

More precisely, a point (x, y) is considered a multiscale edge point at scale 2j if the 

magnitude of the gradient ρ2jI attains local maxima along the gradient direction θ2jI, which 

is given by:

θ
2 jI x, y = arctan

W
2 j
2 I x, y

W
2 j
1 I x, y

. (6)

For each scale, 2j, we collect the edge points along with the corresponding values of the 

gradient (i.e., the WT values) at that scale. The resulting local gradient maxima set at scale 

2j are then given by

A
2 j I = xi, yi ; ∇

2 jI xi, yi , (7)

such that, ρ2jI(xi, yi) has local maxima at (xi, yi) along the direction θ2jI(xi, yi). For a J-level 

2-D WT, the following set

S
2JI x, y , A

2 j I
1 ≤ j ≤ J

, (8)

is called the multiscale edge representation of image I(x, y). Here, S2JI(x, y) is the low-pass 

approximation of I(x, y) at the coarsest scale, 2J, and is equal to the global mean of I(x, y).

Since the magnitude of edge gradients characterizes the intensity difference between 

different objects and background regions in an image, we enhance the contrast between them 

by applying appropriate transformations on edge gradients. With the multiscale edge 

representation, different transformations of the edge gradients can be designed and used at 

different scales, thus enabling us to selectively enhance the edges of certain size objects. 

This is a simple consequence of the location information embedded in the multiscale edge 

representation.

Although several types of transformations can be applied to edge gradients in each scale, we 

choose to apply the simplest transformation on edge gradients by linearly stretching the 

gradient magnitudes at each scale by a user-defined stretching factor. Indeed, for the edge 

Gudla et al. Page 6

Cytometry A. Author manuscript; available in PMC 2019 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sets A2j(I) given by Eq. (7), we define the corresponding stretched edge set with a stretching 

factor, k ≥ 1, simply by multiplying each gradient maximum value by the scalar factor k and 

independent of scale index j, such that

k . A
2 j I = xi, yi ; k ∇

2 jI xi, yi xi, yi ; ∇
2 jI xi, yi ∈ A

2 j I . (9)

Note that the stretching factor has the effect of scaling the length (magnitude) of the gradient 

vector at each edge point without affecting its direction. Logically, if we use a scale-

dependant stretching factor, then we can selectively enhance the boundaries of different 

sized objects. (For instance, at higher scales, the multiscale edge representation, Eq. (9), will 

have fewer edge gradient locations corresponding to smaller objects than larger objects 

because the smaller objects will be blurred because of the smoothing function of wavelet 

decomposition.) However, since we intend to enhance the edges of (approximately) similar-

sized nuclei in our images, that is, edge enhancement is limited to only one type of objects in 

the images; hence, we use a constant stretching factor, k, across all scales.

Reconstruction.—Once the multiscale edge representation (location of the gradient 

maxima, direction or gradient maxima) has been constructed from the input image, we can 

reconstruct a close approximation of the input image from this sparse multiscale edge 

representation [Eq. (8)] using an alternating projection algorithm developed by Mallat and 

Zhong (54). Briefly, Mallat-Zhong’s reconstruction algorithm attempts to find a inverse WT 

consistent with the multiscale scale edge representation while enforcing a constraint 

imposed by the reproducing property of WT. To enforce such constraint on a set of functions 

in the reconstruction process—denoted as h(x) in (54)—they project these functions onto the 

space characterized by the reproducing kernels. (We refer readers to Mallat-Zhong’s paper 

(54) for a detailed mathematical proof on the convergence of the iterative algorithm and for 

the derivation of the lower bound for convergence.)

Note that Mallat-Zhong’s original algorithm was designed for sparse representation (i.e., 

compact coding) of 2-D signals in terms of multiscale edges and not for edge enhancement. 

Hence, we made two modifications to their algorithm: (i) we start with a modified multiscale 

edge representation of Eq. (8), in which [A2j(I)] is replaced by Eq. (9); and (2) we allow for 

the S2JI(x, y) term to update during each cycle of the iteration in the alternating projection 

algorithm. These two modifications ensure the reconstruction process to not only enhance 

the intensity along edges but also improve the contrast within and around the regions 

enclosed by edges.

Multiscale Entropy Thresholding

We apply a modified multiscale thresholding technique for extracting the nuclei from the 

background because of significant nonuniformity of nuclear brightness and background 

intensity. The technique uses a Laplacian pyramid data structure (Fig. 2) for selecting a 

window size based on the Shannon entropy (51). The proposed multiscale entropy-based 

thresholding method (MET) can be described as follows:
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Suppose the size of a discrete image I(x, y) is M × N, with l grey-levels. Let, pi denote the 

probability of the ith grey-level computed from the histogram of I(x, y). Then, the Shannon 

entropy (θ), is given by the following equation:

θ = − ∑
0

k
pilog2 pi ,  k ∈ 0, l . (10)

When θ attains a large value, it indicates that the image has more information (entropy) and 

it attains a maximal value when the pixel intensities in the image are uniformly distributed.

We start the multiscale thresholding process by dividing the image I(x, y) into small tiles, T 
= {t1, t2,…, tmn}, each of size wx × wy pixels, so that M = mwx and N = nwy. Then, we 

create a feature vector, F = {θi}, where θi is the Shannon entropy for tile ti ∈ T. Next, we 

calculate a threshold value θ′ for F using Otsu’s method (57) and identify the corresponding 

tiles, T′ ⊂ T with θi > θ′. After that, we threshold the pixels within each of the tiles in T′ 
by using Otsu’s method. Unlike the previous step, where the entropy value of each tile was 

used, in this step, the thresholding is done using the grey-value intensities of the pixels 

within each tile.

For the remaining tiles that were not thresholded, T = T − T′ , we enlarge their window size 

(wx = 2wx and wy = 2wy) according to the Laplacian tree structure (Fig. 2). Let T = T j

denote the set of all enlarged tiles, then for each tile, T j ∈ T , we calculate its entropy value, 

append it to the feature vector, such that F = θi, θ
T j

, and then calculate a new threshold 

valueθ′ for the updated feature vector using Otsu’s method. If θ
T j

> θ, then we threshold 

only those pixels within T j, which have not been thresholded earlier using Otsu’s method, 

otherwise, T j will be enlarged until it is thresholded. Naturally, in some cases, this recursive 

enlargement will make the tile size equal to size of the input image, in which case the 

proposed multiscale thresholding method will be identical to global Otsu thresholding 

method.

Estimating Nuclear Area

Once the nuclei are extracted, we use that information to estimate the minimum nucleus area 

(Δmin) for the region-merging operation—a postprocessing step to merge oversegmented 

nuclei from watershed delineation. Since Δmin is a critical parameter that can affect 

segmentation, we have made it automatically adaptable to the size of the nuclei in the input 

image using statistical pattern recognition tools. This is instead of prompting the user to 

supply this parameter for each dataset. Moreover, such information might be unknown a 

priori unless manually estimated, which can be laborious when analyzing large volumes of 

data. The basis of this automated strategy is that, in most images, a fraction of nuclei will be 

isolated and the multiscale entropy-based thresholding will successfully extract them as 
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individual objects from which nuclear size can be estimated. We realize that this assumption 

is not valid for all images and that this strategy will fail, particularly, when all the nuclei in 

the image are clustered. Under those circumstances, the algorithm defaults to the user-

defined minimum area value, Δuser.

The minimum nuclear size is estimated as follows: First, we label the thresholded 

foreground objects and calculate the area of labeled objects, thus creating a 1-d feature 

space. The feature space is segregated into four classes to capture different sized foreground 

objects of approximately: (1) single nucleus; (2) small clusters up to 2 overlapping nuclei; 

(3) medium clusters with three to four nuclei; and (4) large range clusters with more than six 

nuclei. The 1-D feature space is classified using K-means clustering (51) and the minimum 

nuclear size Δmin is estimated as

Δcalc = μ areaclass 1 + αuser × σ areaclass 1 ;
Δmin = max Δuser, Δcalc ,

(11)

where αuser is a user-defined parameter and μ(·) and σ(·) denote the mean and standard-

deviation of the area for class 1, respectively. Note that it is not necessary to classify the 

feature space into exactly four classes; instead we can do the estimation process even when 

objects are categorized into two classes.

Watershed Segmentation and Region Merging

Although the multiscale thresholding method can successfully extract isolated nuclei, it will 

fail to delineate individual nuclei from clusters. For this purpose, we apply watershed 

algorithm (35,37) on the gradient magnitude (Ig) of edge enhanced image Ie and use the 

thresholded binary image from the previous step as a mask. In spite of the edge enhancement 

image, watershed algorithm will lead to severe oversegmentation of all the foreground 

objects into fragments, both isolated and CN alike, because of the intensity fluctuations 

within the objects and, thus, requiring region merging (15,47).

We apply two constraints: user-defined maximum depth (dmax) and minimum nuclear size 

(Δmin) calculated using Eq. (11), for merging oversegmented fragments from watershed 

delineation. In our implementation, we sort all the catchment basins (fragments) based on 

their depth and then on size. Next, a fragment is merged with one of its eight-connected 

neighbors either if the current fragment is at a depth d < dmax or has an area smaller than 

Δmin. The region-merging process is iterative and allows for only one mergence per 

oversegmented fragment in each iteration and does not allow mergence when (1) one of the 

two segments to be merged has a neighbor that has been merged in current iteration and (2) 

both segments exceed the minimum size. When all the basins have been processed, the final 

step of the region-merging process removes objects of size less than Δmin. This strategy 

ensures morphologically accurate merging of the oversegmented fragments of isolated 

nuclei to form individual nuclei. Similarly, the oversegmented fragments of nuclei in clusters 

will also merge to form bigger objects and in majority of the cases these merged objects will 
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correspond to the individual nuclei within the clusters. Thus, allowing us to extract 

individual nuclei from clusters in addition to those that are already fairly well separated.

Classification of Segmented Nuclei

The segmentation process, described earlier, is not a perfect system and is bound to have 

some failures. For instance, closely packed or overlapping nuclei devoid of any perceptible 

boundary information will remain as clusters, and the region-merging process is also bound 

to generate morphologically inaccurate segmentation. The final step of our algorithm 

addresses these quality control issues by analyzing the feature measurements of the 

segmented nuclei and automatically segregating them into SN and CN. (Note that we use the 

term “clustered nuclei,” in a loose sense, to describe all those objects that do not belong to 

the SN class.)

The automatic classification is achieved using a multistage classifier system, where the first-

stage classifier functions as a coarse-grain classifier and resulting classification is used as an 

input for the second-stage classifier for further refinement. The entire process involves three 

steps: features measurement, coarse-grain classifier, and fine-grain classifier. In the features 

measurement step, we label each of the segmented objects (both single and CN) and then 

compute a 6-D feature vector,

F = imin, imax, f min, f max, f ⊥, hc , (12)

where imin = minor axis of inertia, imax = major axis of inertia, fmin = maximum Feret 

diameter, fmin = minimum Feret diameter, f⊥ = maximum perpendicular Feret diameter, and 

hc = Horton’s compactness factor or ratio of square of perimeter to four times the area. We 

selected these features based on our preliminary assessment of the nuclei’s morphology in 

our datasets. Next, we apply K-means algorithm to classify the feature space into two classes 

(SN and CN) by initiating the algorithm with a 50% prior-probability for each class. The 

output from the K-means algorithm will improve/adjust the prior probability estimate for 

each class-this depends entirely on the quality of the feature descriptors. Subsequently, we 

use a quadratic normal Bayes classifier, QDC (17), with the improved prior-probability 

estimates to refine the classification of the 6-D feature space into SN and CN classes.

Performance Assessment

To demonstrate the effectiveness of the MEE for CN we use the following quantitative 

measure of contrast between CN, EI:

EIi =
μ f − μe, i

σ f
2 + σe, i

2 ; EI = ∑EIi, (13)

where, i is the number of neighbors, μf and σf denote the mean and the standard deviation of 

the intensity values of the nucleus (f), respectively, and μe,i and σe,i denote the mean and 
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standard deviation of the intensity values of the common edge (e) between two closely 

packed nuclei, respectively. To calculate the common edge between a nucleus and its 

neighbors within a cluster, first, we dilate one-time the binary region corresponding to the 

nucleus and calculate the “exclusive-OR” area of the nucleus and its dilated version, and 

then we find the intersection between the “exclusive-OR” and the binary region of its ith 

neighbor.

The effectiveness of multiscale entropy-based thresholding and watershed with region-

merging steps was assessed using the following metrics:

1. percent nuclei missed by the multiscale entropy-based thresholding, MMET;

2. percent nuclei watershed and region-merging algorithm failed to delineate, 

MWRM;

3. percent CN that were not split and are still clustered after applying the proposed 

algorithm, PNCafter;

4. percent declustering, defined as

declustering =
PNCbefore − PNCafter

PNCbefore 
× 100, (14)

where PNCbefore denotes the percent of CN in the input image determined visually.

Additionally, we also do the accuracy assessment of multistage classifier for SN class and 

CN class using the following parameters: (1) TP, true positives, the total number of objects 

that were correctly identified; (2) FP, false positives, total number of incorrectly identified 

objects; and (3) PPV, positive predictive value,

PPV i =
TPi

TPi + FPi
× 100;  i ∈ SN, CN, (15)

as a measure of specificity. We also use the yield ratio, defined as

YR =
TPSN

#Nuclei , (16)

as a measure for assessing the algorithm’s sensitivity.

Segmentation accuracy of SN objects.—We use root-mean-square deviation, RMSD, 

to evaluate the segmentation accuracy of the SN objects only (32,58) because of their 

importance in further quantitative analysis. Briefly, our evaluation method computes RMSD 

by comparing pairs of segmented regions within an image, where one measurement is taken 

from the manual ground-truth segmentation (Sm,SN) and the other from the proposed 
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segmentation (Sa,SN), such that Sm, SN = Si
m, SN ∀i ∈ 1, n  and Sa, SN = Si

a, SN ∀i ∈ 1, n

denote the boundaries of n segmented nuclei belonging to class SN, respectively. Let 

Di
m, SN = DT Si

m, SN ∀ j ∈ 1, n  denote the distance transform, DT (51) calculated from the 

“binary-NOT” of the ground-truth segmentation boundary. (Hereafter, we will drop the SN 
superscript for notational convenience.) Then, we define the RMSD measure for all the SN 

within an image as

RMSDi =
∑ Di

m 2 ∗ Si
a

∑Si
m ; RMSD = RMSDi , ∀i ∈ n . (17)

By this definition, each element of the RMSD vector reflects the amount of agreement 

between manual and automatic segmentation of a region, such that 0 ≤ RMSDi ≤ ∞. When 

RMSDi approaches 0, it indicates exact match between automatic and manual segmentation, 

and higher values of RMSD indicate (significant) difference between automatic and manual 

segmentation.

Samples and Image Acquisition

We used seven different datasets, D1 to D7, derived from four different lymphoblast cell 

lines, C1 to C4. For all datasets, we acquired 3-D stacks of 4% paraformaldehyde/0.3 

phosphate buffered saline fixed nuclei, which had been stained with the DNA dye DAPI. 

(All cell lines were also stained for two genes using FISH but these channels were not used 

in this study.) To account for variations in nuclei density (total number of nuclei with in the 

field of view) and nuclei aggregation, we captured images of the same sample from different 

locations on the glass slide and under different confluence conditions, respectively. The 

images were acquired using a 60×, 1.4 NA, oil objective lens, on a Nikon fluorescent 

microscope. All images were 1,392 × 1,040 pixels with horizontal and axial resolution of 

0.132 μm and 0.5 μm, respectively, and the 3-D stacks of the DAPI channel were collapsed 

to form a 2-D image using maximum intensity projection to satisfy the input requirements of 

our 2-D algorithm.

Table 1 summarizes the test datasets and lists the manual count of the total number of 

isolated nuclei, the total number of nuclei in clusters, and the percent (foreground) area 

occupied by nuclei. In general, nuclei from all cell lines were regular and flat, and in most 

datasets nuclei were mostly uniform in size. In addition, nuclei from all datasets also 

exhibited significant variation (based on visual inspection) in their textural property (DNA 

staining) across the field of view along with nonuniform variation in the background. The 

datasets D1 and D5, derived from cell line (C1), had similar nuclei aggregation (PNCbefore 

values 47.0 and 54.9%, respectively) but varied in terms of area occupied by nuclei (24.1 

and 7.4% respectively). On the contrary, datasets D3 and D7, derived from cell line C3, 

differed mostly in terms of the degree of aggregation (PNCbefore values of 24.2% vs. 66.1%, 

respectively) but had similar nuclei density (~10%). In datasets derived from cell line C2, 

i.e., D2 and D6, both nuclei density and nuclei aggregation were lower in D2. The dataset 
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D7 derived from cell line C4 had moderate amount of nuclei aggregation (PNCbefore value of 

31.9%) and lower nuclei density (6.2%).

Implementation

We developed a MATLAB (Version 7.1, Mathworks, Natick, MA)-based application along 

with DIP image (image processing toolbox, academic version, Delft University, 

Netherlands) and PRTOOLs (pattern recognition toolbox, academic/research version, Delft 

University) for implementing the multiscale thresholding, nuclear area estimation, 

segmentation, and classification steps of the algorithm. The MEE step was performed using 

an in-house script developed in Last-Wave (59).

For the MEE step, we used cubic spline wavelets as edge detectors (54,55), wavelet 

decomposition up to six scales, a stretching factor (k) of 4 for enhancing the multiscale 

edges, and 15 iterations for reconstruction (alternating projection algorithm). Since our input 

images were not dyadic, we created a dyadic version (2,048 × 2,048 pixels) of the input 

image by reflecting the input image along the right and bottom boundaries. For the 

multiscale thresholding, we used Δuser = 550 pixels, and the starting tile size (wx and wy) 

was automatically determined by calculating the best block size with dimensions at least 

Δuser. This resulted in wx = 16 pixels and wy = 16 pixels (calculated using “bestblk” 

function in MATLAB). Following the thresholding process, we retained only that portion 

corresponding to the original input image size (i.e., 1,392 × 1,040 pixels) and used that in all 

succeeding steps. We used a value of αuser = −1.5 for calculating the minimum nuclear size 

[Eq. (9)] and for the region-merging process we used dmax = 4. The ground truth data used 

for the assessment of segmentation accuracy was generated using an in-house, 

semiautomatic MATLAB application based on the 2-D dynamic programming (31).

Results

We batch-processed all input images with the aforementioned set of input parameters using 

the in-house LastWave script and the developed MATLAB application. The entire process 

took on average 65 seconds for a typical image with approximately 80 nuclei. At least two 

third of this processing time was spent on input and output operations (e.g., saving the 

segmented nuclei into individual files). All datasets were analyzed on a 32-bit workstation 

with two dual-core AMD Opteron (2.0-GHz processor) and 4 GBs of RAM. (Note: The 

LastWave and MATLAB applications utilized only one processor for computations.)

Figure 3 shows the step-by-step results from the proposed algorithm. Figure 3A shows the 

representative input image and was obtained by taking a maximum intensity projection of 3-

D stack. Figure 3B shows the multiscale edge enhanced image (Ie) and Figure 3C shows the 

result of applying the MET on Ie. Clearly, the thresholding process does an excellent job at 

extracting all the nuclei present in the image. Figures 3D and 3E show the input (labeled 

thresholded objects) and the output (classification results from the K-means classifier) for 

the minimum nuclear size estimation step, respectively. Figure 3E also shows the class labels 

(1–4) overlaid on the thresholded objects and the minimum nuclear area was estimated from 

“class 1” objects (red colored objects). Figure 3G shows the results after applying watershed 
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on the gradient magnitude of multiscale edge enhanced image (Fig. 3F). (Note: The 

thresholded binary image, Fig. 3B, was used a mask when applying watershed on the 

gradient magnitude of the MEE image.) In spite of the edge enhancement image, we can 

clearly notice the severe oversegmentation of all the foreground objects, both isolated (solid 

arrows in Figs. 3F-3G) and CN (dashed-rectangular box in Figs. 3D, 3E, and 3G). Figure 3H 

shows the results after applying the region-merging operation with size and depth 

constraints, and we can clearly notice that the oversegmented objects, both individual and 

CN, from the watershed operation are successfully merged into individual, well-separated 

objects (solid arrows and dashed-rectangular box in Fig. 3H, respectively). Figure 3I shows 

the final classification results from the multistage classifier, where the red- and blue-colored 

objects represent single/individual nuclei and CN, respectively.

Performance Assessment

Multiscale edge enhancement.—Figure 4 demonstrates the edge enhancement along 

the interface of clustered (closely packed) nuclei by comparing the edge improvement (EI) 

from Eq. (13) after MEE and corner-preserving filtering (CPF) (60). Figures 4A–4C show 

the selected nuclei (total of 15) overlaid on the original image (red color polygons), MEE 

image (green color polygons), and corner-preserving-filtered image (blue color polygons), 

respectively. Figure 4D shows the error bar (average ± standard deviation) for the EI 

calculated from original image, MEE image, and CPF image. We can clearly see that the EI 

values (average and standard deviation) for the original image and CPF image are similar 

(0.74 vs. 0.75), suggesting that CPF does not enhance the edges. On the contrary, for the 

MEE image the average value of EI increased 18% (from 0.74 for the original image to 

0.78) along with a 24% decrease in the standard deviation (from 0.46 for the original image 

to 0.35), suggesting that that the MEE was able to enhance the contrast (intensity difference) 

between the foreground and the background. This can also be verified visually from Figure 

4E, which compares the line profile across two (closely packed) nuclei from the original 

input image (vertical red line), the MEE image (vertical green line), and the CPF image 

(vertical blue line). The horizontal dashed line corresponds to region of separation between 

the upper and the lower nucleus. We can notice that the contrast (intensity difference) 

between background and foreground is best (at least visually) for the MEE image (green 

color profile in the right most graph in Fig. 4E).

Multiscale entropy thresholding and minimum nuclear area estimation.—Table 

2 summarizes the performance of minimum nuclear size estimation, multiscale thresholding, 

and segmentation (watershed with region merging) steps. The proposed minimum nuclear 

size estimation methodology identified a Δmin value of 1,170 pixels (averaged over all seven 

datasets), which is twice the Δuser value of 550 pixels, suggesting that it was able to 

adaptively adjust the Δmin value, irrespective of the amount of clustering. For instance, 

datasets D3 and D6, which were derived from same cell line C3, have different extents of 

nuclei aggregation, but the average Δmin value for these datasets is almost identical (1,014 

pixels and 1,023 pixels, respectively) because in Eq. (11) we use the size statistics of only 

“class 1” type objects, hence the extent of aggregation should have minimal effect on the 

estimation process. The MET on edge enhanced images appeared to perform consistently 

even in the presence of nonuniform illumination. The proposed multiscale entropy-based 
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thresholding failed to extract 41 nuclei from the total available 4,181 nuclei with an 

unweighted average missing rate of 1.4 ± 1.01% per dataset (column MMET in Table 2).

Watershed and region merging.—The watershed with region-merging algorithm 

showed a total failure rate of 1.7% and performed consistently across all datasets with an 

average MWRM of 1.7 ± 0.47%. The segmentation step missed the least number of nuclei for 

dataset D2 with an MWRM of only 0.7% because majority of the input nuclei in this dataset 

were fairly well isolated (217 out of 295 nuclei). (Note that the MWRM failure rates indicates 

the nuclei missed by WRM only, thus the total failure rate is sum of MMET and MWRM.) 

When both the failure rates were combined, the proposed system failed to delineate 2.7% 

nuclei and had an average unweighted combined failure rate of 3.1 ± 1.1% per dataset.

In Table 3, we summarize the performance of declustering. The proposed algorithm 

successfully isolated 1,438 nuclei, i.e., declustering 73% of 1,973 CN. The algorithm’s best 

and worst performance, in terms of percent declustering, comes from datasets D3 and D5, 

respectively, in which it isolated 96 and 62% of CN. The algorithm isolated an unweighted 

average of 74.1 ± 10.8% CN per dataset and extracted 3,532 nuclei from a total of 4,181 

available nuclei, resulting in a 0.84 yield ratio. The MEE certainly improved segmentation of 

CN when compared with our earlier work (8), in which, the algorithm declustered 

(unweighted average) 52.4 ± 36.6%. This indicates that the MEE renders the current 

approach insensitive to the degree of clustering and background intensity variations in the 

input image.

Classification accuracy.—Table 4 summarizes the classification accuracy results for 

both classes, Sa,SN and Sa,CN, using three parameters: (a) the total number of objects that 

were correctly identified, TP; (b) total number of incorrectly identified objects, FP; and (c) 

positive predictive value, PPV. The multistage classifier identified SN and CN objects with 

an overall accuracy (PPV) of 99.8 and 93.6%, respectively, and with an average unweighted 

PPV of 99.8 ± 0.3% and 95.5 ± 5.1%, respectively.

Segmentation accuracy.—We analyzed the deviation between automatic and manual 

nuclei boundaries using the RMSD measure [Eq. (17)]. Figure 5A shows the overlay of the 

nuclei boundaries obtained from the proposed algorithm (Sa,SN, red color) and from the 

manual segmentation (Sm’SN, blue color) along with the RMSD value, in pixels, for each 

nucleus in the representative sample image (Fig. 3A). Figures 5B–5D shows the enlargement 

of regions B–D in Figure 5A. In general, segmentation of nuclei from the proposed method 

appears to be in good agreement with manual ground truth with approximately 2 pixels 

RMSD values. However, on close inspection, we found two cases resulting in larger RMSD 

values than the average RMSD value, viz. (1) when two nuclei are close to one another, then 

the boundary of one nucleus tends to “jump across” the interstitial space between the two 

(shown as lines with arrow heads in the Figs. 5A–5B); and (2) when more than two nuclei 

are closely packed and part of this cluster gets segmented into objects of both Sa,SN and 

Sa,CN (shown as lines with square heads in Figs. 5A and 5C). Figure 5E shows the average 

value of RMSD (mean ± standard deviation) for all Sa,SN nuclei in each dataset (blue lines) 

and the average value of RMSD (mean ± standard deviation) for all Sa,SN nuclei from all 

seven datasets (horizontal red lines). We can clearly see that algorithm works consistently 
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across all datasets, irrespective of background noise and aggregation, and the average RMSD 

for all seven test datasets is 1.75 ± 0.94 pixels (i.e., 0.23 ± 0.13 μm). This suggests that the 

segmentation boundary from our method is acceptable and close to the limits of blurring that 

could occur because of the point spread function of the optical system.

Sensitivity analysis of input parameters.—One of our design objectives was to 

automatically extract the input parameters. The proposed algorithm requires four main 

parameters, viz. maximum depth (dmax), minimum area (Δuser), number of DWT levels (j), 
and stretching factor (k). (The number of iterations used by the MEE algorithm is not an 

input parameter. In the Mallat-Zhong alternating projection algorithm (54), the number of 

iterations is used as a stopping criterion in the conjugate gradient method. Hence, it is only 

logical to use a reasonable number of iterations and results do not improve if more iterations 

are used.)

On the basis of our preliminary investigations, we found that after a certain depth, dmax, the 

final outcome from region-merging algorithm did not change when the area constraint was 

fixed (data not shown). Next, although the algorithm uses Δuser in certain operations (like, 

starting tile size for MET), it is mainly used as “fail safe” parameter for region-merging 

operation to handle those cases when the assumptions underlying our data-driven Δmin 

estimation approach are not met. Therefore, any reasonable values of Δuser and dmax should 

still generate reproducible results.

We analyzed the effect of number of DWT levels (j) and stretching factor (k) on downstream 

steps by keeping the remaining input parameters identical to those used for our test datasets. 

The results for a representative fluorescence image (Fig. 2A) are summarized in Table 5. 

This input image had a total of 96 nuclei (ignoring the nuclei along the edges), of which 41 

nuclei were clustered. These nuclei occupied 20.9% of the total cross-sectional area. The 

starting tile size was 16 × 16 pixels and the MET successfully extracted almost all nuclei. 

Also, the Δmin value remained constant (approximately 1,725 pixels) across all six 

combinations of j and k. This is expected because MEE enhances the contrast between edges 

of closely packed objects (nuclei), and therefore should have minimal impact on Δmin 

estimation process. Thus, the number of nuclei that remain as clusters is the only basis for 

comparing the performance. The results indicate that the performance is only affected when 

either fewer dyadic scales (row 1, Table 5) or a smaller stretching factor (row 3, Table 5) is 

used for reconstruction. In the former case, using only the first few dyadic scales, the 

reconstruction process amplifies false edges along with the true boundaries. This, in turn, 

leads to oversegmentation of both isolated and CN. The region-merging step should be able 

to handle the oversegmentation of isolated nuclei; however, this will also adversely merge 

the oversegmented clustered objects. In the latter case, when a smaller stretching factor was 

used, the edges of objects in higher scale (external boundaries of CN) were enhanced similar 

to the edges in lower scale (boundaries of individual nuclei within the cluster) because MEE 

uniformly stretches the gradient magnitude of multiscale edges. Naturally, this will cause the 

watershed lines (catchment basins) to enclose the external boundary of the cluster. Thus, the 

algorithm will fail to effectively decluster the overlapping/CN.
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Discussion

Recent investigations of genomic organization show overwhelming evidence of nonrandom 

arrangement of subnuclear entities in human genome and its correlation to carcinogenesis 

(7,10). Current studies on genomic organization manually segment interphase cell nuclei 

with FISH-labeled DNA sequences and analyze the relative and radial distance distributions 

of the FISH signal. It is evident that this application requires development of automatic and 

highly accurate cell nuclei segmentation for a meaningful, unbiased, and reproducible 

analysis. Such automated techniques coupled with advanced statistical models can provide 

vital understanding of genomic organization and assist development of better diagnostic 

tools for detecting cancer (61).

In recent years, the availability of high-content and high-throughput image acquisition 

systems has prompted the development of several modular, model-based image analysis 

platforms for cytometry applications (17,39,46,62,63). Model-based segmentation methods, 

particularly region-growing and region-methods, which use a priori knowledge of the input 

images, have shown considerable promise for automatic nuclei segmentation. However, we 

observed that most region-growing and region-merging methods were ill suited for studying 

genomic organization because their performance suffered when the nuclei were severely 

clustered and had weak edge information. The presence of nonuniform background, like in 

our datasets, also affected their performance. Preprocessing the input images to restore/

enhance the objects of interest using techniques like deconvolution and background 

correction may partially alleviate these problems. But such techniques are often time-

consuming and complicated, and they do not always give satisfactory results.

Our main objective was to develop a high-throughput application for segmenting clustered 

and isolated nuclei from fluorescence images with extremely high accuracy and high 

specificity, if necessary at the cost of lower yield ratio (sensitivity). Given the advantages of 

the model-based approaches, we developed an automatic segmentation algorithm combining 

well-known, high-level image processing operations in a modular framework to make the 

segmentation process extremely flexible and suitable for batch-processing large volumes of 

datasets. In this work, we used wavelet-based edge enhancement for increasing the contrast 

along the edges of CN and multiscale entropy-based technique for thresholding the 

foreground from nonuniformly illuminated fluorescence images. Furthermore, we also used 

data-driven approaches from statistical pattern recognition to estimate certain input 

parameters, thus eliminating, at least partially, the need for user intervention.

The proposed algorithm’s modular framework is similar to the “pipeline” framework used in 

the CellProfiler by Carpenter et al. (62). CellProfiler’s generic image analysis platform 

allows the user to carry out quantitative image analysis using the “pipeline” strategy (a 

combination of various well-established image-processing steps) and test them on a 

representative image prior to batch-processing dataset(s). CellProfiler bundles existing (like, 

MATLAB Image Processing Toolbox, Mathworks, Natick, MA) and research-based image 

processing algorithms, thus permitting rapid prototyping. But our target application required 

statistical pattern recognition tools in addition to the modifications of several low-level 
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image processing algorithms (e.g., MEE and multiscale thresholding), hence CellProfiler 

could not accomplish our task and thus we designed and built our application.

Our approach also shares some similarity to the multimodel approach described by Lin et al. 

(63). They also use similar steps (region-based segmentation, model-based object merging, 

model-selection, and classification) in their work to simultaneously segment and classify 

heterogeneous populations of cell nuclei. However, unlike our approach, Lin et al. 

incorporate user interaction and the tree-based region-merging approach to permit visual 

control of the quality of segmentation. Our method achieves better classification accuracy 

(PPV of 99.8% compared with 93.5%), and the segmentation accuracy (~1.75 pixels RMS 

deviation) is also within acceptable limits. Our approach can also segment and classify 

heterogeneous populations by changing the number of classes in our final multistage 

classification step.

Despite the problems of clustering and nonuniform illumination in our datasets, the 

proposed algorithm performed extremely well on all datasets. The combined failure rate 

from these steps was only 2.7% of total nuclei (114 out of 4,181), with an unweighted 

average failure rate of 3.1 ± 1.1% per dataset. Although the percentage of nuclei missed for 

datasets D4, D5, and D6 is slightly higher than the average failure rate, it should not be a 

major concern for our target application because it is relatively easy to acquire more images.

The proposed algorithm extracted 3,532 nuclei from a total of 4,181 available nuclei, 

resulting in a 0.84 yield ratio. Our yield ratio is relatively lower than the 0.95 yield ratio 

reported, independently, by Harder et al. (20) and Beaver et. al (64) for their adaptive 

thresholding methods. However, the former report showed no evidence of nuclear clustering 

and uneven background in their illustrated test image, and the latter assumed that the nuclei 

in their images are reasonably well separated. Our method makes no such assumptions and 

yet achieves a reasonable yield percentage even under nonuniform background and 

clustering conditions. Moreover, in our target application, accuracy of the segmented 

boundary and positive predictive value are more important than higher yield because, as 

mentioned earlier, it is relatively easy to acquire more images. The approach was also robust 

enough to extract large number of individual nuclei from clusters, mostly because of MEE. 

On an average, the algorithm was able to reduce the clustering by 74%, which is better than 

our previous effort of 52% (8) based on a similar framework except for the MEE.

The multistage classifier detected SN and CN with an overall accuracy (positive predictive 

value) of 99.8 and 93.8%, respectively. The PPV for SN class nuclei is comparable with the 

best results reported by Chen et al. (17). They obtained a similar overall PPV (~99%) for SN 

using a 28 feature measurements and by training their classifier with 300 sample nuclei. On 

the contrary, our algorithm achieves this high accuracy using only six features and requires 

no training datasets because we use a multistage classifier for refining the classification 

results. We get a (slightly) lower PPV for CN objects, but it is still reasonably high (>93%). 

Moreover, a slightly lower PPV for CN objects should not be a concern for two reasons: (1) 

these objects can be omitted from further analysis and (2) overall we are losing only 17 

nuclei (sum of FP for CN) because of the misclassification.
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Our algorithm, just as any other approaches, is not a perfect system and has some 

shortcomings. First, the MEE algorithm, albeit very effective at enhancing the edges, will 

fail to enhance the edges of overlapping nuclei with minimal or no edge information (dashed 

arrows in Fig. 3F). This can adversely affect the performance and effectiveness of 

downstream operations. For instance, in scenarios when the overlapping nuclei has no 

boundary information in the image (dashed arrows in Fig. 3F), the watershed operation can 

incorrectly label catchment basin(s) or fragment(s) by spanning them across more than one 

nucleus (dashed arrows in Fig. 3G) and the merging process will fail to yield visually and 

morphologically accurate results because of the increased likelihood of merging fragment(s) 

from one object to the fragments from its neighbor(s) (dashed arrows in Fig. 3H). In this 

context, it would be interesting to investigate the performance of rule-based and 

morphological constraint based region-merging approaches (15,42,43). Second, in the MEE, 

we use a constant stretching factor (scalar) across all the scales, and this was not a major 

problem for our datasets because most of our nuclei had similar morphology. However, if we 

were to segment objects of different sizes then using a scalar valued stretching factor will 

selectively enhance only one type of object. A better alternative would be to use different 

stretching factors for each scale. Third, our region-merging approach can lead to inaccurate 

segmentation of closely packed nuclei where the boundary can “jump across” the interstitial 

space between the nuclei (line with arrow heads in Figs. 5A and 5B). Conceivably, these 

discrepancies could be automatically identified and handled by using better rule-based 

merging constraints and dynamic-programming-based methods (31). Last, our proposed 

algorithm is not entirely parameter free, but the effect of each input parameter on the 

segmentation process is easy to understand and not particularly sensitive. We use simple 

pattern recognition tools for parameter estimation and relieve the user from extensive 

interaction. In future, we envision the new generation algorithms to incorporate similar or 

more advanced statistical pattern recognition techniques for prediction and estimation of 

input parameters.

In conclusion, the proposed high-throughput algorithm shows great potential for being an 

important image processing tool for analyzing the complex spatial organization of genes and 

its role in carcinogenesis. We expect to obtain useful biological results about the spatial 

organization of specific FISH-labeled DNA sequences in interphase nuclei using the 

methods described herein (results will be reported separately). Because of its modularity, 

parts of the algorithm can be either combined or replaced with other image processing 

techniques in a seamless fashion, thus, enabling the approach suitable for other dataset(s). 

Hence, in spite of designing the algorithm based on the requirements of a specific 

application, we anticipate other cytometry applications requiring accurate cell nuclei 

segmentation to benefit from this work. In future studies, we will analyze the effect of 

segmentation accuracy on the outcome of spatial analysis for DNA sequences. Furthermore, 

we plan to analyze the effect of scale-dependent stretching factor (k will be a vector of 

length equal to number scales) and to explore the potential of second generation wavelets, 

like edgelets, beamlets, and contourlets (65), for analyzing 3-D stacks of fluorescence 

images. We also plan to use this application for studying heterogeneous populations of cell 

nuclei and use deformable boundary-fitting algorithms (22) and dynamic-programming-

based methods (31) for handling irregular shaped nuclei.
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Offering the broadest portfolio of peripheral blood controls for 
immunophenotyping by flow cytometry

• Offering a wide portfolio of intracellular and surface marker controls for flow 

cytometry

• Unique controls for normal and abnormal leukocyte populations

• Ready to use controls with no dilution required

• Reference values similar to those found in relevant blood types

• Covering CD markers for TBNK, Stem Cells, and Leukemia and Lymphoma
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Figure 1. 
Flow diagram illustrating the modular framework of the proposed high-throughput 

segmentation system.
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Figure 2. 
Laplacian tree structure used in the multiscale entropybased thresholding technique.
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Figure 3. 
Results from various steps of the proposed algorithm. (A) 2-D image with DAPI stained 

nuclei, scale bar at top right corner = 15 μm; (B) reconstructed image after applying MEE; 

(C) output from the multiscale entropy-based thresholding of reconstructed image; (D) 

labeled objects from Figure 3B used for calculating the minimum nuclear area (objects along 

the image edges are ignored during the estimation process); (E) result of clustering the size 

of the labeled objects in Figure 3D into four classes using K-means; (F) gradient magnitude 

of the reconstructed image in Figure 2B; (G) result of watershed segmentation on the 

gradient magnitude image; (H) result of region merging based on maximum depth and 

minimum nuclear area constraints and after removing the edge nuclei; (I) result from 

multistage classifier (edge nuclei have been discarded), red color: single nuclei (Sa,SN); and 

blue color: clustered nuclei (Sa,CN). In Figures 3F–3H, solid-line arrow and dashed-line 

arrow point to an isolated nucleus and overlapping nuclei without any edge information 

between them and the effect of watershed and region merging, respectively. In Figures 3G–

3H, dashed rectangle is used for illustrating the declustering of closely packed nuclei and 

corresponds to a clustered region in MET thresholded image (shown in Figs. 3D–3E).
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Figure 4. 
Comparison of edge enhancement from MEE and corner-preserving filtering (CPF). (A) 

Original image along with nuclei selected for analysis (red color polygons); (B) MEE image 

along with nuclei selected for analysis (green color polygons); (C) edge enhanced image 

after CPF along with nuclei selected for analysis (blue color polygons); (D) error-bar plot 

showing EI [Eq. (13)] for the nuclei selected from the original, MEE, and CPF images. (E) 

intensity line profiles from original, MEE, and CPF images across two closely packed nuclei 

selected from top-middle region (shown as a dashed rectangle with a vertical line in Figs. 

4A–4C). The dashed horizontal line represents the approximate location where the two 

nuclei are separated.
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Figure 5. 
Quantitative comparison of the boundaries from automatic segmentation and manual 

segmentation. (A) The red and green color borders correspond to automatic and manual 

boundaries, respectively. The numbers inside each object is the RMS deviation (in pixels). 

(B)–(D) zoomed-in version of regions (B), (C), and (D) in Figure 5A. The arrows with 

triangular heads point to the “jump across” effect and the arrows with square heads point to 

nuclei with large RMSD because of improper breakage of a cluster. (E) RMSD (in pixels) 

for each dataset, triangular marker points are the mean values the blue bars denote ± 1 

standard deviation. The solid red line is the average RMSD (1.75 pixels) for nuclei from 
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datasets and the dashed red lines (above and below) the solid line denote the ± 1 standard 

deviation (0.94 pixels).
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Table 3.

Algorithm’s declustering performance

DATASET PNCAFTER (%) DECLUSTERING (%)

D1 12.3 73.8

D2 6.8 74.4

D3 1.0 95.9

D4 8.9 72.1

D5 21.1 61.6

D6 16.9 75.0

D7 22.6 65.8

Average 74.1

PNCafter = percent of nuclei that still are clustered after the segmentation [Eq. (14)].
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