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It is generally accepted that some screen-detected breast cancers are overdiagnosed and would not progress to
symptomatic cancer if left untreated. However, precise estimates of the fraction of nonprogressive cancers remain
elusive. In recognition of the weaknesses of overdiagnosis estimation methods based on excess incidence, there
is a need for model-based approaches that accommodate nonprogressive lesions. Here, we present an in-depth
analysis of a generalizedmodel of breast cancer natural history that allows for amixture of progressive and indolent
lesions. We provide a formal proof of global structural identifiability of the model and use simulation to identify con-
ditions that allow for parameter estimates that are sufficiently precise and practically actionable. We show that clini-
cal follow-up after the last screening can play a critical role in ensuring adequately precise identification of the
fraction of indolent cancers in a stop-screen trial design, and we demonstrate that model misspecification can lead
to substantially biased estimates of mean sojourn time. Finally, we illustrate our findings using the example of
Canadian National Breast Screening Study 2 (1980–1985) and show that the fraction of indolent cancers is not pre-
cisely identifiable. Our findings provide the foundation for extended models that account for both in situ and inva-
sive lesions.

breast neoplasms; identifiability; mammography; medical overuse; model-based inference; natural history;
stochastic modeling

Abbreviations: API, adequately precise identification; CNBSS-2, Canadian National Breast Screening Study 2; MLE, maximum
likelihood estimate; MST, mean sojourn time; PCI, profile confidence interval.

The problemof overdiagnosis associatedwith cancer screening
has received much attention in the clinical literature and news
media.Overdiagnosis occurswhen a screening test detects a cancer
that would never have surfaced symptomatically in the absence
of screening. Treatment of an overdiagnosed lesion cannot help
the patient; to the contrary, it can cause unnecessary harm in the
form of treatment-associated complications and side effects. Be-
causemost newly diagnosed cancers are treated, it is rarely possi-
ble to directly observewhether a cancer detected by screening has
been overdiagnosed or not. In the absence of direct empirical
evidence, disease-specific overdiagnosis rates are estimated using
statistical methods (1, 2).

A common estimation method approximates the frequency
of overdiagnosis via the excess incidence of disease in screened
populations as compared with unscreened populations (3–7).

However, this approach can yield biased estimates even in the
setting of randomized screening trials (8, 9). A second method
uses mathematical modeling to leverage the close link between
overdiagnosis and disease natural history (10–12). Since over-
diagnosis occurs when the period of disease latency, or sojourn
time, of a screen-detected case extends beyond the date of other-
cause death, the frequency of overdiagnosis can be derived on
the basis of an estimate of disease natural history (13).

The estimation of disease natural history in cancer and other
chronic diseases has a long history in the statistical literature
(13–15).With some exceptions (16–18), theseworks have primar-
ily focused on estimating sojourn times based on a progressive
diseasemodel—that is, under the assumption that asymptomatic,
screen-detectable lesions will become symptomatic after a finite
amountof time.For example, in the caseofbreast cancer, progressive
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model fits based on multiple cancer screening trials indicate
a consensus median sojourn time of 2–4 years (8, 19).

As our understanding of cancer progression evolves, the pos-
sibility that some tumors may be nonprogressive or indolent is
becoming more apparent (20). In a recent commentary, Baker
et al. (1) critiqued the existing literature on natural history esti-
mation because it does not accommodate nonprogressive natural
histories. Accommodating a positive fraction of indolent tumors
requires modeling a natural history that is a mixture of progres-
sive and indolent disease, with nonprogressive tumors having
infinite sojourn times. Valid estimation of natural history param-
eters—in this case, the fraction of indolent cases and the distribu-
tion of sojourn time among progressive cases—requires that the
estimation problem be statistically identifiable from the avail-
able data. Indeed, identifiability is a key considerationwhen link-
ing mechanistic models with data (21, 22); it addresses the
important question of whether parameters can be uniquely esti-
mated from a given model and data. We distinguish 2 categories
of identifiability: Structural identifiability considers a best-case
scenario of noise-free, continuously measured data, while practi-
cal identifiability is concerned with more realistic scenarios that
bear the usual features of real-world data, such as measurement
error and a limited number of sample times. Identifiability analy-
sis evaluates which parameters can or cannot be inferred from a
given model and data, and is thus a critical first step in every esti-
mation process.

Here, we investigate the identifiability of a mixture model
of disease progression that explicitly accounts for a nonpro-
gressive fraction of screen-detectable tumors. This is a critical
step in determining whether the modeling approachmay provide
a valid alternative to excess incidence in estimating overdiagnosis.
We provide a detailed analysis of the mixture model’s validity in
making inferences about natural history and, by extension, of
overdiagnosis in the setting where grouped data on screen and
interval diagnoses are available from a randomized screening
trial. We complement analytical results with simulation stud-
ies, and we illustrate our methods using data from Canadian
National Breast Screening Study 2 (CNBSS-2) (23).

METHODS

Model specification

Disease progression. Cancer progression was modeled on
the basis of a mixture model with 3 disease states (Figure 1): a
cancer-free or susceptible state (S), a preclinical state with asymp-
tomatic but screen-detectable disease (P), and a clinical state with
symptomatic disease (C). The transition from S to Pwas assumed
to be exponentially distributed with ratew. Amixture model was
used to describe the transition from P toC, accounting for a frac-
tionψ of preclinical tumors that do not progress to symptomatic
disease. The transition time for the remaining, progressive pre-
clinical tumors was assumed to be exponentially distributed with
rate λ. This specification reduces to the specification of Shen and
Zelen (15, 19) forψ = 0.

Screening program. We focused on a stop-screen trial
design for a cohort of N asymptomatic trial participants who
received J+ 1 screens at consecutive times …t t t, , , J0 1 and were
followed for clinical incidence until time +tJ 1. The majority of
breast cancer screening trials and the Prostate, Lung, Colorectal,

and Ovarian Cancer Screening Trial (24) have followed a stop-
screen design. Calendar time was chosen to reflect participant
age so that age at first screening was t0. In addition to incidence
of screen-detected tumors, we kept track of tumors that were
clinically diagnosed between consecutive screenings, referred to
as interval cancers. The screening sensitivity β, defined as the
probability of detecting a lesion given that the individual was in
state P, was assumed to be equal for indolent and progressive
lesions. The complete set of parameters was denoted by
θ = (ψ λ β)w, , , .

Estimation procedures

To estimate the model parameters θ based on simulated or
actual trial data, we usedmaximum likelihood estimation. Follow-
ing previous work (15, 19), we used an inference scheme based
on grouped trial data which summarizes each of the screening
roundswith ( )n s r, ,j j j , where nj is the number of subjects enter-
ing the jth screening round, sj is the number of screen-detected
cases at time tj, and rj is the number of clinically detected interval
cases in time interval [ ]+t t,j j 1 . The full derivation and final
expression of the likelihood are given in Web Appendix 1
(available at https://academic.oup.com/aje). All computations
were performed using R statistical software (R Foundation for
Statistical Computing, Vienna, Austria).

Confidence intervals and profile likelihoods

To construct confidence intervals for the parameter estimates,
we used a profile likelihood approach (25), as follows. First,
denote by(θ) the likelihood function of the model and by θ∗

themaximum likelihood estimates (MLEs) of themodel param-
eters θ. Then define the profile likelihood of parameter i as a
function  ↦ ˆ ( ) ≡ (θ |θ = )−x x xi i i , which maximizes (θ)
over all parameters but the ith parameter while keeping the latter
fixed at x. Exploiting the asymptotic χ2 distribution of the like-
lihood ratio statistic, define the 95% profile confidence inter-
val for θi, at significance level α, as

 { (θ ) − ˆ ( ) < Δ }∗
αx x: log log /2 ,i

whereΔα is the ( − α)1 th percentile of the χ2 (df) distribution
with df degrees of freedom (22). Pointwise confidence intervals
for θi were obtained by setting df equal to 1. The likelihood-based
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Figure 1. Mixture model of the natural history of breast cancer.
Disease-free, susceptible (S) individuals are at risk of developing pre-
clinical disease (P), which is either indolent nonprogressive with proba-
bility ψ or progressive otherwise (dotted arrows). Progressive lesions
progress to clinically detectable disease (C) at rate λ.
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95% profile confidence interval is best visualized on the basis
of the relative negative log-likelihood scale (Figure 2). Indeed,
the 95%profile confidence interval for parameterθi corresponds
to the neighborhood of its MLE where the relative negative
log-likelihood stays below theΔα /2 threshold (Figure 2, dotted
lines). The relative negative log-likelihood and confidence in-
tervals were computed on the basis of the algorithm outlined by
Eisenberg and Hayashi (26).

Structural and practical identifiability

Structural identifiability addresses the question of parameter
identifiability in a hypothetical scenario of perfectly measured
and noise-free data. Assuming such an ideal setting, structural
identifiability is achieved if all model parameters can be uniquely
recovered from the data. To evaluate the structural properties
of the mixture models (21), we derived the backward Kolmo-
gorov equations and employed a differential algebra approach to
evaluate model identifiability and determine identifiable param-
eter combinations (27, 28). (SeeWebAppendix 2 for details.)

Structural identifiability is a necessary condition for practical
identifiability, defined as parameter identifiability in real-world
scenarios with imperfect and noisy data. In principle, a structurally
identifiable but practically nonidentifiable model can be rendered
practically identifiable by collecting suitable additional data.

For a formal definition, we say that a parameter θi is practically
nonidentifiable if the profile likelihooddoes not exhibit aminimum
or it admits a minimum at θ̂i but its 95% profile confidence
interval is infinitely extended to either side or both sides of θ̂i
(21, 22). In other words, a parameter is practically nonidenti-
fiable if the relative negative log-likelihood stays below the
Δα /2 threshold on either side of the MLE (Figure 2).

Adequately precise identification

In theory, practical (and hence structural) identifiability of a
model ensures that point estimates and confidence intervals can
be properly estimated from the available data. In practice, how-
ever, if the confidence regions are too large, the resulting infor-
mation may not be actionable for practitioners. For example, if
themodel-based estimate of the time to progression frompreclin-
ical disease to clinical disease is 10 years with a 95% profile con-
fidence interval of (0.1, 100.0) years, the practitioner is unlikely
to use the information for clinical or public health recommenda-
tions. For this reason, we introduce a notion of practical utility
for parameter estimates from a structurally identifiable model,
namely that of adequately precise identification (API). We say
that a model parameter satisfies API if its 95% profile confidence
interval is contained within a meaningful range of theMLE. Fur-
thermore, we say that the model satisfies joint API if all model
parameters satisfy API. Here, we define a meaningful range to be
[ ( θ − ) ( θ + )]max 0, 0.2 , min 1, 0.2i i for parameters contained
in [ ]0, 1 (e.g., ψ, β) and [ θ ]θ , 3 i3

i for parameters contained in
[ ∞)0, (e.g., w, λ). Clearly, these choices depend on the appli-
cation considered and the degree of precision needed for practical
purposes.

Simulation study

We simulated data from a stop-screen trial with 50,000 trial
subjects who received 5 annual screenings between the ages of
50 and 54 years and were followed for clinical cancer incidence
for a specified number of years. The rate of preclinical disease
onset w was set to 0.0025, and the screening sensitivity β was
assumed to be 80%. We assumed no competing mortality or
loss to follow-up. To characterize estimator properties, we per-
formed Monte Carlo simulations (n = 1,000) to estimate the
bias and standard error of the MLEs. We used this framework
to conduct a systematic evaluation of API. We varied the dura-
tion of follow-up after the last screening and the key natural his-
tory parameters that drive overdiagnosis, namely the fraction of
indolent cancers (ψ) and the rate of progression to invasive dis-
ease (λ). For each pair ofψ and λ, we calculated the fraction of
simulation runs yielding API and estimated the corresponding
probability of rejecting the null hypothesis of a purely progres-
sive disease, ψ =H : 00 . Finally, we conducted Monte Carlo
simulations (n = 1,000) to determine the bias resulting from fit-
ting a purely progressive model to the data generated by the
mixture model.

CNBSS-2 data

To illustrate our methods, we analyzed data from CNBSS-2
(1980–1985). CNBSS-2 was implemented as an individually
randomized trial with the goal of evaluating the reduction in
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Figure 2. Practical identifiability of a mixture model of breast cancer
disease progression. A stop-screen trial with 50,000 subjects was
simulated with annual screening at ages 50–54 years, with follow-up
to age 60 years. The outcomes were grouped by screening round to
estimate the natural history parameters and screening sensitivity. The
parameter values used to generate the synthetic data are indicated by
vertical dashed lines, and the point estimates of the 4 parameters are
close to the minima of the negative (profile) log-likelihoods. A) ψ; B) λ;
C) w; D) β. For each parameter, the intersection of the profile likeli-
hood with the horizontal dotted line defines the 95%profile confidence
interval.
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mortality produced by combined annual mammography screen-
ing and clinical breast examination over clinical breast examina-
tion alone (23). CNBSS-2 enrolled women aged 50–59 years,
and 19,711 women randomized to the screening arm underwent
the first screening examination (see Web Table 1 for the grouped
data).Modelfittingwas performed as described above in the “Esti-
mation procedures” section, subject to the following assump-
tions: 1) Because of a lack of granular age data, we assumed
average age at enrollment to be 55 years; 2) the incidence rate
w of preclinical disease was assumed to be zero prior to age
Δ0 years, where Δ0 was set to 45 years for the baseline sce-
nario and was varied from 35 years to 50 years for sensitivity
analyses; and 3) the parameter β was assumed to capture the
combined sensitivity of mammography and clinical breast
examination. Finally, the different models’ goodness of fit to the
trial data was assessed on the basis of a χ2 test.

RESULTS

Structural identifiability

Under the assumption that the incidence rate of preclinical
disease is lower than the rate of progression from preclinical
disease to clinical disease ( < λ)w , we provided a rigorous
proof of the structural identifiability of the mixture model
(see theorem 2.2 inWeb Appendix 2). We showed that a single
screening round in conjunction with clinical follow-up over an
arbitrary finite time interval is sufficient to ensure global struc-
tural identifiability of the mixture model. Finally, we note that

< λw is invariably satisfied in breast cancer natural history.

Practical identifiability

Next, we focused on practical identifiability in scenarios with
limited data via simulation studies. Setting the fraction of indo-
lent preclinical tumors to 20% and themean sojourn time (MST)
to 2.5 years, we found all 4 model parameters to be practically
identifiable with finite limits of the 95% profile confidence in-
tervals (Figure 2). In particular, because the 95% profile confi-
dence interval for the fraction of indolent cancers did not
containψ = 0, the likelihood ratio test correctly indicated that
the fraction of indolent cancers was positive. Results ofMonte
Carlo simulations carried out to estimate the bias and standard

error of the MLEs (Table 1) showed that estimators for all
parameters were unbiased with small standard errors.

Clinical utility of estimates

On the basis of a stop-screen trial design with 50,000 partici-
pants and 1 year of follow-up after the last screening, we found
that a high probability of API was only achieved over a limited
portion of the (ψ λ), plane (Figure 3, top left). Increasing the
duration of follow-up from 1 year to 6 years substantially en-
larged the portion of the (ψ λ), plane with a high probability of
API (Figure 3, top right). In general, API of the estimates was
reduced when the fraction of indolent cancers was large and when
the progression ratewas either very small or very large.

For the same trial scenarios, we evaluated the corresponding
probability of rejecting the null hypothesis of a purely progres-
sive disease, ψ =H : 00 , across the (ψ λ), plane (Figure 3, bot-
tom row). The rate of type I errors—which corresponds to
rejecting H0 when ψ = 0—was negligible for all scenarios
considered. With the exception of very small ψ and λ values,
the rate of type II errors—which corresponds to the probability
of not rejectingH0 whenψ > 0—was negligible; equivalently,
the statistical power of the test was high (over 90%). Finally,
systematic analysis of estimator bias and standard error for the
above trial settings (Web Figures 1 and 2) showed that loss of
API occurred primarily inψ and λ, when either or both of these
parameters was particularly small or large. In contrast, the esti-
mators of w and β exhibited minimal bias and standard error
across the examined domain.

The role of follow-up

The above results suggest that the duration of follow-up after
the last screening can have a substantial impact on the probability
of API (Figure 3). For further study of this aspect, we examined
API for clinical follow-up ranging from 1 year to 10 years, both for
a 6-monthMST (Figure 4A) and for a 4-yearMST (Figure 4B).
Longer follow-up intervals invariably increased the probability
of the model’s satisfying joint API. The impact of follow-up on
API was most pronounced for larger values ofψ. A closer look
at the estimators of the different parameters revealed that the low
API for short follow-upwas primarily driven by shallow profile
likelihoods for the progression rate λ (Figure 5). This indicated
that the 1-year intervals between screenings were insufficient to

Table 1. Results of Monte Carlo Simulations Carried Out to Estimate the Bias and Standard Error of theMaximum Likelihood Estimators of the
Model Parameters in a MixtureModel of Breast Cancer Disease Progressiona

Parameter Type

MaximumLikelihood Estimator

Type II ErrorbFraction of Indolent
Tumors

Rate of Progression
to Clinical Disease

Rate of Onset of
Preclinical Cancer Screening Sensitivity

ψ SE(ψ̂) λ SE( )λ̂ w wSE( )ˆ β SE( )β̂

Target 0.2000 0.4000 0.0025 0.8000

Estimate 0.2002 0.0270 0.4056 0.0593 0.0025 0.0001 0.8007 0.0231 0.000

Abbreviation: SE, standard error.
a Example target and estimated parameters based on 1,000Monte Carlo simulations.
b Where the null hypothesis,H : = 00 ψ , was not rejected.
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properly inform the tail of the progression time distribution. To
capture the tail behavior, clinical follow-up after the last screening
needed to be longer than the MST. Indeed, API as a function of
clinical follow-upwas found to increase at a higher rate for shorter

sojourn times (Figure 4A) as compared with longer sojourn
times (Figure 4B).

Bias due tomodelmisspecification

Many published estimates of natural history and screening
parameters have been derived on the basis of progressive models
(i.e.,ψ = 0). If the cancer in question is subject to a nonnegligible
fraction of indolent preclinical cases, such model misspecification
may lead to biased parameter estimates. Simulating natural his-
tories with varying fractions of indolent tumors, we found that
fitting a purely progressive model generally leads to substantial
overestimation of both the incidence ratew and the MST among
progressive cases, λ1/ (Figure 6). Overestimation of w results
from the progressive model’s attempt to fit an increased preva-
lence of preclinical cancers at the first screening (because of the
presence of indolent tumors not accounted for by the model).
Overestimation of the sojourn time in turn compensates for the
inflated estimate of w when fitting the observed incidence of
interval cases. Finally, all parameters exhibited minimal bias and
standard error when the mixture model was applied to a purely
progressive disease (Web Figures 1 and 2).

Parameter estimates for CNBSS-2

The mixture model yielded a good fit to the grouped data
from the CNBSS-2 trial (goodness of fit: P = 0.8). Neither
the fraction of indolent cancers nor the screening sensitivity
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follow-up in a simulation study of stop-screen trials. The graph shows
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model parameters (ψ λ β)w, , , in a stop-screen trial with 50,000
women screened annually at ages 50–54 years, by duration of
follow-up after the last screening. Mean sojourn times were 6 months
(A) and 4 years (B), respectively. Lines connect evaluations under
ψ set equal to 20% (dark circles), 40% (medium circles), and 60%
(light circles), assuming a constant rate of onset of preclinical can-
cer of w = 0.0025 per year and a sensitivity of screening to detect
preclinical cancer of = 80%β .
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provided API (Figure 7). With estimates of 0.0% (95% pro-
file confidence interval (PCI): 0.0, 56.6) and 80.6% (95%
PCI: 42.4, 100.0) for ψ and β, respectively, both had wide
95% profile confidence intervals. The imprecise estimate for ψ
shows that the grouped data are not sufficiently rich to deter-
mine the fraction of indolent cancers. This lack of identifiability
is further illustrated by examining the goodness of fit when con-
straining the model to a range of different positive fractionsψ of
indolent cancers (Web Table 2). Indeed, even increasingψ up to
40% does not change the goodness of fit substantially (P = 0.6).

With an estimate of 3.3 years (95% PCI: 1.4, 10.2), the
MST provided borderline API, while the preclinical onset
rate w was clearly API, with an estimate of 3.1 × 10−3 (95%
PCI: 2.3 × 10−3, 3.6 × 10−3) per year. These estimates are
consistent with values obtained by Shen and Zelen (15), who
estimated a screening sensitivity of 78% for CNBSS-2 and an
MST of 3.8 years under a progressive disease model. The slight
discrepancy between their estimates and ours may be attributed
to their assumption of a uniform rather than an exponential dis-
tribution for preclinical onset, in addition to the absence of an
indolent fraction in their model.

Finally, we performed a sensitivity analysis for the above
estimates with respect to the earliest average age of onset of
preclinical disease (Web Table 3). Varying the latter between
35 years and 50 years led to slight variations in numerical
parameter estimates but the same qualitative conclusions.
Independent of the first average age of onset, the incidence of
disease onset and the screening sensitivity continued to provide
API; P values for the corresponding goodness of fit ranged from
0.3 to 1 for ages of onset of 35 years and 50 years, respectively.

DISCUSSION

We have presented an in-depth exploration of identifiability
issues that arise when inferring disease natural histories from
cancer screening studies. Our investigation wasmotivated by the
problem of quantifying overdiagnosis in cancer and the recognition
of weaknesses of methods based on excess incidence. On the
basis of simulations and application to real-world data, we
showed that adequately precise parameter estimation is not
guaranteed in practice, even for a relatively simple model
structure. Because more complex model extensions will naturally
be less identifiable, our findings provide an important foundation
for researchers inferring cancer natural histories using complex
model designs.

By combining analytical and numerical techniques, we derived
insights that have direct implications for model-based estimation
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of overdiagnosis rates from cancer screening trials. First, we
formally proved that the mixture model is structurally identi-
fiable. More precisely, given a sufficiently large number of trial
participants, the model parameters can in theory be uniquely
estimated from a single screening round with clinical follow-up.
On the basis of simulation studies, we then demonstrated that in
practice, identifiability and API of the model critically depend on
both the underlying disease dynamics and the trial protocol,
including the number of screenings and the duration of clinical
follow-up after the last screening. In a mixture setting, natural his-
tories with relatively short progressive sojourn times are more
likely to be adequately identifiable than natural histories with long
progressive sojourn times. To properly infer the tail behavior of
the sojourn time distribution, the trial design needs to provide
ample opportunity for interval case ascertainment and post-
screening follow-up. Our simulation studies further suggest that
increased follow-up after the last screening can compensate for a
smaller number of screening rounds. This is a striking insight
given that follow-up for clinical incidence is considerably less
resource-intensive than recruiting trial participants for thousands
of additional screenings.

Another key result with implications for the field concerns
model misspecification. Natural history modeling has a long
history in screening trials, but many published studies are
based on the assumption that the disease is purely progres-
sive. We found that for a mixture of progressive and indolent

preclinical lesions, fitting a purely progressive disease model
can lead to systematically biased estimates of MST, disease
incidence rate, and screening sensitivity. These findings are
aligned with the recent commentary emphasizing the need
for mixture models when studying cancer overdiagnosis (1).

By definition, overdiagnosis occurs in patients who have
nonprogressive lesions or who die from other causes before
progression to a clinical state. Therefore, viable model-based
estimation of overdiagnosis requires that the fraction of indolent
tumors and the sojourn time distribution of progressive lesions
be estimated with sufficient precision. Our findings suggest
caution when applying mixture models to real data from
screening studies for the purpose of overdiagnosis estimation.
Awareness of the identifiability issue is critical, and we recom-
mend that analyses be accompanied by a clear statement of all
modeling assumptions and the presentation of profile likeli-
hoods or other diagnostics as evidence for API (Figure 2).

In breast cancer, most published estimates of overdiagnosis
bypass natural historymodeling by directly estimating the excess
incidence of cancers in screened cohorts compared with un-
screened cohorts (3–6). Because the nonparametric excess
incidence approach can lead to biased estimates of overdiagnosis
(9), model-based approaches provide an attractive alternative, as
long as the trial data are sufficiently rich to ensure API. For
example, applying the mixture model to the CNBSS-2 data re-
vealed that the fraction of indolent disease was not adequately
precisely identifiable, indicating that more data were needed to
draw reliable conclusions about the natural history of dis-
ease progression and the extent of overdiagnosis.

Identifiability poses an even bigger problem for more com-
plex natural histories, such as the combination of in-situ and
invasive cancers (12, 29). For complex models that remain ana-
lytically tractable, structural identifiability analyses such as those
described here may be conducted, but they may be technically
challenging. To the extent that a likelihood can be derived, practi-
cal identifiability analyses based on profile likelihoods are advised.
For likelihood-free models (e.g., microsimulation models),
practical identifiability can be explored using Bayesian methods
(30). Furthermore, the analysis of constrained versions may pro-
vide guidance for the analysis of the full models. In the case of
in-situ breast cancer, such simplifications could include specify-
ing that all tumors go through the in-situ stage or assuming a
known screening sensitivity (17). Irrespective of model com-
plexity, identifiability should be verified or modifications to
achieve identifiability should be made before making any infer-
ences from the data.

Limitations of our approach include the fairly stringent
parametric assumptions of exponential distributions for disease
onset and progression. The latter can, in principle, be replaced
with more flexible distributions as long as adequately precise
verification can still be assured. Another limitation is the use of
grouped trial data instead of individual screening histories. The
advantage of this data configuration, which has previously been
used for inference based on progressive models (15, 31), is that it
is often readily available from published studies. While the
resulting likelihood is relatively easy to construct, it assumes
that persons who participate in the kth round of screening
have participated in all prior rounds. This can be addressed
by using an individual-level likelihood (32); however, the
latter requires access to individual-level data. Finally, we
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Figure 7. Profile likelihood for the parameters of a mixture model in
an analysis of grouped data from Canadian National Breast Screen-
ing Study 2 (CNBSS-2), 1980–1985. The graph shows the relative
negative log-likelihoods for the natural history parametersψ (A), λ (B),
w (C), and β (D) based on fitting of the mixture model to CNBSS-2
data (see also Web Table 1). Vertical dashed lines correspond to
maximum likelihood estimates. The intersection of the relative nega-
tive log-likelihood with the horizontal dotted line indicates the 95%
profile confidence interval.

Am J Epidemiol. 2019;188(1):197–205

Indolent Tumors in Breast Cancer Screening Trials 203



assumed a single screening sensitivity for indolent and pro-
gressive lesions. It is possible that this parameter depends on
lesion type, and alternative parameterizations may be used
(17, 33).

In conclusion, this work adds materially to the literature on
the use of model-based approaches for estimating the natural
history of disease progression as a precursor to quantifying
overdiagnosis. Our findings confirm the potential for these
methods to provide valuable insights into natural history
and overdiagnosis in cancer screening programs. Most impor-
tantly, our approach highlights what types of data are needed
for obtaining clinically relevant parameter estimates and pro-
vides insights into sources of bias under model misspecifica-
tion. We conclude that application of a mixture natural history
model to screening data should be accompanied by a thorough
investigation of practical identifiability and an assurance that
the model parameters can indeed be estimated from the avail-
able data.
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