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Unique roles of tryptophanyl-tRNA
synthetase in immune control and its
therapeutic implications
Mirim Jin1,2

Abstract
Tryptophanyl tRNA synthetase (WRS) is an essential enzyme as it catalyzes the ligation of tryptophan to its cognate
tRNA during translation. Interestingly, mammalian WRS has evolved to acquire domains or motifs for novel functions
beyond protein synthesis; WRS can also further expand its functions via alternative splicing and proteolytic cleavage.
WRS is localized not only to the nucleus but also to the extracellular space, playing a key role in innate immunity,
angiogenesis, and IFN-γ signaling. In addition, the expression of WRS varies significantly in different tissues and
pathological states, implying that it plays unique roles in physiological homeostasis and immune defense. This review
addresses the current knowledge regarding the evolution, structural features, and context-dependent functions of
WRS, particularly focusing on its roles in immune regulation.

Introduction
Aminoacyl-tRNA synthetases (ARSs) are essential

housekeeping enzymes that participate in the translation
of mRNAs1. ARSs are thought to have emerged at the
time of the last universal common ancestor and are dis-
tributed across all taxa2. The common aminoacylation
reaction, which attaches an amino acid to its cognate
tRNA, is conserved and proceeds in two steps. First, an
amino acid and adenosine triphosphate (ATP), as an
energy source, bind the active site of the enzyme and form
an aminoacyl adenylate intermediate (amino acid-AMP);
second, the adenosine monophosphate (AMP) is dis-
placed by its cognate tRNA, resulting in the covalent
linkage of the specific amino acid to one of the ribose 3′-
OH moieties of a set of tRNA isoacceptors3–7. The 20
ARSs (1 for each of the 20 amino acids) are naturally
categorized into two classes (I and II) based on the
structure of the ancestral catalytic core, chemical

properties, and consensus sequences8. Most Class I ARSs
(except the Ic subclass) are monomeric, while Class II
ARSs are multimeric9. Each class can be further divided
into subclasses based on their unique organization of
conserved structural motifs, anticodon-binding domain
characteristics, and mechanical properties. The catalytic
domain of all Class I ARSs has a Rossmann Fold (RF)
containing the dinucleotide-binding domain; this domain
carries out the aminoacylation reaction and is located at
or near the N-terminus. Classically, this domain features a
five-stranded parallel β-sheet connected by α-helices.
Three subclasses within Class I are designated as follows:
Ia, for hydrophobic amino acids (Ile, Leu, and Val), sulfur-
containing amino acids (Met and Cys), and Arg; Ib, for
charged amino acids (Glu and Lys) and Gln; and Ic, for
aromatic amino acids, including tyrosine and tryptophan.
Class II is characterized by a seven-stranded β-sheet with
flanking α-helices, and it is also divided into subclasses:
Class IIa, which recognizes groups with chemically similar
side chains, including aliphatic (Ala and Pro) and polar
(Ser, Thr, Pro, and His) amino acids and Gly; class IIb,
which recognizes the charged side chains of Asp and Lys
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and Asn; and class IIc, which recognizes the aromatic
amino acid Phe4,9,10.
Interestingly, if the evolutionary tree is followed from

lower to higher eukaryotes, ARSs can be seen to have
progressively and irreversibly added new domains or
motifs that have no apparent connection with aminoa-
cylation11. Five domains have been found, including the
N-terminal amphiphilic helix (N-helix), the glutathione S-
transferase (GST)-like domain, a helix-turn-helix motif
referred to as a WHEP domain (the name is derived from
four of the five WHEP containing proteins: WRS, histidyl
(H) tRNA synthetase, glutamyl-prolyl (EP)-tRNA synthe-
tase, and methionyl tRNA synthetase), an endothelial
monocyte-activating polypeptide II (EMAPII) domain,
and a leucine zipper domain4,11–15; these domains are
shared by more than one ARS. By contrast, eight unique
sequence motifs, referred to as UNEs, are specific to only
one ARS. The UNEs from cysteinyl tRNA synthetase
(CRS), glutaminyl tRNA synthetase (QRS), phenylalanine
tRNA synthetase (PRS), aspartidyl tRNA synthetase
(DRS), lysyl tRNA synthetase (KRS), asparaginyl tRNA
synthetase (NRS), threonyl tRNA synthetase (TRS), and
leucyl tRNA synthetase (LRS) are not similar to any of the
sequences of bacterial or archaeal tRNA synthetases or to
other UNEs (Fig. 1)11,16. The occurrence of additional
domains or motifs correlates with the emergence of new
and more sophisticated species with increasing biological
complexity at a correct and timely moment that are
capable of performing the novel functions required by
developing systems as they evolve12,17,18. Furthermore, the
structural metamorphosis generated by alternative spli-
cing, proteolysis, and post-translational modification
seem to give more diverse functions to ARSs19–22. On the
other hand, while prokaryotic ARSs exist independently
within cells, eukaryotic ARSs have obtained the ability to
form a multi-tRNA synthetase complex (MSC)23,24. In
humans, nine different ARSs and three non-synthetase
factors, p43, p38, and p18, are assembled into an MSC,
which operates as a functional depot for alternative
activities of its members17,25,26. Furthermore, most ARSs
translocate from the cytoplasm to the nucleus or extra-
cellular space in response to specific stimuli and can
participate in various biological processes. Expansions in
ARS functions are associated with numerous biological
activities, including transcription, translation, cell death
and survival, immunity to microbes, chemotaxis and
inflammation, angiogenesis, IFN-γ and p53 signaling,
mTOR signaling, and tumorigenesis (Table 1)27–31.
The diverse structural metamorphoses among species,

and/or within a species, have evolved by developing dif-
ferential mechanisms for performing certain functions in
immunity. There are a few examples of chemotaxis and
angiogenesis: (i) UNE, a N-terminal 80 amino acid
domain in the nematode Brugia malayi asparaginyl tRNA

synthetase (bmNRS), which creates an IL-8 like fold and
interacts with the IL-8 receptor, leading to chemotaxis
and proangiogenic effects;32,33 (ii) an EMAP II-like car-
boxy-terminal domain and the mini-YRS from human
tyrosyl tRNA synthetase (hYRS), which are produced
following cleavage by leukocyte elastase and show che-
motactic activity. In particular, the mini-YRS induces
chemotaxis by binding to the IL-8 type A receptor;34 (iii)
human WRS (hWRS), which is secreted from monocytes
in which the WHEP domain (WRS) interacts with Toll-
like receptors (TLR) to stimulate chemokine secretion,
and after removal of WHEP, hWRS can exert an angio-
static effect via vascular-endothelial (VE)-cadherin20,31,35.
Another example is the unique role of the WHEP domain
that is associated with the antiviral effect of glutamyl-
prolyl-tRNA synthetase (EPRS), which is composed of
glutamyl tRNA synthetase (ERS) and prolyl tRNA syn-
thetase (PRS) coupled via a linker containing three WHEP
domains. This domain is found on the exterior of the
MSC in the cytoplasm. Following viral infection, serine
990, located in the WHEP linker, is phosphorylated to
release EPRS from the MSC, after which the amino-
terminal domain of EPRS (1–196 aa), which contains a
GST-like domain (1–168 aa) and the linker region L1
(168–196 aa), interacts with poly(rC)-binding protein 2
(PCBP2). Consequently, interferon-β production is
increased due to the suppression of PCBP2-mediated
ubiquitination and degradation of mitochondrial antiviral-
signaling protein (MAVS), ultimately leading to the
inhibition of viral replication36. By acquiring additional,
differentiated functions with discrete mechanisms that
can differ at specific locations, ARSs are key regulators of
physiological homeostasis18.
This review focuses on WRS, one of the most exten-

sively studied ARSs. Information regarding its evolution,
structural features, and context-dependent biological
functions, particularly in immunity, reveals its significant
roles in immune regulation and its therapeutic potential.

Architecture for the catalytic reaction
Specific recognition by tryptophanyl tRNA synthetase

(WRS) of its substrates, Trp and tRNA, is critical for
maintaining fidelity in protein synthesis. WRS belongs to
the Class Ic ARS family, containing an RF domain with
two highly conserved signature sequences, namely,
KMSKS (Lys-Met-Ser-Lys-Ser) and HIGH (His-Ile-Gly-
His); the former contributes to amino acid activation and
the latter stabilizes both ATP during amino acid activa-
tion and the 3′ end of the tRNA for amino acid trans-
fer2,37,38. The C-terminal alpha helical domain is the
binding site for the tRNA anticodon. While the WRS from
Bacillus stearothermophilus (bWRS) requires two
domains for the catalytic reaction, eukaryotic WRSs, such
as those from yeast and archaea, have acquired an extra
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N-terminal domain, referred to as a eukaryote-specific
extension (ESE), of 100 amino acid residues2,38. Further-
more, in vertebrates, including humans, WRS has an N-
terminal extension of 154 amino acids (N154) that is
composed of the ESE and an additional vertebrate-specific
extension (VSE), constituting the full-length (FL)-human
WRS comprising 471 amino acids31,39,40 (Fig. 2a).
Although the reaction catalyzed by WRS occurs through a
similar “induced-fit mechanism” and involves a profound
reorganization of the RF domain through conformational
changes, human WRS uses a more complex catalytic
reaction than bWRS41. For example, in the aminoacyla-
tion reaction, homo-dimeric WRS exhibits “half-site”
activity, meaning that only one monomer of the homo-
dimeric WRS operates at a time. A structural analysis of
the WRS-tryptophan-ATP complex has revealed that one

WRS monomer, in the form of a semi-closed KMSAS
loop, binds to tryptophan, whereas the other monomer, in
the form of a closed KMSAS loop, binds to both trypto-
phan and ATP37. Recognition of Trp induces a con-
formational change in the AIDQ motif of human WRS to
generate a deep pocket for Trp binding and the activation
and coupled movement of the N-terminal extension and
C-terminal domain, leading to ATP binding of the
KMSAS loop in a closed conformation, thereby securing
the position of ATP for catalysis and coupling of the C-
terminal tRNA-binding domain for Trp transfer4,37,38,42.

Structural metamorphosis for non-catalytic
reactions
Undoubtedly, the N-terminal extension domain of

human WRS was adopted to undertake non-canonical

Fig. 1 Newly acquired domains and motifs in ARSs during the evolutionary process. During evolution, aminoacyl-tRNA synthetase have
acquired new domains, allowing for an increase in the complexity of organisms in a particular phylogenetic group. Importantly, with the exception of
MRS, these domains or motifs have been irreversibly retained by their respective tRNA synthetase until the evolution of humans. As a result, each
aminoacyl-tRNA synthetase in humans has all of the newly acquired domains. Each of these domains imparts specific new functions that are more
complex than simple aminoacylation, which was the original function of these enzymes. The model species used are: Homo sapiens, Danio rerio,
Drosophila melanogaster, Caenorhabditis elegans, and Saccharomyces cerevisiae. LUCA last universal common ancestor, N-helix N-terminal amphiphilic
helix, GST glutathione S-transferase (GST)-like domain, EMAPII endothelial monocyte-activating polypeptide II
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functions. The addition of the WHEP domain, WRSs
occurred at the chordate stage and have been preserved
ever since (Fig. 1). Recently, it has been proposed that a
dimeric FL-WRS (Fig. 2c) can crosslink with two toll-like
receptor 4-myeloid differentiation factor 2 (MD2)
(Fig. 2d) heterodimers via N154, where WHEP (from
8–64), located in the N154 regions, is pivotal. WHEP
inserts between the TLR4 and MD2 of one heterodimer,
with the terminal domain of the N154 region binding the
other TLR4 in trans, leading to TLR4-MD2 dimerization
and macrophage activation (Fig. 2e). By contrast, mini-
WRS, which lack parts of the WHEP domain, seldom
induces functional dimerization11,20. Rather, mini-WRS, a
naturally occurring alternative splice variant of WRS that
lacks the N-terminal 47 amino acids, and T1- and T2-
WRS, which are proteolytic products of secreted FL-WRS
and lack significant parts of the WHEP domain, are
composed of 71–471 and 94–471 amino acids, respec-
tively, and have anti-angiogenic effects11,43,44. For exam-
ple, after proteolytic cleavage, T2-WRS (Fig. 2f) binds
VE-cadherin, an endothelial cell adherens junction
molecule. VE-cadherin has two conserved tryptophan
residues at positions 2 and 4 of the N-terminal extra-
cellular domain (EC)-1, which is a key determinant for the
dimerization of VE-cadherin in preformed blood vessels.
In newly generated blood vessels, EC1 in the VE-cadherin
monomer (Fig. 2g) is exposed owing to endothelial cell

budding. Similar to other ARSs, human WRS has devel-
oped a tryptophan-binding pocket as a specific active
site27,39,43,45,46. After proteolytic cleavage of the N-
terminal extension covering the binding pocket, the
tryptophan-binding sites are exposed, and the two pro-
teins bind via the tryptophan residues in EC1 (Fig. 2h)47.
Therefore, it is reasonable that human FL-WRS, with a
completely preserved N-terminal extension, does not
exert angiostatic effects48,49. N154 in human WRS has
probably evolved to achieve a non-catalytic multi-func-
tion while simultaneously contributing to catalytic activity
based on the fact that T2-WRS cannot perform aminoa-
cylation because of the lack of the N-terminal extension
domain participating in the reaction, which mini-WRS
can perform (Fig. 2b)44.

WRS signaling and clinical relevance
Extracellular signaling of secreted WRS
WRS is secreted into the extracellular space in response

to certain stimuli. For example, upon pathogenic infec-
tion, but prior to tumor necrosis factor-α (TNF-α) pro-
duction, WRS is rapidly secreted from monocytes without
de novo synthesis, although the mechanism of secretion is
not completely known. The secreted FL-WRS, but not
mini-WRS, interacts with TLR2 and/or TLR4-MD on
macrophages, leading to the activation of innate immune
responses, in which TNF-α and chemokine production,

Table 1 Non-canonical functions of the new domains and motifs in selective aminoacyl-tRNA synthetases

Domain ARS Acquired function during evolution References

UNE-S SRS Facilitates the translocation of SRS from the cytoplasm into the nucleus to regulate VEGF expression 16,86

UNE-L LRS Important for stabilizing RRS and LRS in the MSC 87

GST ERS or EPRS Included as a component of the MSC 26

MRS Included as a component of the MSC 24,26

VRS Complexes with eEF1H during translation 21,88,89

CRS Complexes with eEF1γ during translation 90,91

EMAP II YRS Regulates the cytokine activity of YRS 92

Leucine zipper RRS Interacts with the MSC 24,93

N-helix YRS Increases the affinity of the synthetase for its tRNA in translation 94,95

DRS Enhances tRNA-binding affinity 96–98

WHEP EPRS Suppresses inflammatory gene expression 13,99

HRS Activates chemokine receptors on T-lymphocytes and immature dendritic cells 100

MRS Translocates to the nucleolus in response to growth factors and enhances rRNA synthesis during

transcription

101

GRS Regulates catalytic efficiency, thermal stability, and structural flexibility 102

WRS Acts as an endogenous ligand for the TLR4/MD2 complex 20

ELR YRS Critical for the function of IL-8-like cytokines 103

N-helix N-terminal amphiphilic helix, GST glutathione S-transferase (GST)-like domain, EMAPII endothelial monocyte-activating polypeptide II
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(C) Human FL-WRS homodimer (D) TLR4/MD2

(F) Human T2-WRS dimer (G) EC1 of VE-cadherin (H) T2-WRS-VE-cadherin

(E) TLR4/MD2-2FL-WRS-TLR4/MD2

TLR4

MD2

WHEP domain

Trp residues

(A) (B)

Fig. 2 Various structures of WRS and their interactions with specific receptors. a Schematic representation of domains in WRS from prokaryotes
(B. stearothermophilus), lower eukaryotes (S. cerevisiae), and higher organisms (H. sapiens). The Rossmann Fold (RF) catalytic domain and anticodon-
binding domain (ABD) are well conserved in all WRSs. In the RF domain, the three characteristic types of motif have slightly different sequences
among species. The eukaryotic-specific extension (ESE) is common in eukaryotic WRSs. Human full-length (FL)-WRS also has the vertebrate-specific
extension (VSE) at the N-terminal appended site. Alternative splicing can produce a mini-WRS where a portion of the VSE is truncated. After being
secreted into the extracellular space, the T1 and T2-WRSs are generated by proteolytic cleavage, which removes the ESE, including the entire VSE
sequence. b The aminoacylation activity of the various forms of WRSs in different species. All the WRSs, with the exception of T2-WRS, are capable of
aminoacylation. c–h Representative model of the structural arrangement of WRS and their specific interactions with receptors. FL-WRS (c), dimeric
human FL-WRS (PDB 1R6T) binding to two TLR4/MD2 heterodimers (PDB 3FXI) through the WHEP domain and the N154 terminus in trans (d, e), T2-
WRS (PDB 1O5T) with truncated WHEP entirely cuts off the N-terminus (f), interaction of T2-WRS with the EC1 domain in VE-cadherin (PDB 3PPE). Trp
residues present in the EC1 domain bind to the Trp binding pocket present in the RF domain of WRS (g, h)
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neutrophil infiltration, and increased phagocytosis are
prominent. These responses eliminate invading pathogens
in the very early phase of infection, implying that there is a
crucial role for FL-WRS as an endogenous ligand of
human TLR2/4 in countering infections and immune
regulation (Fig. 3a)20,50. In support of this hypothesis,
compared with healthy subjects, high levels of WRS are
consistently detected in the serum of critically ill patients
with sepsis, a potentially lethal complication of a severe
infection. Recent preliminary data have shown that there
is a significant positive correlation among WRS levels and
sepsis severity, the sepsis-associated organ failure assess-
ment (SOFA) score, and deaths (unpublished data); the
data therefore suggest a pivotal role for WRS in sepsis
pathophysiology.
By contrast, when endothelial cells are stimulated with

IFN-γ, an angiostatic cytokine, the expressed WRS forms

a tertiary complex with annexin II and S100A10, which
regulate exocytosis. A small fraction of the complexed
WRS can become dissociated from annexin II-S100A10
and be secreted from cells51. This secretion does not seem
to proceed through the classical secretion pathways
involving the Golgi, as it is not blocked by treatment with
brefeldin A or A23187, inhibitors of ER-Golgi-transport
and calcium-dependent exocytosis, respectively51,52. After
secretion, FL-WRS is cleaved by plasmin and/or elastases,
which are both critical proteases involved in angiogen-
esis53. T2-WRS potently inhibits new angiogenesis, acting
via VE-cadherin, a critical player in angiogenesis and
vascular permeability at the intracellular junction between
endothelial cells31,35,39,48,54. This T2-WRS/VE-cadherin
interaction prevents the activation of VEGFR and sub-
sequent ERK-mediated signaling, which suppress endo-
thelial migration and proliferation (Fig. 3b)48,55,56.

Fig. 3 Roles of WRS in “Yin-Yang” immune regulation and its relation to immune diseases. a Upon infection, FL-WRS is rapidly secreted from
monocytes to activate macrophages via TLR4/MD2, which induces innate immune responses, including chemokine production, neutrophil
infiltration, and increased phagocytosis, eventually leading to pathogen elimination. High levels of WRS probably provoke an acute hyper-
inflammation in sepsis. Antigen presentation to T cells by dendritic cells induces IFN-γ production, leading to the increased expression of WRS.
Overexpression of WRS in T cells is able to reserve Trp, which is essential for cell activation and proliferation and may be involved in the development
of autoreactive T cells in autoimmune diseases. b IFN-γ stimulation not only increases WRS secretion but also induces the translocation of WRS into
the nucleus. Secreted WRS is proteolytically processed to form T2-WRS, which binds to VE-cadherin and inhibits angiogenesis. Nuclear FL-WRS
enhances anti-angiogenesis by regulating cell growth through the phosphorylation of p53, further implying a role for WRS as an anti-cancer agent.
Furthermore, an imbalanced activation of indoleamine 2,3-dioxygenase (IDO) relative to WRS in antigen-presenting cells (APCs), including
macrophages and dendritic cells, induces an immunosuppressive state, inhibiting the proliferation of immune cells, including T cells, and possibly
causing these cells to become tolerant or apoptotic
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Intracellular signaling of WRS
Since WRS is a housekeeping enzyme, its over-

expression in various cells and tissues under diverse
physiological environments is a rather unexpected find-
ing57–59. With respect to development and aging, WRS
expression is increased both in the developing salivary
grand of Drosophila and in aged human epidermis60. WRS
mRNA levels have been shown to be increased for a
specific time during the differentiation of human
monocyte-derived macrophage and dendritic cells61,62.
Furthermore, WRS is highly expressed not only in cells
infected with human cytomegalovirus and hepatitis B
virus but also in mouse intestines infected with Cholera
vibrio63–65. However, the reasons for this WRS over-
expression and the underlying mechanisms remain
unclear.
Endothelial WRS mRNA expression can also be

increased in response to IFN-γ, which is mediated by
transcription factor binding to gene promoters, including
the gamma-activated sequence and the interferon-
sensitive response element in STAT-1 and IFN reg-
ulatory factor, respectively. WRS can translocate into the
nucleus, using a potential nuclear localization sequence
proximal to the C-terminus27. In the absence of nuclear
WRS, DNA-PKcs (the catalytic subunit of DNA depen-
dent protein kinase) is independently linked to poly
[ADP-ribose] polymerase 1 (PARP-1), with Ku70/80 ser-
ving as a bridge between the two. Ku70/80 binding to
both DNA-PKcs and PARP-1 orients the C-terminal
domain of PARP-1 to allow for its phosphorylation by
DNA-PKcs. In this state, PARP-1 cannot PARylate DNA-
PKcs. However, nuclear WRS can displace Ku70/80 and
bind to both DNA-PKcs and PARP-1. The WHEP domain
of WRS bridges the C-terminal kinase domain of DNA-
PKcs to the N-terminal domain of PARP-1, where WRS
enables Trp-AMP, an intermediate amino-adenylate
product, to occupy the active site. When Trp-AMP
occupies the active site of WRS, the WHEP domain opens
and is available for interacting with DNA-PKcs and
PARP-1, thus stimulating the PARylation of DNA-PKcs
by PARP-1. Finally, the PARylated DNA-PKcs then
phosphorylates p53, leading to p53-driven anti-pro-
liferative effects and senescence27. These findings imply
that the functions of nuclear WRS may concur with those
of extracellular WRS as an angiostatic cytokine, consistent
with the well-known functional integration of IFN-γ sig-
naling and p53 activation. This furthermore suggests roles
for WRS in cell death or cancer (Fig. 3b)66.
Tryptophan metabolism is closely linked to IFN-γ-

mediated immune regulation, which induces a dual effect
on its metabolism. Firstly, there is an increase in the rate
of degradation of Trp by the indoleamine 2,3-dioxygenase
(IDO) pathway, where IDO is strongly increased in
macrophages and dendritic cells. The resulting depletion

of Trp levels represses immune cell activation and pro-
liferation in the microenvironment67–73. In addition, the
products of Trp catabolism (quinolinic acid and 3-
hydroxyantranilic acid) can induce T cell apoptosis,
leading to immune tolerance. Secondly, the accumulation
of tryptophan into the Trp–tRNA complexes available for
protein synthesis provides a protective mechanism for
immune cells (Fig. 3b)74,75. Treatment of cytotoxic T
lymphocyte antigen-4 (CTLA-4), a negative regulator of T
cell activation, with human PBMCs induced concomitant
increased expression of both IDO and WRS in CD4+
T cells, which prevents CD4+ T cell activation through an
IDO-dependent mechanism. Moreover, CD8+ T cells
only showed increased WRS expression, not IDO, and
were able to maintain their activation status via the Flu
antigen, which is unaffected by CTLA-4 pretreatment,
rendering WRS a Trp reservoir for protein synthesis76,77.
In addition, given that immune cells possess many
tryptophan-rich proteins compared with proteins in
general, such as the human major histocompatibility
complex antigens, complement factor B, and β-2 micro-
globulin, which are known to be induced by IFN-γ and
immunoglobulins, it is plausible that WRS and Trp
cooperate to regulate the activities of various immune
cells78,79. Clinically, along with changes in the ratio of
serum kynurenine, a metabolite of the IDO pathway, to
tryptophan, an imbalance in the expressions of IDO and
WRS has been suggested to be associated with auto-
immune disorders. Patients with Graves’ disease (GD)
show increased kynurenine to Trp ratios and have
increased IDO expression in B cells and dendritic cells
(DCs), indicating immune suppression; however, GD-
derived CD4+ T cells have increased WRS expression and
their proliferation was not inhibited by IDO expression in
DCs from GD-patients, suggesting the activation of
autoreactive T cells80. Furthermore, in immune throm-
bocytopenia, decreased IDO expression and increased
WRS expression in CD4+ and CD8+ cells have been
proposed to enhance the survival of autoreactive T cells81.
In rheumatoid arthritis patients, the increased expression
of WRS mRNA may be a cause of CD3+ T cell activation
(Fig. 3b)58.

Conclusion and future prospects
Beyond its role in protein synthesis, WRS has evolved to

play a role in immune regulation. Following an infection,
WRS, in combination with WHEP, is immediately secre-
ted by monocytes, the first responder cells, leading to
inflammatory reactions that eliminate invading patho-
gens20. Since FL-WRS serves as an endogenous ligand of
human TLR2 and TLR4, it is easy to conclude that this
protein plays a significant role as an immune activator in
various immune responses, including innate immunity,
the development of immune cells, and differentiation, as
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well as adaptive immunity72,74,78. Moreover, WRS has
simultaneously acquired anti-inflammatory properties
through diverse mechanisms such as alternative
splicing and proteolytic cleavage39,45. WRS is the only
ARS whose expression is induced by the IFN-γ produced
by innate immune cells and T cells under various
immunological contexts. WRS also plays a central reg-
ulatory role in IFN-γ-induced anti-angiogenesis and cell
survival or death. Since inflammation increases protease
activity, the hyper-secretion of FL-WRS results in
increased levels of T2-WRS, which suppresses the spread
of inflammation through its angiostatic activity and the
activation of p53 in the nucleus. FL-WRS, containing the
WHEP domain, can also induce a pro-apoptotic state. In
addition, during Trp metabolism, WRS participates in the
activation and/or inhibition of immune cells, including
macrophages, dendritic cells, and T cells, by providing
tryptophan-binding activity. By placing a device within
the N-terminal extension that can perform two different
mechanisms, either activating or inhibiting inflammation,
WRS serves as a “yin-yang” modulator of inflammation
(Fig. 3).
Sepsis is a syndrome with heterogeneous immuno-

pathology, including acute hyper-inflammation and
immunosuppression that cannot overcome nosocomial
and opportunistic infections82. In sepsis patients who have
high WRS levels in the early acute phase, excessive WRS-
induced inflammation probably occurs, and antagonizing
WRS may be a therapeutic strategy for sepsis; by contrast,
in immunocompromised septic patients with monocyte
dysfunction, injections of FL-WRS or N154 may serve as an
appropriate treatment to boost weakened immunity.
Studies on the function of WRS, not only as a p53

modulator but also an angiostatic agent, suggest that WRS
could be a therapeutic target for various diseases, including
cancer. Current clinical data examining the expression of
WRS in cancer tissues indicate that the role of WRS in
tumor biology is not simple and seems to be context-
dependent83. In several cancers, including gastric adeno-
carcinoma, colorectal and ovarian cancer, high levels of
WRS expression are associated with a favorable prognosis,
and WRS was recently included as a predictive biomarker
for unnecessary adjuvant chemotherapy after surgery for
resectable gastric cancer46,84,85. By contrast, in oral squa-
mous cell carcinoma, high levels of WRS are positively
correlated with tumor stage, invasion, and depth, and it has
been suggested that secreted WRS may induce cancer cell
migration57. Therefore, how altered WRS expression levels
differentially affect the fate of cancer cells and how secreted
WRS regulates the cancer microenvironment that contains
various cells, including immune cells, are interesting ques-
tions. In order for WRS to be meaningful as a prognostic
marker, or even as a therapeutic target, further in-depth
research needs to be conducted. Until now, in patients with

autoimmune diseases, the purpose of WRS overexpression
in immune cells has been assumed to be as a Trp repository;
however, this notion arises because only certain phenomena
have been examined. Therefore, it is very important to
examine the mechanisms underlying immune cell pro-
liferation/activation and metabolism in detail.
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