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Abstract

Assembly of bacterial short-read whole-genome sequencing data frequently results in hundreds of contigs for which

the origin, plasmid or chromosome, is unclear. Complete genomes resolved by long-read sequencing can be used to

generate and label short-read contigs. These were used to train several popular machine learning methods to classify

the origin of contigs from Enterococcus faecium, Klebsiella pneumoniae and Escherichia coli using pentamer frequencies.

We selected support-vector machine (SVM) models as the best classifier for all three bacterial species (F1-score E.

faecium=0.92, F1-score K. pneumoniae=0.90, F1-score E. coli=0.76), which outperformed other existing plasmid prediction

tools using a benchmarking set of isolates. We demonstrated the scalability of our models by accurately predicting the

plasmidome of a large collection of 1644 E. faecium isolates and illustrate its applicability by predicting the location of

antibiotic-resistance genes in all three species. The SVM classifiers are publicly available as an R package and

graphical-user interface called ‘mlplasmids’. We anticipate that this tool may significantly facilitate research on the

dissemination of plasmids encoding antibiotic resistance and/or contributing to host adaptation.

DATA SUMMARY

1. Mlplasmids was implemented as a R package (https://
gitlab.com/sirarredondo/mlplasmids) under GNU General
Public License v3.0. We additionally developed mlplasmids
as a graphical-user interface (https://sarredondo.shinyapps.
io/mlplasmids).

2. The complete code and files required to train and bench-
mark support-vector machine classifiers are publicly
available at GitLab (https://gitlab.com/sirarredondo/analysis_
mlplasmids).

3. Complete genome sequences from the National Center for
Biotechnology Information (NCBI) Assembly Entrez data-
base were used to train and test E. faecium, K. pneumoniae
and E. coli mlplasmids classifiers, and their corresponding
accession numbers and other details are available in Table S1
(available with the online version of this article).

4. Illumina NextSeq500/MiSeq reads of the 1644 E. faecium
isolates used in this study are available under the following

European Nucleotide Archive (ENA) public project:
PRJEB28495.

5. Oxford Nanopore Technologies MinION reads used to
complete E. faecium genomes are available under the fol-
lowing figshare projects: 10.6084/m9.figshare.7046804,
10.6084/m9.figshare.7047686.

6. Accession numbers from the set of isolates used to bench-
mark mlplasmids against other tools are available in
Table S2.

7. Accession numbers from NCBI draft genome assemblies
used to predict the location of the resistome of E. faecium,
K. pneumoniae and E. coli are available in Table S3.

INTRODUCTION

Plasmids are autonomous extra-chromosomal elements that
can act as major drivers of variation and adaptation in bac-
terial populations [1, 2]. Plasmids can also facilitate the dis-
semination of antimicrobial resistance via horizontal
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transfer of resistance genes, such as plasmid-derived vanco-
mycin resistance in E. faecium or extended-spectrum b-lac-
tamase in Enterobacteriaceae isolates [3–6]. This means that
understanding plasmid epidemiology is pivotal to fully
understand the introduction and transmission of antimicro-
bial resistance in bacterial populations [7, 8].

Analysing the plasmid content of large collections of isolates
by PCR-based techniques is laborious and has low resolu-
tion. Illumina sequencing platforms, which provide short
reads (ranging from 150 to 300 bp) with low error rates,
have been massively used to assemble bacterial draft
genomes [9]. However, the frequent presence of insertion-
sequences (IS) and transposable elements in bacterial
genomes prohibit their full assembly, because these regions
cannot be spanned by short-reads [7, 10]. This results in a
fragmented assembly typically consisting of hundreds of
chromosomal and plasmid contigs that challenge the infer-
ence of the origin of these contigs.

Different tools (PlasmidFinder, cBAR, Recycler, Plasmid-
SPAdes, PlasFlow) have been proposed to automate the
reconstruction of plasmids using short-read whole-genome
sequencing (WGS) data [11–15]. However, plasmid predic-
tions are usually incomplete and chromosome-derived con-
tigs are frequently present among the predicted plasmids
[16]. This may be partially overcome using tools such as
PlacnetW, which allows users to define and solve plasmid
boundaries, but limits the high-throughput analysis of
short-read WGS data [17, 18].

Long-read WGS has emerged as a solution to obtain com-
plete and error-free plasmid sequences [19, 20]. Read
lengths generated by these platforms allow the complete
spanning of repeat sequences and obtaining a single contig
per replicon [21, 22]. Due to the increasing number of com-
plete genomes available in RefSeq/National Center for Bio-
technology Information (NCBI) databases, we explored the
possibility of training several popular machine learning
algorithms using genome signatures from single-species
assemblies. These features have been previously used in
cBAR and recently in PlasFlow to distinguish plasmid- and
chromosome-derived sequences in metagenomic samples.

Here, we present mlplasmids, a new tool to predict plasmid-
and chromosome-derived sequences for a selection of
Gram-positive and Gram-negative bacterial species (E. fae-
cium, K. pneumoniae and E. coli) with species-specific clas-
sifiers, and we show that mlplasmids outperforms other
plasmid prediction tools for these three species. We have
made the plasmid models available as an R package and a
web-server.

METHODS

Retrieving complete genome sequences from the
NCBI database

We downloaded complete genomes for E. faecium (chromo-
somes=24; plasmids=82), K. pneumoniae (chromo-
somes=156; plasmids=561) and E. coli (chromosomes=168;

plasmids=415) from the Assembly Entrez NCBI database
(https://www.ncbi.nlm.nih.gov/assembly/) with the follow-
ing criteria: (i) a status level of ‘complete genome’ and (ii)
one or more plasmid entries in its respective genome assem-
bly. Retrieved genomes and their corresponding accession
numbers are available in Table S1.

Extending the number of complete genome
sequences for Enterococcus faecium

Of 1644 E. faecium Illumina-sequenced (MiSeq/NextSeq)
isolates, 62 isolates were selected based on their preliminary
plasmid content using PlasmidSPAdes (version 3.8.2) and
presence of known plasmid replication genes [1] (Supple-
mentary Methods S1). We used Oxford Nanopore Technol-
ogies (ONT) MinION and hybrid assembly using Unicycler
(version 0.4.1) in ‘bold’ mode to obtain complete genome
sequences [23].

Estimating strain diversity in our collection of
complete genomes

To ensure that our training and test sets contained chromo-
some- and plasmid-derived contigs from a diverse set of iso-
lates belonging to each species, we estimated the diversity
present in our collection of K. pneumoniae, E. coli and E.
faecium genomes with Mash (version 1.1) (sketch
size=1000; k-mer=21) [24]. Mash distances were calculated
using the total genome content of an isolate (chromosome
plus associated plasmids). Computed pairwise Mash distan-
ces were transformed into a distance matrix and clustered
using the hclust function (method=‘ward.D2’) available in R
package stats (version 3.3.3). Hierarchical clustering was
visualized using the heatmap.2 function available in R pack-
age gplots (version 3.0.1) [25].

IMPACT STATEMENT

Plasmids play a major role in disseminating and facilitat-

ing the dissemination of antimicrobial resistance. Whole-

genome sequencing is currently used as a standard

approach to analyse and study bacterial plasmid sequen-

ces. However, the identification of plasmid- and chromo-

some-derived contigs remains challenging due to the

presence of repetitive sequences, which results in a frag-

mented assembly. Here, we introduce a set of machine-

learning classifiers (mlplasmids) that employ pentamer

frequencies to predict plasmid- and chromosome-

derived contigs from single species. In this study, we

show the potential of mlplasmids by accurately predict-

ing the plasmidome content of three relevant bacterial

species and highlight mlplasmids¢ applicability to predict
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will facilitate the identification of plasmid- and chromo-

some-derived sequences for large bacterial datasets.
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Simulating Illumina sequence reads

To calculate the number of paired reads required to simu-
late sequence read files, we used wgsim (version 0.3.2,
https://github.com/lh3/wgsim) with 50� coverage and no
error rate. We retrieved the genome size using bioawk (ver-
sion 20110810, https://github.com/lh3/bioawk) for each
selected complete genome of K. pneumoniae and E. coli.

Assembling Illumina sequence reads

Simulated sequence reads of K. pneumoniae and E. coli were
trimmed using seqtk (version 1.2-r94, https://github.com/
lh3/seqtk) with the command ‘–trimfq’. We used SPAdes
(version 3.6.2) to perform de novo assembly [26]. Contigs
with a length smaller than 500 bp were excluded.

E. faecium Illumina NextSeq reads were trimmed using
nesoni clip, part of the nesoni toolkit (version 0.132), with
the following settings: ‘–adaptor-clip yes –match 10 –max-
errors 1 –clip-ambiguous yes –quality 10 –length 90 –trim-
start 0 –trim-end 0 –gzip no –out-separate yes pairs’.
Trimmed reads were then assembled into contigs using
SPAdes (version 3.5.0) with default settings. Contigs with a
mean coverage lower than 10� and/or a length smaller than
500 bp were removed from the assemblies.

Labelling short-read contigs as chromosome or
plasmid derived

To label contigs as either plasmid or chromosome derived,
SPAdes contigs were mapped using bwa-mem (version
0.7.15-r1140) against complete chromosomal and plasmid
sequences [27]. Contig alignments were parsed using sam-
tools (version 1.4). This approach allowed to label each
SPAdes contig either as plasmid or chromosome derived.
SPAdes contigs mapping both to complete chromosomal
and plasmid sequences or with a length shorter than
1000 bp were discarded.

Genomic signatures as features to distinguish
plasmid and chromosome sequences

To investigate the role of pentamer frequencies as classifier
features to differentiate between plasmid and chromosomal
sequences, we retrieved the Assembly Entrez NCBI com-
plete genomes available for E. faecium, K. pneumoniae and
E. coli (as previously described in Methods in the section
‘Retrieving complete genome sequences from the NCBI
database’). We calculated their pentamer frequencies using
the R package biostrings (version 2.42.1) [28] and trans-
formed them into a distance matrix (Euclidean distance).
We clustered the resulting matrix using the hclust function
(method=‘ward.D2’) from R package stats (version 3.3.3).
Hierarchical clustering was visualized using the heatmap.
plus function available in R package heatmap.plus (version
1.3). Additionally, we used the t-distributed stochastic
neighbour embedding (t-SNE) (theta=0.5, iterations=1000,
dims=2, is_distance=TRUE) using the implementation pro-
vided in the R package Rtsne (version 0.13) [29].

Selection of isolates for benchmarking

We excluded a set of isolates from the training set consisting
of contigs derived from isolates of K. pneumoniae (chromo-
somes=11; plasmids=33), E. coli (chromosomes=3; plas-
mids=7) and E. faecium (chromosomes=7; plasmids=31) for
which original Illumina sequencing data and complete
genomes were available. Twelve of these isolates were also
used in a recent benchmarking publication of plasmid pre-
diction tools [16] (Table S2). From the benchmarking set of
isolates, E. coli strain K-12 substrain MG1655, K. pneumo-
niae KSB1_7 and E. faecium E2079, E2364 and E9101 did
not contain any plasmids and were considered as negative
controls. None of these data was used to train E. faecium, K.
pneumoniae and E. colimlplasmids models.

Building a machine-learning model

For each bacterial species, we tuned and compared five dif-
ferent supervised algorithms provided in mlr R package
(version 2.11): logistic regression, Bayesian classifier, deci-
sion trees, random forest (RF) and support-vector machine
(SVM) [30–32]. We defined a two-class classification prob-
lem using the category ‘plasmid’ as positive-class. To train
and test the resulting classifiers, we considered pentamer
frequencies (n=1024) that were calculated using the oligo-
nucleotideFrequency function available in R package bio-
strings (version 2.42.1). The mlr package was used to split
SPAdes-labelled contigs into training (80%) and test sets
(20%), preserving the frequencies of each class in both sets
(Supplementary Methods S2 and Table S6).

For E. faecium training and test sets, we checked the pres-
ence of chromosome-labelled contigs corresponding to plas-
mid sequences and integrated into the chromosome using
BLASTP (version 2.6.0+) (>60% coverage, >80% identity, E-
value=1�10�5) against a curated database of known entero-
coccal plasmid replication sequences [33]. Decision trees,
RF and SVMs hyperparameters were optimized using ran-
dom search in a predefined search space (Table S5). We per-
formed 10-fold cross-validation to assess the quality of
hyperparameters combination, using error rate as a perfor-
mance measure, except for E. coli models in which the true-
positive rate was considered to overcome a lower plasmid
frequency. For each object, posterior probabilities were gen-
erated and the class with a highest posterior probability was
assigned.

Optimized classifiers were compared for the test set through

receiver operating characteristic (ROC) curves. For each

classifier, area under the curve (AUC) and precision-recall

curves were calculated to compare resulting classifiers based

on different true-positive and false-positive thresholds

(from 0 to 1). Metrics were assessed using two different

units: number of contigs and sequence size in base pairs.

The F1-score was reported to obtain a harmonic mean

between specificity and sensitivity. Definitions of the statis-

tics reported in this study are reported below.
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Sensitivity ¼
True positive contigs=bpð Þ

True positive contigs=bpð Þþ False negative contigs=bpð Þ

Specificity ¼
True negative contigs=bpð Þ

True negative contigs=bpð Þþ False positive contigs=bpð Þ

Precision ¼
True positive contigs=bpð Þ

True positive contigs=bpð Þþ False positive contigs=bpð Þ

Accuracy ¼
True positive contigs=bpð Þ þTrue negative contigs=bpð Þ

Total contigs=bpð Þ

F1� score ¼
2� True positive contigs=bpð Þ

2� True positive contigs=bpð Þ þ False positive

contigs=bpð Þþ False negative contigs=bpð Þ

An overview of the method followed to build the resulting
classifiers is shown in Fig. 1.

For each bacterial species, we selected the best model based
on the resulting F1-score to predict plasmid- and chromo-
some-derived sequences. We implemented them in a new R
package called mlplasmids available at https://gitlab.com/
sirarredondo/mlplasmids under GNU General Public
License v3.0. We also developed a Shiny app, available at
https://sarredondo.shinyapps.io/mlplasmids/ to enable plas-
mid prediction with a graphical user interface [34].

Comparison of mlplasmids against other plasmid
prediction tools

We evaluated the performance of mlplasmids against Plas-
Flow (version 1.0), PlasmidSPAdes (version 3.8.2) and cBar
(version 1.2). We considered contigs derived from the iso-
lates described in Methods in the section ‘Selection of iso-
lates for benchmarking’ for which short-read sequencing
data and complete genomes were available to validate the
presented plasmid prediction tools. cBAR was run using
default parameters. PlasFlow was run using standard and
recommended parameters corresponding to a minimum
posterior probability of 0.7 and minimum contig length of
1000 bp. Contigs with a lower probability were catalogued
as ‘unclassified’ by PlasFlow and were excluded from this
comparison. PlasmidSPAdes (version 3.8.2) generates its
own assembly and the resulting contigs were labelled as
true- or false-positive results following the methodology
described in Methods in the section ‘Labelling short-read
contigs as chromosome or plasmid derived’. For all the
tools, we filtered out contigs with a length shorter than
1000 bp.

We benchmarked these plasmid prediction tools using:
accuracy, F1-score, and precision. PlasmidSPAdes does not
predict chromosome-derived contigs; thus, we could not
directly calculate its accuracy and F1-score. To overcome
this, we used Quast (version 4.1) to map plasmid-predicted
contigs against their respective complete plasmid sequences
[35]. We then retrieved the reported ‘genome fraction’ in

Quast, which is defined as the percentage of aligned bases
from the reference genome covered by contigs predicted as
plasmid derived. This allowed us to obtain an estimation of
PlasmidSPAdes¢ sensitivity [35].

Validating mlplasmids against complete plasmid
sequences

To observe the performance of the resulting classifiers in
sequences larger than the mean contig length present in our
training and test sets, we used K. pneumoniae (n=11) and E.
coli (n=3) complete genomes described in Methods in the
section ‘Selection of isolates for benchmarking’ to observe
mlplasmids performance predicting complete chromosomal
and plasmid sequences. In addition, we downloaded com-
plete genomes of E. faecium from the Assembly Entrez
NCBI database (n=24) that were not included in the train-
ing set (Table S1).

Predicting the location of antibiotic-resistance
genes

All assemblies of E. faecium (n=369), K. pneumoniae
(n=1346) and E. coli (n=5234) with an assembly level corre-
sponding to ‘contig’ were downloaded from NCBI Genomes
FTP (ftp.ncbi.nlm.nih.gov/genomes/). For each down-
loaded draft assembly, we used Abricate (version 0.8.2)
(https://github.com/tseemann/abricate) to screen contigs
against the ResFinder database (release from 18th May
2016) [36] to determine the presence of antimicrobial-resis-
tance genes. Abricate was run using a minimum DNA iden-
tity of 95% and a minimum coverage of 80%. To assign a
particular contig as plasmid- or chromosome-derived, we
used E. faecium, K. pneumoniae and E. coli SVM models in
mlplasmids specifying a minimum posterior probability of
0.7 and a minimum contig length of 1000 bp (Table S3).

To validate mlplasmids¢ potential to predict the genomic
context of a particular antibiotic-resistance gene, we used
the isolates described in Methods in the section ‘Selection of
isolates for benchmarking’. We used mlplasmids on a contig
level to assign whether a particular resistance gene was pres-
ent on a plasmid or chromosome context. We used identical
metrics, introduced in Methods in the section ‘Building a
machine-learning model’, to determine performance met-
rics but considering genes as units.

Predicting the plasmidome content of E. faecium

We used the E. faecium optimized model to predict plas-
mid- and chromosome-derived contigs from the collection
of 1644 E. faecium Illumina-sequenced (MiSeq/NextSeq)
isolates (Table S6). We filtered out contigs with a length
shorter than 500 bp and a minimum posterior probability of
0.7 to assign contigs either as plasmid or chromosome
derived using the class with a highest posterior probability.
SPAdes assembly statistics from this collection are shown in
Table S7.

Data overview

To facilitate the comprehension and reproducibility of the
analysis, we summarized in Supplementary Methods S3 the
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Fig. 1. Workflow to create the plasmid models for Enterococcus faecium, Klebsiella pneumoniae and Escherichia coli. (a) For E. faecium,

62 Illumina-sequenced strains were selected for ONT sequencing and Unicycler was used to extend the number of complete genomes

available for this species. For E. coli and K. pneumoniae, we downloaded complete genomes with plasmids associated from the Assem-

bly Entrez NCBI database. (b) For E. coli and K. pneumoniae, we simulated reads with 50� coverage and no error rate using wgsim. (c)

Illumina simulated and non-simulated reads were de novo assembled using SPAdes. (d) We mapped short-read contigs against com-

plete genome sequences to define a reliable dataset of short-read contigs as plasmid or chromosome derived. (e) For each bacterial

species, five machine-learning classifiers were trained (10-fold cross-validation) and compared using a specific bacterial species train-

ing and test set. (f) SVM models were implemented in mlplasmids and used to predict plasmid- and chromosome-derived sequences

in isolates with only short-read WGS data available. The complete workflow is available from https://gitlab.com/sirarredondo/analy-

sis_mlplasmids.
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different sequencing and assembly files used in each of the
sections previously described in Methods.

RESULTS

Diversity of complete genome sequences

To ensure that the new classifiers were built using genome
sequences from a large and diverse set of isolates belonging
to each species, we first assessed the diversity present in our
collections of E. faecium, K. pneumoniae and E. coli. We
used Mash to sketch and cluster all retrieved isolates from
E. faecium, K. pneumoniae and E. coli. For E. faecium, we
defined three main clusters and observed that our set of E.
faecium (n=62) extended the diversity present in complete
genomes in the Assembly Entrez NCBI database (n=24)
(Fig. S1). Seven isolates were part of a cluster in which we
did not find NCBI complete genomes. Strikingly, we
observed a single unique NCBI complete genome forming
an independent cluster (GCF_000737555), corresponding
to E. faecium T110, a probiotic strain (Fig. S1). For K. pneu-
moniae, we also observed and defined three main clusters
from all complete genomes available in the Assembly Entrez
NCBI database (n=156). One of the three clusters was only
composed of three K. pneumoniae isolates
(GCA_000714635, GCF_000019565 and GCF_002156765)
and showed a Mash distance higher than 0.05 versus isolates
present in the other two major clusters (Fig. S2). For E. coli,
we observed three major clusters of isolates present in the E.
coli NCBI collection. All defined E. coli clusters presented a
high diversity versus each other in terms of Mash distances
(Fig. S3).

Pentamer frequencies differentiate between
plasmid- and chromosome-derived sequences in
single species

We investigated the applicability of genomic signatures to
distinguish between plasmid- and chromosome-derived
sequences by calculating the pentamer frequencies from
complete chromosomal and plasmid sequences of E. fae-
cium, K. pneumoniae and E. coli available in the NCBI data-
base. We then transformed pentamer frequencies into a
distance matrix and clustered complete sequences based on
their pentamer profile. We observed that pentamer frequen-
cies provided a clear separation between plasmid and chro-
mosome sequences (Figs 2 and S4). However, we observed
that chromosome sequences for each species were clustering
independently, which suggested that pentamer frequencies
differed between bacterial species. Additionally, we observed
that plasmid sequences from E. coli and K. pneumoniae
were clustering together, which indicates that plasmids from
these two species share a high fraction of k-mers that might
be a result of potential plasmid transmission between both
species (Fig. 2). We concluded that pentamer frequencies
could be used as classifier features to distinguish chromo-
some and plasmid sequences for single species. In addition,
we decided to use exclusively pentamer frequencies for sev-
eral reasons: (i) the optimal ratio between the number of
objects and features (~10) to avoid overfitting problems of

the plasmid models due to increase of model complexity,
(ii) fast and robust plasmid prediction allowing the possibil-
ity of distributing mlplasmids as a graphical-user interface,
and (iii) they have been used before to distinguish plasmid
sequences in metagenomic samples [12, 15].

Performance of several popular machine-learning
classifiers on single species

SVM was the machine-learning algorithm selected as best
classifier for predicting plasmid-derived contigs in the three
bacterial species. SVM performance in E. faecium (accu-
racy=0.94; F1-score=0.92) and in K. pneumoniae (accu-
racy=0.92; F1-score=0.90) was better than the other tested
machine-learning models and their F1-score, and AUC
reflected that prediction of the model was balanced for both
classes (Fig. 3). In the case of E. coli, SVM performance
(accuracy=0.95; F1-score=0.76) reflected that prediction for
the plasmid-class was less accurate compared to the chro-
mosome class (sensitivity=0.71) (Fig. 3, Table S8). This can
be explained by a lower frequency of the plasmid class
(Table S4) present in the training set of the machine-learn-
ing classifiers compared to the training sets of E. faecium
and K. pneumoniae or a higher diversity from isolates cate-
gorized as belonging to this species (Fig. S4). For the three
selected SVM models, we observed that metrics reported
were higher when considering base pairs as the unit
(Table S8). This indicated that misclassification mostly
occurred on short length contigs (<1 kbp) as shown for the
E. faecium SVM model (Fig. S5).

For the E. faecium training and test sets, we checked the
presence of chromosome-labelled contigs corresponding to
putative integrated plasmids. We observed a low frequency
of these contigs (n=10 contigs, frequency=0.1). We did not
remove them to avoid overfitting problems. After predic-
tions, we observed that the E. faecium model predicted two
of these contigs as plasmid derived. These two contigs had a
small contig length (1.47 and 2.3 kbp). Longer contigs (n=8,
mean contig length=11.16 kbp) were predicted as chromo-
some derived. We implemented E. faecium, K. pneumoniae,
E. coli SVM models in a new R package called mlplasmids.

Benchmarking mlplasmids against existing plasmid
prediction tools

We benchmarked mlplasmids against other fully automated
plasmid prediction tools using the isolates described in
Methods in the section ‘Selection of isolates for benchmark-
ing’ (E. faecium=7, K. pneumoniae=11, E. coli=3). Perfor-
mance of mlplasmids in E. faecium (F1-score=0.94,
precision=0.95) was higher than cBAR (F1-score=0.53, pre-
cision=0. 46), PlasFlow (F1-score=0.71, precision=0.61) and
PlasmidSPAdes (precision=0.61) (Figs 4 and 5). For E. coli,
mlplasmids performance was superior (F1-score=0.84, pre-
cision=0.88) compared to cBAR (F1-score=0.50, preci-
sion=0.4), PlasFlow (F1-score=0.58, precision=0.42) and
PlasmidSPAdes (precision=0.6). In the case of K. pneumo-
niae, mlplasmids metrics were overall better (F1-score=0.88,
precision=0.86) even though performance of PlasFlow (F1-
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score=0.82, precision=0.72) and PlasmidSPAdes (preci-
sion=0.79) was also good, and in the case of K. pneumoniae
strain KPN555 performance was better compared to mlplas-
mids (Fig. 5).

The mean genome fraction values of mlplasmids for E. fae-
cium (81.5%), K. pneumoniae (82.3) and E. coli (83.7%)
indicated that most of the bases from the reference plasmids
were covered in the prediction by mlplasmids, even though
contigs with a contig length smaller than 1000 bp were fil-
tered out (Fig. 5b). For K. pneumoniae, the overall genome
fraction of PlasFlow (83.1) was higher than for mlplasmids,
but precision (0.72) indicated that a fraction of chromo-
somal contigs was wrongly predicted as plasmid (Fig. 5a).
We further compared mlplasmids and PlasFlow predictions

showing the potential of mlplasmids unravelling the origin
of contigs unclassified by PlasFlow (Supplementary Results
S1, Figs. S6 and S7).

Our approach of training the classifiers on datasets from
single species was fundamental to obtain a good precision.
This was also reflected in mlplasmids prediction for isolates
corresponding to negative controls. For E. coli strain K-12
and K. pneumoniae KSB1_7J, only a single contig
(>1000 bp) was erroneously predicted as plasmid derived.
We also observed similar very low numbers of false-positive
plasmid assigned contigs for E. faecium E2079 (n=6) and E.
faecium E9101 (n=1), and for E. faecium E2364 (n=0) all
chromosome-derived contigs were correctly predicted
(Fig. 4a).

Fig. 2. Ward hierarchical clustering of all chromosome and plasmid sequences from the Assembly Entrez NCBI database correspond-

ing to E. coli, K. pneumoniae and E. faecium based on pentamer frequencies. Each node on the dendrogram corresponds to a either a

plasmid (light blue) or chromosome (pink) sequence from E. coli (dark blue), K. pneumoniae (purple) or E. faecium (green).
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Predicting plasmids acquired by horizontal gene
transfer

To assess the applicability of mlplasmids detecting plasmids

acquired from related species, we considered all the plas-

mid-derived contigs described in Methods in the section

‘Selection of isolates for benchmarking’. For each dataset of

E. coli, K. pneumoniae and E. faecium contigs, we predicted

the origin of contigs using all three models available in

mlplasmids. As expected, for each dataset the best model to

predict chromosome- and plasmid-derived contigs corre-

sponded to the mlplasmids model from the same species

(Fig. S8). However, we recovered most of the E. coli plasmid

contigs (96%) when using the K. pneumoniae model and

with an associated high probability of belonging to the

Fig. 3. Performance of the optimized machine-learning classifiers. Decision trees, logistic model, Bayesian classifier (naive Bayes), RF

and SVM using our test sets for E. faecium, E. coli and K. pneumoniae. The statistics reported are accuracy (red), F1-score (green), pre-

cision (blue) and sensitivity (purple), and are indicated using contigs as a performance measure.

Arredondo-Alonso et al., Microbial Genomics 2018;4

8



plasmid class (mean=0.80) (Fig. S8c). We also observed a
similar situation when predicting K. pneumoniae plasmid
contigs with our E. coli model, in which plasmid-derived
contigs were detected with a high probability of belonging
to that class (mean=0.82) but only 57% of plasmid-derived
contigs were assigned to this category, which could be
explained by a lower prevalence of plasmid contigs present
during the training of the E. coli model (Fig. S8b). This

analysis suggested that mlplasmids can correctly predict

plasmid sequences transferred to E. coli or K. pneumoniae

coming from a related bacterial species as a result of a hori-

zontal gene transfer event.

However, when using the E. faecium model against the K.

pneumoniae and E. coli dataset, we obtained a high number

of false-negative contigs and plasmid-derived contigs had a

Fig. 4. Benchmarking of cBAR (red), mlplasmids (green) and PlasFlow (blue) using an independent set of isolates (n=20). (a) Accuracy

was measured in contigs and reported for all isolates including samples considered as negative controls (E. coli K. 12, K. pneumoniae

KSB1_7J, E. faecium E2079, E. faecium E2364 and E. faecium E9101). (b) The F1-score was measured in contigs and only reported for

isolates bearing plasmids (n=16).
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low probability (K. pneumoniae mean=0.59; E. coli
mean=0.62) of belonging to the assigned class (Fig. S8a).
This highlighted that pentamer frequencies between chro-
mosome- and plasmid-derived contigs differ between non-
related species. Additionally, we refuted the possibility that
all sequences predicted with a particular model, but coming
from another bacterial species, would have been exclusively
assigned to the plasmid class (Fig. S8).

Applicability for predicting sequences derived from
incomplete long-read assemblies

To rule out misclassification of complete plasmid sequen-
ces as chromosomal due to a possible correlation of pen-
tamer frequencies and contig length, we evaluated the
performance of mlplasmids with chromosomal and plas-
mid sequences with a sequence length higher than the

Fig. 5. Comparison of cBAR (red), mlplasmids (green), PlasFlow (blue) and PlasmidSPAdes (purple) using an independent set of iso-

lates. (a) Precision was measured in contigs and reported only for isolates bearing plasmids (n=16). (b) Genome fraction (measured as

percentage of base pairs) was extracted from Quast analysis for isolates bearing plasmids (n=16).
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mean contig size used during the training of mlplasmids

classifiers. We predicted complete genome sequences

from E. faecium (chromosomes=24; plasmids=82), K.

pneumoniae (chromosomes=11; plasmids=33) and E. coli

(chromosomes=3; plasmids=7). The observed mlplasmids

performance for E. faecium (F1-score=0.99), K. pneumo-

niae (F1-score=0.98) and E. coli (F1-score=0.92) suggested

that mlplasmids can also be used to predict these large

contigs correctly. This demonstrates the flexibility of

mlplasmids to predict sequences with different lengths

compared to the mean contig length used to train the

mlplasmids models. Consequently, mlplasmids may facili-

tate the classification of contigs generated from incom-

plete hybrid or long-read assemblies as exemplified for

Fig. 6. K. pneumoniae resistome. Draft genomes available in NCBI Genomes FTP (n=1346) were downloaded and screened using Abri-

cate and ResFinder for the presence of antibiotic-resistance genes. Each contig containing a resistance gene was predicted with

mlplasmids to have plasmid or chromosome origin. For visualization purposes, only antibiotic-resistance genes present more than five

times are shown.
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isolate E. faecium E7070 (Supplementary Results S2, Fig.
S9).

Applicability for predicting the location of
antibiotic-resistance genes

To show the potential of mlplasmids in determining
whether a particular gene of interest is plasmid or chromo-
some encoded, we predicted the location of antibiotic-resis-
tance genes in E. faecium, K. pneumoniae and E. coli. Firstly,
we determined resistance genes in NCBI draft assemblies by
using Abricate to screen contigs against the ResFinder data-
base. Secondly, we used E. faecium, K. pneumoniae and E.
coli SVM models in mlplasmids to determine whether these
resistance genes were located in plasmid- or chromosome-
derived contigs. For each identified resistance gene, we cal-
culated the frequency of finding that particular gene on a
predicted plasmid- or chromosome-derived contig.

For E. faecium, we assigned a total of 1058 and 1836 genes
as chromosome and plasmid located, respectively. We
observed that most aminoglycoside-resistance genes [e.g.
ant(6)-Ia_2] were mainly present in a plasmid context (Fig.
S10). Erythromycin-resistance genes were preferentially
present in one genomic context depending on the gene vari-
ant as exemplified by erm(A)_1 and erm(B)_18 (Fig. S10).
As previously described, the vanA operons were only pres-
ent in plasmid-predicted contigs [37]. Furthermore, vanB
operons were present in both plasmid and chromosomal

contexts, but the frequency of chromosome-derived contigs
was higher (0.73) (Fig. S10) [38]. Validation of the predic-
tion on E. faecium isolates excluded from the model training
(n=7) revealed that all resistance genes (n=43) predicted by
Abricate were correctly predicted either as plasmid or chro-
mosome derived (F1- score=1.0).

For K. pneumoniae, we assigned a total of 5107 and 10 432
ResFinder hits as chromosome and plasmid located, respec-
tively. Most of the antibiotic-resistance genes showed a clear
tendency of being present in either a plasmid or chromo-
somal genomic context (Fig. 6). As described before [39],
we observed some notable exceptions, such as armA or
blaCTX-M-14_1, in which these particular resistance genes
were also present in predicted chromosome-derived contigs
(Fig. S11a). We performed the same analysis on K. pneumo-
niae isolates belonging to the independent set (n=10) result-
ing in a total of 41 and 75 genes predicted as plasmid and
chromosome encoded, respectively. Mlplasmids evaluation
revealed that all predicted plasmid-encoded genes were cor-
rectly assigned (precision=1.0) and only five genes were
misclassified as chromosome encoded (F1-score=0.96,
sensitivity=0.93).

For E. coli, we assigned a total 4517 and 8085 ResFinder hits
as chromosome and plasmid located, respectively. In con-
trast to K. pneumoniae, we observed that resistance genes
were frequently identified in both plasmid and chromo-
somal contexts (Fig. S12). We also observed differences in

Fig. 7. The mlplasmids web-server interface. To facilitate the usability of mlplasmids, we developed a Shiny app, in which users can

easily upload single genome assemblies and retrieve mlplasmids prediction.
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gene location between resistance gene variants as exempli-
fied for qnrS2_1, which was frequently encoded in predicted
plasmid-derived contigs in contrast to qnrS1_1, which can
be found in both genomic contexts (Fig. S11b). Interest-
ingly, mcr-1_1 was found in both plasmid and chromosomal
contexts in E. coli, whereas for K. pneumoniae this resistance
gene was only identified in plasmid-derived contigs (Fig.
S11). Chromosomal locations of mcr-1_1 for E. coli have
been described before [40]. We predicted a total of 15 resis-
tance genes from E. coli isolates that belonged to the inde-
pendent set (n=3). Mlplasmids performance revealed that
four genes that were encoded in a single contig from E. coli
ECO889 were wrongly predicted as chromosome-encoded,
whereas gene assignment was flawless for Escherichia coli
JJ1886 (F1-score=0.88, sensitivity=0.80). As observed for
Enterococcus faecium and K. pneumoniae, all genes pre-
dicted as plasmid encoded were correctly assigned
(precision=1.0).

Applicability for predicting the plasmid content of a
single species

Finally, we demonstrate the utility of mlplasmids by pre-
dicting the plasmidome content of E. faecium. We pre-
dicted plasmid-derived sequences from a collection of 1644
Illumina-sequenced E. faecium isolates (Table S6). Mlplas-
mids prediction using our R package took 1 624 509 s
(~27min) on a Linux laptop (Ubuntu 14.04) using a single
core. Classifier prediction resulted in 1 94 884 contigs origi-
nating from the chromosome and 94 485 contigs with a
predicted plasmid origin in 1640 isolates. Mlplasmids did
not predict any plasmid-derived contig in four strains,
including one of our negative controls (E. faecium isolate
E2364). The mean posterior probability of the predicted
chromosome-derived contigs corresponded to 0.95 versus
a mean posterior probability of 0.91 for plasmid-predicted
contigs (Fig. S13). This suggested a high likelihood that
contigs were correctly assigned to each class. We filtered
out contigs with a minimum posterior probability of 0.7 of
belonging either to the plasmid or chromosome class to
estimate the number of plasmid- and chromosome-derived
contigs per isolate. This resulted in mean numbers of ~113
chromosome- and ~52 plasmid-derived contigs per isolate.
The mean cumulative length of chromosome- and plas-
mid- predicted contigs was 2 619 359 and 2 40 324 bp,
respectively, which matched with the expected E. faecium
genome size.

To facilitate the usability of mlplasmids, we have developed
a graphical-user interface in which users can upload and
retrieve mlplasmids prediction of genome assemblies online
(Fig. 7). As mlplasmids models use pentamer frequencies to
predict plasmid-derived contigs, users can collect genome
assemblies from several isolates of a single species in a single
file, which can facilitate the analysis of a large collection.
Assemblies can be uploaded to the web-server as tar.gz files.
Users must select the species model (E. faecium, K. pneumo-
niae or E. coli) for the plasmid prediction. After uploading a
genome assembly, results appear as tabular data in which

each row corresponds to a sequence present in the FASTA

file. Additionally, results can be filtered using three options:
(i) minimum sequence length to report prediction; (ii) mini-
mum posterior probability for assignment of plasmid class;
(iii) minimum posterior probability for assignment of chro-
mosome class. Results can be downloaded in csv/xslx
format.

DISCUSSION

We present a set of species-specific machine-learning classi-
fiers to classify plasmid-derived contigs for three clinically
relevant species: the Gram-positive bacterium E. faecium,
and the Gram-negative bacteria K. pneumoniae and E. coli.
We used genomic structure information from complete
genomes to label short-read contigs as plasmid- or chromo-
some-derived, and used them to train and test five different
popular machine-learning algorithms.

Genome signatures were previously used in cBAR and
more recently for PlasFlow to predict plasmid sequences
from primarily metagenomes [12, 15]. In contrast to cBAR
and PlasFlow, we trained and benchmarked our SVM clas-
sifiers using contigs with a minimum length of 1 kbp. This
is important to accurately predict contigs derived from
small plasmids (length <5 kbp) or from plasmids with a
high number of repeat sequences (e.g. transposons), since
this leads to a fragmented assembly with a lower mean
contig length. We showed mlplasmids potential to obtain
an accurate and reliable plasmidome prediction compared
to cBAR and PlasFlow. Furthermore, mlplasmids¢ precision
when predicting contigs from isolates considered as nega-
tive controls was remarkable (Fig. 4a). We have
highlighted the potential of mlplasmids to classify the ori-
gin of contigs unclassified by PlasFlow. Mlplasmids also
outperformed PlasmidSPAdes (Fig. 4), which relies on dif-
ferences in coverage between plasmids and chromosome in
the prediction of plasmid-derived contigs for single
genome assemblies. Mlplasmids allows accurate prediction
of contigs derived from large plasmids or linear plasmids
without differences in sequencing coverage between
replicons.

Mlplasmids can predict whether a particular contig is plas-
mid or chromosome derived. However, it is not possible to
cluster plasmid contigs into different bins to observe
whether predicted plasmid contigs are derived from the
same replicon. Nevertheless, mlplasmids can be used as a
basis for plasmid classification by other tools such as Plac-
netW [18], facilitating the reconstruction of plasmid
sequences in a network graph, or by PlasmidSPAdes filter-
ing of chromosome-derived contigs regardless of contig
coverage. Additionally, PlasmidFinder can be used in com-
bination with mlplasmids to find replication genes present
in predicted plasmid-derived contigs.

In contrast to cBAR or PlasFlow, mlplasmids is only suitable
for genome assemblies from single species. However, we
anticipate that a similar methodology can be implemented
to create new models for predicting plasmid- and
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chromosome-derived contigs for other bacterial species
with a sufficient number of diverse and complete genomes.
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