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ABSTRACT A recently developed human norovirus cell culture system revealed that
the presence of bile enhanced or was an essential requirement for the growth of
certain genotypes. Before this discovery, histo-blood group antigens (HBGAs) were
the only well-studied cofactor known for human noroviruses, and there was evi-
dence that several genotypes poorly bound HBGAs. Therefore, the purpose of this
study was to investigate how human norovirus capsids interact with bile acids. We
found that bile acids had low-micromolar affinities for GII.1, GII.10, and GII.19 capsids
but did not bind GI.1, GII.3, GII.4, or GII.17. We showed that bile acid bound at a par-
tially conserved pocket on the norovirus capsid-protruding (P) domain using X-ray
crystallography. Amino acid sequence alignment and structural analysis delivered an
explanation of selective bile acid binding. Intriguingly, we discovered that binding of
the bile acid was the critical step to stabilize several P domain loops that optimally
placed an essential amino acid side chain (Asp375) to bind HBGAs in an otherwise
HBGA nonbinder (GII.1). Furthermore, bile acid enhanced HBGA binding for a known
HBGA binder (GII.10). Altogether, these new data suggest that bile acid functions as
a loop-stabilizing regulator and enhancer of HBGA binding for certain norovirus ge-
notypes.

IMPORTANCE Given that human norovirus virions likely interact with bile acid dur-
ing a natural infection, our evidence that an HBGA nonbinder (GII.1) can be con-
verted to an HBGA binder after bile acid binding is of major significance. Our data
provide direct evidence that, like HBGAs, bile acid interaction on the capsid is an im-
portant cofactor for certain genotypes. However, more unanswered questions seem
to arise from these new discoveries. For example, is there an association between
the bile acid requirement and the prevalence of certain genotypes? That is, the GII.1
and GII.10 (bile acid binders) genotypes rarely caused outbreaks, whereas the GII.4
and GII.17 genotypes (bile acid nonbinders) were responsible for large epidemics.
Therefore, it seems plausible that certain genotypes require bile acids, whereas oth-
ers have modified their bile acid requirements on the capsid.
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Human noroviruses belong to the Caliciviridae family and are the most significant
cause of outbreaks of acute gastroenteritis. Human norovirus has a positive-sense

single-stranded RNA genome, which encodes three open reading frames (ORFs). ORF1
encodes the nonstructural proteins, ORF2 encodes the capsid protein (VP1), and ORF3
encodes a small structural protein. Based on the VP1 amino acid sequences, human
noroviruses are grouped into several genogroups (GI, GII, and GIV), which are subse-
quently subgrouped into copious genotypes.

Expression of the capsid gene in insect cells results in the formation of virus-like
particles (VLPs) that are morphologically similar to native virions. The capsid protein is
composed of two domains, where a shell (S) domain forms a scaffold and protects the
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RNA, while and a protruding (P) domain extends out of the S domain and is involved
in host cell attachment (1, 2). Indeed, human histo-blood group antigens (HBGAs)
interact with the capsid, and this binding interaction is an observed requirement of
infection for most but not all GI and GII genotypes (3–9). Two, possibly four, HBGA
binding pockets are located on each P domain dimer, and for GI and GII noroviruses,
these pockets are distinct (10). While the precise value of HBGA binding to the capsid
remains vague, there are at least nine HBGA types known to bind to noroviruses (3–9).

Unlike murine noroviruses, cultivation of human norovirus in cell culture systems
still remains challenging (11, 12). Nevertheless, several new discoveries were recently
realized with these cell culture systems. One system was based on replication in B cells
and proposed a requirement of commensal bacteria expressing HBGAs or the addition
of synthetic HBGAs. Another system utilized human intestinal enteroids (HIE) and
showed the requirement of HBGAs on the surface of permissive cells albeit in a
strain-specific manner. Also, the presence of bile was shown to enhance or was
essential for the growth of certain genotypes (11). Interestingly, bile acid from intestinal
contents was also crucial for the propagation of porcine enteric calicivirus (PEC) in
porcine kidney cells (13, 14). Various bile acids were shown to enable PEC replication
with various efficiencies.

Primary bile acids in humans are synthesized from cholesterol by the liver and are
mainly cholic acid (CA) and chenodeoxycholic acid (CDCA). They can be modified by
intestinal microbiota to the secondary bile acids as deoxycholic acid (DCA), lithocholic
acid (LCA), or ursodeoxycholic acid (UDCA). Primary bile acids can also be further
modified by conjugation with glycine or taurine to enhance their solubility in water
before they are secreted to the small intestine (15–17).

In this study, we sought to elucidate how different bile acids interact with the
human norovirus capsid. In particular, we were interested in HBGA nonbinders (i.e.,
GII.1) and HBGA binders (i.e., GII.4, GII.10, and GII.17) as well as rarely detected
genotypes (i.e., GII.1, GII.10, and GII.19) and epidemic genotypes (GII.4 and GII.17) (5–7,
10, 18, 19). We showed that bile acids bound at a partially conserved pocket on the P
domain using X-ray crystallography. We also showed that bile acid binding to the HBGA
nonbinder (GII.1) was a critical step that enabled this genotype to bind HBGAs.
Altogether, these data provide new insights into requirements of bile acid for certain
norovirus genotypes.

RESULTS
ITC bile acid binding measurements. To determine whether bile acid directly

binds to the human norovirus capsid, we preformed a series of isothermal titration
calorimetry (ITC) binding experiments. Initially, we examined binding to VLPs, where
the bile acid was titrated into GI.1, GII.4, and GII.10 VLPs. We found that glycocheno-
deoxycholic acid (GCDCA) bound to GII.10 VLPs (dissociation constant [Kd] � 6.1 �M)
(Fig. 1A and Table 1), while no signals were observed for GI.1 or GII.4 VLPs. Following
these results, we rescreened GCDCA binding to GI.1, GII.1, GII.3, GII.4, GII.10, GII.17, and
GII.19 P domains. Again, no signals were observed for GI.1 and GII.3, GII.4, or GII.17 P
domains (Fig. 1B). For GII.1, GII.10, and GII.19 P domains, GCDCA bound in a low-
micromolar range (Fig. 1C). The binding reaction was exothermic and largely driven by
substantial negative enthalpy change. GII.1 showed the highest binding affinity for
GCDCA, with a Kd of 0.4 �M, followed by GII.19 (Kd � 1.2 �M) and then GII.10 (Kd �

7.2 �M). The stoichiometries of the reactions were 1.0 � 0.05, indicating the binding of
one GCDCA molecule per P domain monomer.

Next, we wanted to see if norovirus capsids (GII.1, GII.10, and GII.19) could distin-
guish between different bile salts. We performed ITC experiments with either glycine-
or taurine-conjugated CDCA (TCDCA) and CA salts. TCDCA showed slightly weaker
binding to both GII.1 and GII.10 P domains than GCDCA (Fig. 2). GCDCA/TCDCA had a
higher affinity than glycocholic acid (GCA) and taurocholic acid (TCA) for the GII.1 P
domain, whereas for the GII.10 P domain, the trend was reversed, where GCA/TCA was
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FIG 1 Thermodynamic properties of GCDCA binding to norovirus VLPs and P domains. (A) Titrations were performed at 25°C by injecting consecutive
3-�l aliquots of 100 �M GCDCA into 10 �M GII.10 VLPs. An example of the titration (top) is shown. The binding isotherm was calculated using a
single-binding-site model after subtraction of the heat of dilution (bottom). (B and C) Titrations were performed at 25°C by injecting consecutive 1- to
3-�l aliquots of GCDCA (300 to 500 �M) into GI.1, GII.3, GII.4, GII.17, GII.1, GII.10, and GII.19 P domains (30 to 50 �M). All binding reactions were
characterized by the exothermic type of reaction. Thermodynamic constants (enthalpy change [�H] entropy change [�S], and binding affinity [Kd]) are
summarized in Table 1.
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marginally preferred over GCDCA/TCDCA. We found that the binding affinities of
different bile acids were in a similar range, with a maximum 2-fold difference.

Overall, the ITC data showed that GII.1, GII.10, and GII.19 P domains bound various
types of bile acids, whereas GI.1, GII.3, and GII.4 P domains did not bind. Notably, these
results showed that both HBGA nonbinder GII.1 (5) and HBGA binder GII.10 (5, 7) bound
bile acids.

X-ray crystal structures of GII P domain and GCDCA complexes. Following the
ITC results, we proceeded to solve the X-ray crystal structures of GII.1, GII.10, and GII.19
P domains in complex with GCDCA (Table 2). For GII.10, the asymmetric unit cell
contained one P domain dimer and two GCDCA molecules, whereas GII.1 and GII.19
contained one P domain monomer and one GCDCA molecule. In all three genotypes,
the GCDCA molecule bound to an identical binding pocket on top of the P domain (Fig.
3). The GII.1 P domain and GCDCA complex structure showed a well-defined electron
density for the GCDCA molecule (Fig. 4A). The electron density of GCDCA on the GII.10
P domain was also well defined for most of the GCDCA molecule, although part of the
terminal glycine (atoms C26, C27, OT1, and OT2) had no electron density and was
omitted from the refined structure (Fig. 4B). The electron density of the GCDCA
molecule on the GII.19 P domain was also well defined (Fig. 4C). Overall, these results
showed that the GCDCA molecules bound directly on the capsid. Incidentally, we also
examined GCDCA binding to GI.1, GII.3, GII.4, and GII.17 P domains; however, the
electron density for GCDCA was absent, which is in agreement with our ITC results.

GII.1 P domain and GCDCA complex structure. The GCDCA molecule was essen-
tially held by hydrophobic interactions with four GII.1 P domain residues, i.e., Val351,
Ala353, Ile367, and Trp371 (Fig. 5 and Table 3). There were no direct hydrogen or ionic
bond interactions, except for one water-mediated interaction between Gln300 and the
OT2 atom of GCDCA (Fig. 4A). Comparison of the GII.1 P domain GCDCA complex
structure with the GII.1 P domain apo structure (PDB accession number 4ROX) (5)
revealed that several disordered loops in the GII.1 apo structure were now ordered in
the GCDCA complex structure (i.e., loops A and B) (Fig. 5 and 6). Incidentally, these two
loops were ordered with clear electron density in most if not all P domains (GII.4, GII.10,
GII.12, and GII.17) that interact with HBGAs (5–7, 18–21). These results suggested that
GCDCA stabilized GII.1 loops A and B.

Superposition of the GII.12 P domain B-trisaccharide complex structure (7) and the
GII.1 P domain apo structure (containing the flexible loops) onto the GII.1 P domain
GCDCA complex structure revealed that GII.1 residue Asp375 (loop A) was now pre-
cisely positioned to interact with HBGAs (Fig. 6). In fact, the orientation of the Asp375
side chain was almost identical to that of the equivalent Asp375 side-chain residues in
the GII.12 B-trisaccharide complex (7). Together with other essential and regular fucose

TABLE 1 Thermodynamic properties of bile acids binding to norovirus P domains and VLPsa

Binding partner Bile acid Mean �H (cal/mol) � SD Mean �S (cal/mol/degrees K) � SD Mean Kd (M) � SD

GII.1 P domain GCDCA �1.6E�04 � 1E�3 �23.03 � 4 3.6E�07 � 3E�8
GCA �1.6E�04 � 2E�2 �25.63 � 1 5.8E�07 � 5E�8
TCDCA �1.7E�04 � 3E�3 �28.50 � 10 4.3E�07 � 9E�8
TCA �1.7E�04 � 3E�2 �29.33 � 1 6.1E�07 � 1E�7

GII.10 P domain GCDCA �1.0E�04 � 3E�3 �10.32 � 10 7.2E�06 � 2E�6
GCA �1.3E�04 � 1E�2 �20.13 � 0.3 5.5E�06 � 2E�8
TCDCA �1.2E�04 � 1E�3 �16.57 � 5 12.3E�06 � 8E�7
TCA �1.3E�04 � 2E�3 �20.10 � 6 10.3E�06 � 2E�7

GII.10 VLPs GCDCA �1.0E�04 � 1E�2 �9.03 � 1 6.1E�06 � 9E�7
GII.19 P domain GCDCA �1.4E�04 � 4E�2 �20.26 � 2 1.2E�06 � 1E�7
GI.1 VLPs/P domain GCDCA NB NB NB
GII.3 P domain GCDCA NB NB NB
GII.4 VLPs/P domain GCDCA NB NB NB
GII.17 P domain GCDCA NB NB NB
aNB, no binding.
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binding residues (i.e., Gly438, Arg346, and Cys345), the Asp375 side chain could be
expected to host HBGAs, since all of these residues were similarly positioned in the
GII.4, GII.10, and GII.12 HBGA binders (5–7, 10, 18, 19). Thus, the consequences of
GCDCA binding to GII.1 were (i) stabilizing two loops (loops A and B) and (ii) correctly
positioning the Asp375 side chain to interact with the fucose moiety of HBGAs.

GII.10 and GII.19 P domain and GCDCA complex structures. In the GII.10 P
domain GCDCA complex structure, GCDCA interacted with six P domain residues, i.e.,
His298, Arg299, His302, Val361, Ala363, and Trp381 (Fig. 4B and 5). These P domain
residues held GCDCA with a network of hydrophobic interactions (Table 3). Two
water-mediated interactions involving the OE1 atom of Gln333 and the O7 atom of bile
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FIG 2 Thermodynamic properties of GCA, TCA, and TCDCA binding to norovirus P domains. Titrations were performed at 25°C by injecting consecutive aliquots
of 300 �M bile acids into 30 to 35 �M GII.1 or GII.10 P domains. All binding reactions were exothermic. The ITC data showed that GII.1 (A) and GII.10 (B) domains
bound various types of bile acid with similar affinities. Thermodynamic constants (�H, �S, and Kd) are summarized in Table 1.
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acid and the hydroxyl group of Tyr365 and the N25 atom of bile acid were also
observed.

For the GII.19 P domain GCDCA complex structure, GCDCA was held with five P
domain residues, i.e., Lys332, Val358, Pro360, Leu374, and Trp378, as well as one
water-mediated interaction (Fig. 4C and 5 and Table 3). However, unlike GII.1 and GII.10
P domains, the terminal end of GCDCA in the GII.19 complex adapted a slightly
different orientation. Two oxygens of the carboxyl group of conjugated glycine formed
two hydrogen bonds with the GII.19 P domain residues, i.e., Ser363 and Ala364 (Fig. 4C).

Comparison of GII.1/GII.10/GII.19 P domain GCDCA complex structures showed a
difference in the loop B orientation. GII.10 loop B extended over and partially covered
the bile acid molecule, whereas the equivalent loop of GII.1 and GII.19 was directed
away from the bile acid (Fig. 4 and 5). Interestingly, we previously showed that GII.10
loop B could be in two positions (open or closed) on the P domain dimer, and this
depended on whether one or two HBGA molecules bound on the P domain dimer (10).
That is, when one HBGA molecule bound on the dimer, the loop at the unoccupied
HBGA pocket was opened, but when the concentration of HBGAs was increased and
two HBGA molecules bound per dimer, both loops were in the closed position. These
results suggested that similarly to high concentrations of HBGAs, the consequence of
the two bound GCDCA molecules was two closed loops.

GCDCA involvement in HBGA binding. To better understand how GCDCA binding
to the capsid might influence or alter HBGA binding, we treated GII.1 and GII.10 VLPs
and then reanalyzed VLP binding to porcine gastric mucin (PGM; a surrogate source of
HBGAs). Previously, we showed that GII.1 VLPs did not bind to PGM, whereas GII.10 VLPs
bound in a dose-dependent manner (5). To our amazement, the GII.1 VLPs preincu-
bated with GCDCA now bound strongly to PGM in a GCDCA dose-dependent manner
(Fig. 6B). This result strongly indicated that the repositioned Asp375 residue after
GCDCA priming enabled the GII.1 VLP to bind HBGAs.

TABLE 2 Data collection and refinement statistics for the human norovirus P domain and bile acid complex structuresa

Parameter

Value for binding ofb:

GII.1 and GCDCA
(PDB accession
no. 6GVZ)

GII.1 and TCDCA
(PDB accession
no. 6GW0)

GII.10 and GCDCA
(PDB accession
no. 6GW1)

GII.10 and TCDCA
(PDB accession
no. 6GW2)

GII.19 and GCDCA
(PDB accession
no. 6GW4)

Data collection
Space group C2221 C2221 P21212 P21221 P6522
Cell dimensions

a, b, c (Å) 74.98, 99.39, 79.28 74.45, 99.20, 79.24 107.85, 79.67, 87.69 79.83, 87.91, 108.34 81.24, 81.24, 223.91
�, �, � (°) 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 90 90, 90, 120

Resolution range (Å) 59.86–1.54 (1.59–1.54) 59.55–1.40 (1.45–1.40) 45.93–1.90 (1.97–1.90) 46.12–2.05 (2.12–2.05) 43.81–2.30 (2.38–2.30)
Rmerge 5.72 (66.74) 3.74 (46.68) 6.66 (65.55) 9.80 (64.77) 16.72 (78.09)
I/�I 27.70 (3.57) 41.85 (4.93) 16.89 (2.49) 11.02 (2.26) 13.61 (3.50)
Completeness (%) 99.36 (94.22) 99.74 (98.34) 99.38 (96.40) 99.65 (97.33) 99.84 (98.90)
Redundancy 13.7 (13.3) 13.2 (9.5) 6.4 (6.2) 6.3 (6.3) 18.5 (19.0)

Refinement
Resolution range (Å) 33.89–1.54 32.99–1.40 45.93–1.90 46.12–2.05 40.62–2.30
No. of reflections 44,174 57,927 60,113 48,564 20,419
Rwork/Rfree 16.79/18.90 14.80/16.70 16.54/19.00 16.95/20.63 17.50/21.37
No. of atoms 2,651 2,714 5,158 5,055 2,474

Protein 2,350 2,370 4,756 4,694 2,328
Ligand/ion 32 34 58 88 48
Water 269 310 344 273 98

Avg B factors (Å2)
Protein 19.58 15.74 33.59 42.29 38.49
Ligand/ion 18.41 22.32 33.65 54.07 55.51
Water 25.79 24.34 37.23 41.39 38.02

RMSD
Bond lengths (Å) 0.007 0.008 0.005 0.006 0.004
Bond angles (°) 1.210 1.270 0.750 1.090 1.060

aEach data set was collected from a single crystal. RMSD, root mean square deviation.
bValues in parentheses are for the highest-resolution shell.
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We also discovered that the GII.10 VLPs preincubated with GCDCA had enhanced
capacities for binding to HBGAs (Fig. 6B), compared to GII.10 VLPs not treated with
GCDCA, i.e., at optical density at 490 nm (OD490) values of 2.7 and 1.6, respectively (5).
Conceivably, when GCDCA bound at both pockets on the GII.10 dimer and loop B
adapted a closed position, two HBGA molecules likely had an enhanced binding
capacity. This scenario explained the enzyme-linked immunosorbent assay (ELISA)
results, where the addition of bile acid improved GII.10 VLP binding to HBGAs. More-
over, these results correlated well with the observation that bile enhanced the growth
of certain genotypes in cell culture (11). Unfortunately, GII.1 and GII.10 stool specimens

Bile acid Bile acid 

                   GII.1-GCDCA                                                               GII.10-GCDCA 

                   GII.19-GCDCA                                                               GII.1-TCDCA 

                   GII.10-TCDCA 

A 
B 

C D 

E 

FIG 3 Crystal structures of GII P domain and bile acid complexes. The P domains are colored as chain A
(dark gray) and chain B (light gray). GII.1 and GII.19 are shown as dimers for comparison. In all cases, the
bile acids (green sticks) bound to the identical pocket on top of the P domain dimer. (A) GII.1 and GCDCA
complex; (B) GII.10 and GCDCA complex; (C) GII.10 and GCDCA complex; (D) GII.1 and TCDCA complex; (E)
GII.10 and TCDCA complex. Data statistics are shown in Table 2.
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were not available at this time to corroborate these new results, but the results clearly
showed how the capsid utilized bile acid to interact with HBGAs.

GII P domain and TCDCA complex structures. In addition to glycine-conjugated
bile acid (GCDCA), we investigated how taurine-conjugated bile acid (TCDCA) bound to
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FIG 4 Closeup view of the bile acid binding pockets. The P domains are colored as chain A (dark gray) and chain B (light gray). The
omit map (2Fo � Fc) (blue mesh) is contoured between 2.5 and 2.0 �. Black dashed lines show the hydrogen bond interactions, while
orange lines show hydrophobic interactions. Water molecules are shown as marine-blue spheres. The hydrogen bonds and
hydrophobic interactions are given between 2.5 and 3.5 Å and between 3.9 and 5.3 Å, respectively. (A) GII.1 and GCDCA complex; (B)
GII.10 and GCDCA complex; (C) GII.10 and GCDCA complex; (D) GII.1 and TCDCA complex; (E) GII.10 and TCDCA complex.
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the GII.1 and GII.10 P domains. For both GII P domains, TCDCA interacted at the same
pocket as GCDCA and involved a similar set of binding interactions (Fig. 3, Fig. 4D and
E, and Table 3). Unlike GCDCA, which lacked the terminal glycine density in the GII.10
complex structure, the TCDCA molecule in the GII.10 complex showed clear electron
density for the terminal taurine (Fig. 4E). Interestingly, TCDCA was held with an almost
identical set of residues as GCDCA, which indicated that this bile acid pocket was nicely
tailored to host different types of bile acids. On the other hand, the electron density for
TCDCA was absent in the GI.1, GII.4, and GII.17 P domain structures. Taken together,
these results showed that bile acid binding on the capsid was genotype specific, but
certain genotypes could bind several types of bile acid at the same pocket.

Conservation of the bile acid pocket. In order to elucidate why some capsids do
not interact with bile acid, we compared the sequences of GII.1, GII.4, and GII.10 P
domains. An amino acid alignment of different genotypes revealed that only two bile
acid binding residues on the capsid (Val361 and Trp381 [GII.1 numbering]) were
conserved in GII.1, GII.10, GII.12, and GII.19 (Fig. 7). Other bile acid binding residues were
variable, which suggested that these residues might provide auxiliary binding func-
tions. The conserved P domain residues that bind the bile acid formed a hydrophobic
platform for the complementary hydrophobic core of the bile acid molecule (Fig. 8). In
contrast, genotypes that failed to bind bile acid featured polar or bulky amino acids.
These substitutions resulted in a noticeably different landscape of the comparable
pocket for these genotypes and likely prevented bile acid from binding to the capsid.

Validation of the bile acid binding residues. To confirm the essential P domain
bile acid binding residues, we mutated five residues in the GII.10 P domain: two
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FIG 5 Structural comparison of the GCDCA binding pockets. The following superpositioned GII P
domains were colored accordingly: GII.1 (light gray), GII.10 (gray), and GII.19 (dark gray). A single GCDCA
molecule (green sticks) from the GII.10 complex structure was superimposed (essentially the same
orientation in all genotypes) to compare the binding residues. Only residues that directly interacted with
GCDCA are shown. Overall, several residues were structurally conserved, whereas other residues were
variable. Loops A and B were found to contain residues interacting with the GCDCA molecule. The
residues that were altered for the mutagenesis study are marked with an asterisk.
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conserved residues (V361S and W381A) and three variable residues (H298G, R299A, and
H302A) (Fig. 9). In each case, the substituting residue was chosen to maximally disrupt
the existing interaction with the bile acid molecule. The V361S and W381A mutations
completely abolished the binding, confirming the crucial role of the conserved hydro-
phobic residues. Substitutions of either H302 or H298 led to an approximately 3-fold
affinity reduction for H302 (Kd � 18 �M) and a 40-fold reduction for H298 (Kd �

107 �M), whereas the R299 mutation did not influence the binding affinity (Kd � 7 �M).
The GCDCA binding reaction to both H298G and H302A was characterized by a
markedly reduced enthalpy change and increased entropy, compared to the wild-type
P domain. The unfavorable enthalpy change could be attributed to the loss of direct
interactions between GCDCA and H298G or H302A. Improved entropy input likely arises
from increased degrees of freedom of loop B carrying H298 and H302. Despite a more

TABLE 3 List of hydrophilic and hydrophobic interactions between P domains and bile
acids
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favorable entropy change, the drop in the enthalpic component resulted in an overall
reduced binding affinity. These results indicated that the H298 and H302 variable
residues contribute to a tighter binding of bile acid but were not strictly required.
Overall, these ITC data supported the observations in the sequence alignment and
structural data.

Bile acid and HBGA binding pockets. Our data have shown that bile acid was an
important cofactor for certain genotypes. The bile acid and HBGA cofactors were
positioned on top of the P domain in such a way that these molecules produced a
cross-like formation in close proximity to each other (Fig. 10A). In the case of the bile
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with PGM, and after washing and blocking, the VLP-GCDCA mixture was added to the wells at final
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GCDCA are shown as a reference. The GII.1 GCDCA-treated VLPs bound to PGM in a dose-dependent
manner, while the GII.10 GCDCA-treated VLPs bound at all dilutions. A lower concentration of GII.10 VLPs
was required for binding to PGM than for the GII.1 VLPs.
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acid nonbinder GII.4, the landscape could still offer a platform for a bile acid molecule.
However, as revealed in the ITC data, Trp381 was a vital residue for bile acid binding,
which was substituted for Asp370 in GII.4 (Fig. 10B). This substitution likely abolished
GII.4 binding of bile acid. This void region might be replaced with other unknown
functions, since other GII.4 variants also lacked an equivalent GII.10 Trp381 residue.
Taken together, these new findings underscore the complexity of one or two cofactor
interactions on the capsid, and this complexity will likely intensify when the putative
receptor for human norovirus is finally revealed.

DISCUSSION

The effects of bile salts on viruses have been studied since around 1906 (22). A
number of studies have indicated that bile acids act as important factors in the
modulation of viral replication through various cell-associated mechanisms (13, 23–26).
In some cases, bile acids influence signaling pathways and transcription factors,
whereas in other cases, bile acts through the bile acid receptor (e.g., rotavirus) or aids
in endosomal release (e.g., porcine calicivirus).

In the recent case of human norovirus, the addition of bile was shown to be vital for
(GI.1 and GII.17) or to enhance (GII.4) replication in cell culture (11). In our study, we
showed that different types of bile acid directly bound on the GII capsid. Of signifi-
cance, our data indicated that only the rarely detected genotypes (GII.1, GII.10, and
GII.19) bound bile acid, whereas the epidemic genotypes (GI.1, GII.4, and GII.17) did not
bind. This result was somewhat surprising, since the cell culture system clearly showed
that GI.1, GII.4, and GII.17 benefited from the addition of bile (11). It is possible that bile
acids might indirectly affect norovirus replication by modulating host cell processes, as
mentioned above, and these mechanisms might also be strain specific. In addition,
other components of bile, which were not studied here, could also be involved in or
required for binding. Overall, it is clear that norovirus can utilize multiple cofactors, and
a complex interplay likely influences infection.

Genetic substitutions in the projected bile acid pocket on the GII.4 P domain might
have alleviated this requirement of direct bile acid binding. On the other hand, genetic
substitutions in the GII.4 HBGA pocket have not hindered the ability of this genotype
to bind numerous HBGA types (6). Moreover, in the case of GII.17, amino acid substi-
tutions permitted recent variants to acquire HBGA binding and become an epidemic
genotype (18, 21). Clearly, these observations raise an interesting question of whether
the ability to directly bind bile acid on the capsid confers any evolutionary advantage
in terms of infectivity or viral fitness.

FIG 7 Conservation of the GII bile acid binding pocket. Amino acid sequence alignments of GII capsids were performed using ClustalX
(Genetyx software). The conserved P domain residues interacting with bile acid are highlighted in cyan. Variable residues that interacted
with the bile acid tail are colored green. The conserved Asp residue (purple) is known to bind to the fucose moiety of HBGAs. Note that
only a partial capsid sequence is shown, and the asterisks indicate highly conserved residues.
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Until recently, HBGAs were the only known and well-characterized cofactor for
human noroviruses. Here, we resolve that bile acid was also a required cofactor that
directly bound to the capsid for certain genotypes. Given that a norovirus virion likely
interacts with bile acid during an infection, our evidence that an HBGA nonbinder can
be converted to an HBGA binder is of major significance. For example, previous binding
studies using different sources of HBGAs may not be entirely accurate without the
presence of the bile acid cofactor (27–35). Considering that human norovirus first
encounters soluble HBGAs in saliva and then bile acids, could the order of cofactor
binding be an important consequence of cell attachment, especially since HBGAs are
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FIG 8 Hydrophobicity at the GII bile acid binding pocket. Hydrophobic surface representations of each
P domain, GII.1 (A) GII.10 (B), and GII.19 (C), in complex with bile acid (GCDCA) (green sticks) indicate that
bile acids rest on a partly hydrophobic surface (brown) in the binding pocket. Hydrophilic regions are
shown in blue. Only residues that interact directly with bile acid are shown. Residues that are involved
in the water-mediated interactions are not shown.
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also likely located on the cell surface? One idea is that bile acid acts as a sensor in the
gastrointestinal tract, where it binds to the capsid and amplifies attachment to HBGAs
at the cell surface.

Overall, these new data further emphasize the complex nature of norovirus require-
ments for an infection, i.e., one or two cofactors as well as an as-yet-unknown receptor.
On the other hand, at least there is a new potential target for developing inhibitors, i.e.,
the bile acid pocket.

MATERIALS AND METHODS
Protein expression and purification. Human norovirus P domains, GI.1 (GenBank accession number

M87661), GII.1 (accession number HCU07611), GII.3 (accession number DQ093066), GII.4 (accession
number JX459908), GII.10 (accession number AF504671), GII.17 (accession number LC037415), and GII.19
(accession number AB083780), were prepared as previously described (7). For GII.10 P domain mutation
studies, a single amino acid codon was substituted, and the P domain sequence was resynthesized.
These codon-optimized P domains were cloned into an expression vector (pMal-c2X) and transformed
into BL21 cells. Transformed cells were grown in LB medium and induced with isopropyl-�-D-
thiogalactopyranoside (IPTG). His-tagged fusion P domains were cleaved and purified from Ni-
nitrilotriacetic acid (NTA) columns. The P domains were further purified by size exclusion chromatogra-
phy, concentrated to 2 to 4 mg/ml, and then stored at 4°C. The corresponding VLPs were also produced
as described previously (36).

Isothermal titration calorimetry. Isothermal titration calorimetry (ITC) experiments were performed
using an ITC-200 instrument (Malvern Panalytical). The P domains and VLPs were dialyzed into
phosphate-buffered saline (PBS) (pH 7.4) and filtered prior to the ITC experiments. The bile acids (Sigma)
GCA (sodium glycocholate hydrate) (catalog number 338950815), GCDCA (sodium glycochenodeoxy-
cholate) (catalog number 16564435), TCA (taurocholic acid sodium salt hydrate) (catalog number
345909264), and TCDCA (sodium taurochenodeoxycholate) (catalog number 6009989) were dissolved to
50 mM in the same PBS solution. Titrations were performed at 25°C by injecting consecutive (1- to 3-�l)
aliquots of bile acids (100 to 450 �M) into P domains or VLPs (10 to 45 �M) at 140-s intervals. Injections
were performed until saturation was achieved. To correct for the heat of dilution, control experiments
were performed by titrating bile salt into the buffer. The heat associated with the control titration was
subtracted from raw binding data prior to fitting. The data were fitted using a single-set binding model
(Origin 7.0 software). Binding sites were assumed to be identical.

Crystallization of P domains and bile acid. The P domains and bile acids (GCDCA or TCDCA) were
mixed in a 1:10 molar ratio and incubated at 25°C for �30 min. Complex crystals were grown using the
hanging-drop vapor diffusion method at 18°C for �6 to 10 days. The GI.1 P domain crystallized in a
mother solution containing 0.1 M phosphate citrate (pH 4.2), 0.2 M NaCl, and 20% (wt/vol) polyethylene
glycol 8000 (PEG 8000). The GII.1 P domain crystallized in a solution containing 0.1 M sodium chloride,
5 mM magnesium chloride hexahydrate, 0.1 M Tris (pH 8.5), and 30% (wt/vol) PEG 2000 monomethyl
ether (MME). The GII.4 crystals were grown in 3 M sodium acetate (pH 6.9). The GII.10 P domain
crystallized in a mother solution containing 0.1 M magnesium acetate tetrahydrate, 0.1 M sodium citrate
(pH 5.8), and 14% (wt/vol) PEG 5000 MME. The GII.17 P domain crystallized in a solution containing 0.2 M
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MgCl2, 20% (wt/vol) PEG 8000, and 0.1 M Tris-HCl (pH 8.5). The GII.19 P domain crystallized in a mother
solution containing 0.2 M ammonium acetate, 0.1 M sodium acetate (pH 4.6), and 30% (wt/vol) PEG 4000.
Cryoprotectants were prepared using the crystallization mother solutions with the addition of 30%
ethylene glycol or by increasing the concentration of the respective PEG solution to 40%.

Data collection, structure solution, and refinement. Single crystals were used for data collection
at the European Synchrotron Radiation Facility, France, at beamlines ID29, ID30A-3, and ID30B. Data were
scaled using XDS (37). Space group assignments were confirmed using POINTLESS (38). The molecular
replacement method in PHASER (39) was used to solve structures using the apo P domain structures (PDB
accession numbers 4ROX and 3ONU) as search models. Unoccupied electron densities for bound bile
acids were confirmed using the difference maps (mFo � DFc). Bile acid molecules were not added to the
model until the last rounds of refinement to reduce model bias. All structures were refined in multiple
rounds of manual model building in COOT (40), with subsequent refinement with PHENIX (41). Structures
were validated with COOT and Molprobity (42) throughout all refinement cycles. Intermolecular dis-
tances were analyzed using Biovia Discovery Studio software. Accepted values for hydrogen bonding and
hydrophobic interaction distances were between 2.8 and 3.5 Å and between 3.9 and 5.3 Å, respectively.
All figures were generated using PyMOL software. The hydrophobicity of the surface was calculated using
the online server PLATINUM (43).

ELISA with GCDCA and GII VLPs. In order to determine if bile acid enhanced VLP binding to HBGAs,
VLPs were preincubated with bile acid (GCDCA) before measuring binding to PGM using an ELISA (5).
Microtiter plates (Maxisorp; Thermo Scientific) were coated with 100 �l/well of PGM (10 �g/ml; Sigma)
overnight at 4°C. Plates were washed three times with PBS (pH 7.4) containing 0.1% Tween 20 (PBS-T) and
then blocked with 5% skim milk in PBS (PBS-SM) for 2 h at room temperature. GCDCA was serially diluted
from 50 �M, and 10.0 �g/ml of GII.1 VLPs or 1.0 �g/ml of GII.10 VLPs was then added at a 1:1 ratio in
GCDCA dilutions. This gave a starting dilution of 25 �M GCDCA in 5.0 �g/ml of GII.1 VLPs or 0.5 �g/ml
of GII.10 VLPs. PGM-coated plates were washed three times with PBS-T, and 100 �l of each dilution was
then added to wells for 1 h at room temperature. After washing with PBS-T, 100 �l/well primary
polyclonal antibodies, HV-1068 (for GII.1) and 026-Rab2 (for GII.10), was added at dilutions of 1:5,000 and
1:20,000 in PBS-T-SM, respectively. After incubation for 1 h at room temperature, secondary anti-rabbit-
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horseradish peroxidase (HRP)-conjugated antibody (Thermo Scientific) was added at a 1:5,000 dilution
in PBS-T-SM and incubated for 1 h at room temperature. After washing, 100 �l of the substrate
o-phenylenediamine and H2O2 were added to wells and left in the dark for 30 min at room temperature.
The reaction was stopped with the addition of 50 �l of 3 N HCl, and the absorbance was measured at
490 nm (OD490). All experiments were performed in triplicate. The final OD490 value is the sample mean
minus the PBS mean (i.e., �0.05). A cutoff limit was set at an OD490 of �0.15, which was �3 times the
value of the negative control (PBS). These ELISA binding experiments were also repeated with TCDCA
(data not shown).

Accession number(s). Atomic coordinates and structure factors were deposited at the Protein Data
Bank (PDB) under the following accession numbers: 6GVZ for GII.1 in complex with GCDCA, 6GW0 for
GII.1 in complex with TCDCA, 6GW1 for GII.10 in complex with GCDCA, 6GW2 for GII.10 in complex with
TCDCA, and 6GW4 for GII.19 in complex with GCDCA.
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