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Fibromyalgia: Genetics and epigenetics
insights may provide the basis for the
development of diagnostic biomarkers
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Abstract

Fibromyalgia is a disease characterized by chronic widespread pain with additional symptoms, such as joint stiffness, fatigue,

sleep disturbance, cognitive dysfunction, and depression. Currently, fibromyalgia diagnosis is based exclusively on a com-

prehensive clinical assessment, according to 2016 ACR criteria, but validated biological biomarkers associated with fibro-

myalgia have not yet been identified. Genome-wide association studies investigated genes potentially involved in fibromyalgia

pathogenesis highlighting that genetic factors are possibly responsible for up to 50% of the disease susceptibility. Potential

candidate genes found associated to fibromyalgia are SLC64A4, TRPV2, MYT1L, and NRXN3. Furthermore, a gene-

environmental interaction has been proposed as triggering mechanism, through epigenetic alterations: In particular, fibro-

myalgia appears to be characterized by a hypomethylated DNA pattern, in genes implicated in stress response, DNA repair,

autonomic system response, and subcortical neuronal abnormalities. Differences in the genome-wide expression profile of

microRNAs were found among multiple tissues, indicating the involvement of distinct processes in fibromyalgia pathogenesis.

Further studies should be dedicated to strength these preliminary findings, in larger multicenter cohorts, to identify reliable

directions for biomarker research and clinical practice.
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Introduction

Fibromyalgia (FM) is a common and complex chronic

pain syndrome, affecting 1% to 5% of the population,1

characterized by chronic widespread pain persisting for

more than three months without any obvious organic

lesion. Joint stiffness, fatigue, sleep disturbance, cogni-

tive dysfunction, and depression are additional symp-

toms found associated with FM.2,3

The disease is more common in female than male,4

with a ratio of 2:1 similarly to other chronic pain con-

ditions, and it can occur at any age.5 Since women show

lower pain threshold and more severe symptoms than

men,6 the majority of researches focused on female sub-

jects. However, the pathogenesis of FM is not fully

understood, especially because compared to neuropathic

conditions in FM, the source of sensory inputs is

unknown;7 some hypothesis on peripheral and central
pathophysiological mechanisms have been proposed.
Evidence support a central sensitization and a central
dysregulation at a spinal and supra-spinal levels in FM
patients compared to controls: FM patients showed an
exaggerated pain response after sensory stimulation and
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an extended cutaneous silent period;8,9 in healthy sub-
jects, the application of an intense painful stimulus pro-
duces generalized whole-body analgesia, defined as
conditioned pain modulation, while it is consistently
reduced or even absent in FM subjects;10,11 these obser-
vations lead to hypothesize a decreased serotonergic and

noradrenergic activities.12,13 The related neurotransmit-
ters are involved in one of the principal descending
monoaminergic pain control pathways14 and thus play
a fundamental role in the mechanism underlying acute
and chronic pain.15 Moreover, the reward/punishment
circuit appears to be impaired in FM patients, consis-
tently with the altered dopaminergic/GABAergic neuro-
transmission.16 Even functional neuroimaging studies
support the altered central neural processing in nocicep-
tive pathways: Following pressure stimuli, a higher acti-
vation in brain pain-processing regions was observed in
FM subjects compare to controls.17

The difficulty to identify a specific physiological path-
way is also accompanied by difficulties in FM diagnosis,
currently only based on a comprehensive clinical assess-
ment; up to 2010, this was principally relying on the 1990
ACR criteria18 of widespread pain, with at least 3
months consecutive pain and 11 painful “tender points”

with digital palpation. Since 2010, new ACR criteria
consider other two parameters: The widespread pain
index, which locates pain or tenderness in specific body
areas, and the symptom severity scale score, which con-
siders both somatic and cognitive symptoms, as trouble
thinking or remembering, fatigue, unrefreshed sleep, and
depression.19 Tender points and algometer measurement
of pressure pain threshold are still fundamental steps for
a comprehensive muscle-skeletal clinical examination

and to exclude other diagnosis linked to widespread

pain.12 In 2016, previous criteria have been reviewed to

minimize misclassification of other pain conditions, and

FM diagnosis can now be made irrespective on other

potential coexisting pathologies, if all the other key

symptoms are present.20 Nonetheless, the individual

phenotypic variability and concomitant pathologies in

the majority of patients lead to non-exhaustive clinical

examinations for a precise diagnosis, making tough

to define universal criteria for this condition.

Furthermore, validated biological biomarkers have not

yet been identified; research is thus oriented to discover

possible new indicators for an objective diagnosis of

affected individuals through the identification of genetic,

environmental, and epigenetics factors underlying FM

pathophysiology.21

Genetic contribution to FM development

Genetic variants and inheritance mechanisms in pain-

related genes have been shown to contribute to 50% in

the development of chronic pain, as shown by earlier

linkage studies, illustrating the correlation between

genetic variants and pain response.22 At present, hun-

dreds of pain-regulated genes potentially relevant to

pain sensitivity or analgesia have been detected, among

which genes encoding for voltage-gated sodium-chan-

nels, GTP cyclohydrolase 1, mu-opioid receptors,

catechol-O-methyltransferase, and GABAergic pathway

proteins.23

Even if many single nucleotide polymorphisms

(SNPs) have been identified as potential candidates spe-

cifically associated to FM susceptibility (Table 1), the

Table 1. SNPs related to genes potentially involved in fibromyalgia’s pathogenesis.

SNPs Gene Clinical relevance

5-HTTLPR24 SLC6A4 Temporal mandibular joint disorder

Depression

Psychological disorders

rs468028 COMT Depression

Anxiety

Disability

rs104810129 HTR2A FIQ disability

rs631330,31 HTR2A Fibromyalgia onset

rs1112729232 MYT1L Cognitive disability

Intronic CNV32 NRXN3 Autism

rs8192619, rs412925633 TAAR1 Impaired dopamine availability

Enhanced pain sensitivity

rs10799897, rs2842003, rs280505033 RGS4 Alteration in the descending inhibition of pain perception

rs6454674, rs1078602, rs1048517133 CNR1 Migraine

Irritable bowel syndrome

Post-traumatic stress disorder

rs642544, rs17104711, rs2510177, rs1089583733 GRIA4 Central sensitization

SNP: Single Nucleuotide Polymorphism; CNV: copy number variant.
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low number of subjects involved did not often allow to
confirm them in subsequent meta-analyses.

However, a genome-wide linkage scan study revealed
a 13.6-fold increased risk of developing the syndrome in
first-degree relatives24 strengthening the genetic hypoth-
esis. The research evidenced a linkage at markers
D17S2196 and D17S1294 on chromosome 17p11.2–
q11.2; two potential FM susceptibility candidate genes
map on this region, the serotonin transporter gene
(SLC64A4), and the transient receptor potential vanil-
loid channel 2 gene (TRPV2).24 SLC64A4 polymor-
phisms were already found associated with chronic
pain conditions, like temporal mandibular joint
disorder;25 in addition, an alteration in serotonin reup-
take was associated with high levels of depression and
psychological disorders in the same patients.26

Alterations in TRPV2, a gene expressed in mechano-
and thermo-responsive neurons in the dorsal root and
trigeminal ganglia,27 could instead contribute to the
impaired pain threshold in FM patients.

Candidate genes-associated studies report a correla-
tion between Val158Met variant in COMT gene28 and
depression, anxiety and disability in FM women, (1A)-
AR-rs1383914 SNP and FM susceptibility, the (1A)-
AR-rs1048101 SNP and FIQ disability,29 and T102C
polymorphism of the 5-HT2A receptor gene and
FM onset.30

In order to clarify the potential association between
gene polymorphisms in 5-HTT, COMT, and 5-HT2A
genes and FM susceptibility, Lee et al.31 have led a
meta-analysis on FM genetic predisposition, highlight-
ing the potential central role of 102T/C polymorphism in
5-HT2A receptor; the significant associations of 5-
HTTLPR S/L allele and COMT Val158Met with FM
were not confirmed.31 More investigations need to
understand the role of these genes in pain biology and
in chronic pain diseases as FM.

Genome-wide association studies have contributed to
sustain the possible involvement of central nervous
system (CNS) dysfunction in FM. Recently, Docampo
et al.32 conducted a genome-wide association studies and
copy number variant analyses in 952 FM cases and 644
controls. Their results showed two FM-associated var-
iants, rs11127292 SNP and an intronic copy number var-
iant, belonging respectively to MYT1L (myelin
transcription factor 1 like gene), which plays a key role
in neuronal differentiation and it is involved in cognitive
disability, and to NRXN3 (neurexin 3 gene), which acts
in the nervous system as receptor and cell adhesion mol-
ecule, and its genetic variants have been found involved
in autism spectrum disorder.32

However, no SNPs have achieved the genome-wide sig-
nificant threshold and, therefore, further analyses are
needed to confirm these previous results. Smith et al.33

evaluated 350 genes in particular including genes involved

in pain treatment, as TAAR1, RGS4, CNR1, and GRIA4.

In fact, impaired TAAR-mediated dopamine availability

could enhance pain sensitivity, a typical symptom in FM

subjects.34 RGS4 gene, expressed in the locus coeruleus, the

bed nuclei of the stria terminalis, and in the dorsal horn of

the spinal cord,35 plays a modulatory role in the descend-

ing inhibition of pain perception. CNR1 encodes to CB-1

cannabinoid receptor, and its variants have been shown

related with other pain diseases, like migraine,36 irritable

bowel syndrome,37 and post-traumatic stress disorder.38

GRIA4 encodes the AMPA sensitive, ionotropic glutamate

receptor subunit GluR4, which mediates fast excitatory

transmission of nociceptive signals in the CNS and it is

presumably involved in the central sensitization.39 These

studies improved the knowledge about FM and supported

the genetic hypothesis underlying its pathogenesis, suggest-

ing potential genetic markers for FM susceptibility, even

though universally validated SNPs have not yet been

found. Potential explanations are the population specificity

of genetic variants and, moreover, being FM a multifacto-

rial condition, haplotypes, combinations of different var-

iants, might affect the improved risk of FM development

more than a single variant: A correlation of the disease and

the “high pain sensitivity” haplotype (ACCG) belonged to

COMT gene in a Spanish population40 and the B2-AR AC

haplotype in Mexican and Spanish populations were

already identified.41

Environmental influences on the

occurrence of FM

Beside a genetic predisposition to FM, environment may

be involved in the development of the disease. In partic-

ular, early-life events, including both physical trauma

and psychosocial stressors have been found to influence

gene expression and thus contribute to the occurrence

of FM.42,43

The evidence that physical trauma influence FM devel-

opment in adulthood results from studies where the

impact of early life pain experiences was evaluated:

Early and childhood experiences have been associated

with long-lasting changes in nociceptive circuitry and

increases pain sensitivity in the older organism.44 For

example, adverse events during the neonatal and child-

hood life, like premature birth,45 physical and sexual

abuse,46,47 have been shown to possibly contribute to an

alteration of threshold pain in adulthood and the devel-

opment of FM onset.48 As result of stress events, an

impairment of HPA (hypothalamic-pituitary-adrenal)

axis could rise up, with a subsequent inefficient response
to stress and enhanced sensitivity to pain and fatigue.49

In adulthood, repeated physical stressors have been

demonstrated to be involved in the development of

chronic widespread pain, particularly due to activities
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like heavy lifting, repetitive motions, or squatting for

extended periods of time.50

Among the researches on environmental triggers of

FM, psychological and social stressors seem to represent

the strong predictors of the disease, including chronic

stress, emotional trauma,51 with physical assault/abuse

in women particularly associated with FM diagnoses.52

Other environmental conditions recently discovered to

affect FM are childhood maltreatment, as neglect, emo-

tional abuse, and post-traumatic stress disorder.

Interestingly, concomitant levels of depression and anx-

iety were significantly higher among these FM

patients.53A bidirectional temporal association between

depression and FM has also been demonstrated, with an

increase risk to develop each other.54 In support of this

connection, altered gray and white matter morphometry

including medial orbitofrontal cortex and cerebellum

have been observed in FM patients, with the gray

matter volume associated with the severity of depression

and hyperalgesia.55 This finding suggests a potential

shared pathophysiological mechanism underlying FM

and depression.
Stressful life events in FM patients persist even in

spite of different cultures, demonstrating the transcultur-

al soundness of the association between diagnoses of FM

in adulthood, self-reported childhood maltreatments,

and lifelong traumatic experiences.56

The physiological processes mediating the connection

between experienced stress and the development of FM

are still unknown.57 The HPA axis failure has been pro-

posed as potential responsible of this relationship;58,59

the increased pain levels of FM patients, in fact, have

been found related to decreased levels of hypothalamic

corticotrophin-releasing hormone58 and an increased

levels of substance P and glutamate in cerebrospinal

fluid (CSF).57 Moreover, hypoactivity of dopaminergic,

opioidergic, and serotoninergic systems have been evi-

denced in patients with FM, suggesting a complex

derangement of psychobiological patterns.39

Based on this evidence, environmental factors, partic-

ularly chronic stress and traumatic experiences, can be

hypothesized to influence neurophysiological responses

through gene expression alteration, in turn interfering

with peripheral and central pain perception.
Recent studies suggest that also environment and HPA

axis reactions to stress have a great impact on gut micro-

bial composition and balance, which in turn affect human

brain health, auto-immune reactions, and encephalotoxic

methabolites release. The correlation between host genet-

ics and microbiome has already been explored in pathol-

ogies as diabetes and obesity.60 Concerning FM, the

observed mitochondrial dysfunction,61 associated to

pain sensitization and muscle pain, has been recently

hypothesized to be potentially caused by a

gastrointestinal microbial imbalance, revealing new pos-
sible research lines for FM understanding and
treatment.62

The role of epigenetics: A new point of view

Previous studies demonstrated that early life experience
and environmental factors in general could modulate
genome function and the phenotype through epigenetic
mechanisms, without altering the DNA sequence.63

Main epigenetic mechanisms, supporting gene-
environment interaction, are DNA methylation, cova-
lent histone modifications, and non-coding RNAs.
Epigenetic mechanisms have been observed to play an
important role as mediators of long-term changes in cen-
tral and peripheral nervous systems in chronic pain.64

The environmental components observed in FM patho-
genesis highlight a possible role of the gene-environment
interaction in the development of this condition.

In particular, changes in methylation state, histone mod-
ifications, and miRNAs expression in pain-related regions
appear to occur in the presence of peripheral inflammation
and nerve injury.65–67 Being chronic pain one of the main
symptoms of FM, knowledge about how pain-related genes
and environment interact may shed light on the etiological
mechanism underlying this condition.

Studies on DNA methylation and FM

DNA methylation biochemical process involves the
addition of a methyl group to the fifth carbon of DNA
cytosine residues, leading to 5-methylcytosines. The pro-
cess occurs mainly in cytosines and guanines rich
regions, CpG islands, located in the 60% of human
gene promoters,68 and is mediated by a group of DNA
methyltransferases (DNMTs): DNMT1, DNMT3a,
and DNMT3b.69

A genome-wide DNA methylation study on healthy
female monozygotic and dizygotic twins proved the
implication of DNA methylation in thermal pain sensi-
tivity.70 In particular, a strong correlation of DNA
methylation level in the promoter of TRPA1 gene,
expressed in peripheral nociceptors, and gate pain-
related responses was identified.71,72 Higher levels of
TRPA1 expression was related to lower DNA methyla-
tion state in its promoter and higher pain thresholds. A
consistent link between level of DNA methylation state
and heat pain sensitivity in healthy subjects was demon-
strated.72 DNA methylation alterations in FM patients
have been also recently revealed73,74 (Table 2).

The first study investigating epigenetic changes in FM
women compared to controls was a genome-wide meth-
ylation pattern analysis that highlights 69 differentially
methylated sites in cases against controls, and 91% of
these sites were responsible of an increased micronuclei
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frequency in FM women.73 This correlation should be
further investigate as useful tool evaluation and/or diag-
nosis. Genes mapped on differently methylated sites
were BDNF, NAT15, HDAC4, PRKCA, RTN1, and
PRKG1, suggesting the possible involvement of nervous
system development, skeletal/organ system develop-
ment, and chromatin compaction pathways in FM.
More recently, Ciampi de Andrade et al.74 have investi-
gated DNA methylation state in blood samples from a
cohort of 24 FM cases and 24 healthy controls. The
results identified 1610 differentially methylated posi-
tions: 1042 (65%) were found hypomethylated and 568
(35%) hypermethylated in cases compared to controls.
Most of the differentially methylated genes were related
to signal transduction and calcium signaling, MAPK
signaling pathway, regulation of actin cytoskeleton
endocytosis, and neuroactive ligand-receptor interaction
pathways.74 In general, the differentially methylated sites
identified associated with FM map on genes involved in
biological processes as DNA repair, immune system, and
membrane transport genes. The mechanisms behind FM
may thus include pathways related to autonomic system
response, subcortical neuronal abnormalities, and
impaired cellular response to stress and to glutatione,74

potentially explaining the significantly deregulated oxi-
dative and antioxidative parameters observed in FM
women.75 However, these changes may not be specific
to FM but due to concurrent conditions.

Cortical excitability parameters were also measured in
both hemispheres of FM cases and controls, they

resulted altered in parallel with methylation level
changes in peripheral blood of FM patients.74 This find-

ing reveal the importance of DNA methylation research

in peripheral blood to potentially develop biological

markers of FM in the future.

MicroRNA profiles as new potential biomarkers

MicroRNAs are short non-coding RNA molecules

approximately 20 to 22 nucleotides in length, highly evo-

lutionary conserved; these factors have a fundamental
role in the regulation of gene expression in disease pro-

cesses and physiological pathways, since they are

involved in cell growth, differentiation, stress response,
and tissue remodeling; they exert several regulatory

functions as mRNA cleavage, translational repression,

or mRNAs deadenylation within cells where they were

initially transcribed.76 MicroRNAs regulate at least 30%
of human genes,77 and each microRNAs can repress

hundreds of genes.78 The presence of microRNAs in dif-

ferent cellular compartments and their stability in extra-
cellular environment79 make them attractive candidate

biomarkers to better understand the etiology of complex

disease like FM (Table 3).
They can be packaged with argonaute proteins or be

transposed into biological fluids through exosomes. A

fundamental role of miRNAs was observed in chronic

pain conditions,80 in which they alter and modulate the
expression of signaling molecules, transmitters, ion

channels, or structural proteins, contributing to develop

Table 2. Genes differentially methylated in FM women.

Gene

Biological

samples Physiological function Associations

BDNF73 Blood Neuron Differentiation/nervous system development Mood disorders

Alzheimer

Parkinson

Huntington’s disease

NAT1573 Blood Histone acetyltransferase

Chromatin compaction

Acetylation process

Facilitation of transcription process

HDAC473 Blood Deacetylation of the core histones

Muscle maturation

Deacetylation’s process

Gene silencing

PRKCA73 Blood Cell signaling pathways Post-traumatic stress syndrome

Emotional memory formation

Cancer

RTN173 Blood Secretion or membrane trafficking in neuroendocrine cells Neurological diseases

Cancer

PRKG173 Blood Regulation cardiovascular and neuronal functions

Relax smooth muscle tone

Prevent platelet aggregation

Modulate cell growth

Aortic aneurysm

Phosphoglycerate kinase deficiency

SLC17A974 Blood Regulation neuronal differentiation Neuronal plasticity

TFAP2A74 Blood Survival functions of sympathetic progenitors and noradrenergic neurons Neuronal circuits

A general hypomethylated pattern in FM patients compared to healthy subjects seem to be revealed, considering the first studies on DNA methylation

and FM.
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long-term hyperexcitability in nociceptive neurons in the

periphery and CNS.81 A microRNAs genome-wide

expression profile in FM women CSF, collected at rest

by lumbar puncture thought the L3/l4 interspace, was

assessed by Bjersing et al.;82 the relation with peculiar

FM symptoms including pain threshold,83 levels of

pain,84 and fatigue85 was also explored. The study was

conducted on 10 women with FM compared to 8 age-

matched healthy controls. Nine out of 742 human

miRNAs total assayed were significantly differently

expressed in CSF between FM and healthy controls;82

the interaction with pain and fatigue was subsequently

examined, and only miR-145-5p showed a significant

correlation in FM patients. The same authors analyzed

also circulating miRNAs in the serum of 20 FM

patients86 matched with healthy controls, identifying a

different pattern from CSF micro-RNAs in FM.82 Eight

out of 374 total human miRNAs analyzed were differ-

entially expressed: miR-320a expression was higher in

FM patients than healthy controls, while the expression

of the remaining seven microRNAs (miR-103a-3p, miR-

107, let-7a-5p, miR-30b-5p, miR-151a-5p, miR-142-3p,

and miR-374b-5p) was lower in FM cases compared to

healthy subjects. Concerning the interaction with FM

symptoms, miR-30b-5p correlated with sleep quantity

in FM patients and miR-374b-5p was found inversely

correlated with pain threshold; also let-7a-5p and miR-

103a-3p tended to be associated with sleep quantity and

pain. Lastly, miR-320a, higher expressed in FM, was

inversely correlated with pain. These results seem to

indicate a specificity of these processes in the periphery

compared to the CNS: More researches should investi-

gate this point since the study was conduct on restricted

portion of the miRNAs sequenced available.87,88

MiRNAs regulating genes related to the immune

system have been potentially assumed involved in FM

onset; to this purpose, miRNAs expression using 1212

probes in peripheral blood mononuclear cells were

examined, and decreased expression of specific

miRNAs was revealed.89 In particular, 5 miRNAs,

miR-451a, miR-338-3p, miR-143-3p, miR-145-5p, and

miR-223-3p, showed a 6- to 13-fold inhibition in FM

patients compared to controls. Even if no correlation

with clinical criteria was found, miR223-3p and

Table 3. MiRNAs differentially expressed in FM women compared with healthy controls.

miRNAs Regulation in FM Biological sample Clinical symptoms

miR-145-5p82 Down CSF Pain and fatigue

miR-21-5p82 Down CSF Alteration of central circuits

miR-195-5p82 Down CSF Alteration in energy metabolism and growth

Dementia

miR-223-3p82 Down CSF Inflammatory pain

miR-23a-3p82 Down CSF No correlation found

miR-23b82 Down CSF Alteration of m-opioid receptor expression

Alteration of outcome to long-term morphine treatment

miR-320a82 Up Serum Pain threshold

miR- 107

miR-151a-5p

miR-142-3p86

Down Serum No correlation found

miR-30b-5p86 Down Serum Sleep quantity

miR-374b-5p86 Down Serum Pain threshold

miR-103a-3p

let-7a-5p86
Down Serum Sleep quantity

Pain

miR-451a

miR-338-3p

miR-143-3p

miR-145-5p

miR-223-3p89

Down PBMCs No correlation found

miR-23a-3p90 Down Serum Maintenance of skeletal muscle integrity

miR-1

miR-133a

miR-346

miR-139-5p

miR-320b90

Down Serum

Saliva

No correlation found

Some miRNAs (highlighted) are equally deregulated across different tissue likemiR223-3p andmiRNA-145-5p that have been found to be inhibited in both

PBMCs and CSF of FM patients, and miR-23a-3p that has been found downregulated in both serum and CSF. CSF: cerebro spinal fluid; FM: fibromyalgia;

PBMC: peripheral blood mononuclear cells.

6 Molecular Pain



miRNA-145-5p might be proposed as biomarkers of the

disease since they were also found to be inhibited in CSF

of FM patients.82

More recently, Masotti et al.90 conducted a study on

accurately selected FM patients, excluding drugs’ use

and thus avoiding variations of miRNA expression aris-

ing from analgesics.91 The expression of six miRNAs has

proved to be downregulated (miR-23a-3p, miR-1, miR-

133a, miR-346, miR-139-5p, and miR-320b) in FM

patients compared to controls and, interestingly, miR-

23a was downregulated in both CSF82 and serum of

FM patients, although not significantly associated with

FM symptoms.82

Interestingly, mir-23a is implicated in a cluster with

miR27a/24-2, responsible ofMURF1 andMAFbx down-

regulation, two genes encoding ubiquitin ligases specific

for muscle atrophy.92 This evidence suggests a potential

involvement of this miRNA in the maintenance of skel-

etal muscle integrity.93 In general, miRNAs found dys-

regulated in FM patients appear to be involved in

physical activity, pain, stress, mood disorders, and

depressive symptoms; therefore, a good predictive

model with high diagnostic power should probably

include many of these traits-associated miRNAs.

Further studies need to strengthen these preliminary

findings in larger cohorts.

Histone modifications

Histone modifications are covalent post-translational

modifications of histone proteins’ N-terminal tails (H1,

H2A, H2B, H3 e H4), in particular methylation, phos-

phorylation, acetylation, ubiquitylation, and sumoyla-

tion.94 They alter chromatin structure and

subsequently affect different biological processes, as

DNA repair process,95 gene transcription and transla-

tion,96 and ageing process.97 One of the most studied

histone modifications in pain is acetylation/deacetyla-

tion, the addition or removal of acetyl groups on N-ter-

minal lysine residues and on nucleosome surface.

Acetylation mechanism, operated by histone acetyltrans-

ferase enzymes, mediates the shift from condensed to

relaxed chromatin, more accessible to transcriptions fac-

tors; conversely, deacetylation, made by histone deace-

tylases (HDACs), closely condenses chromatin resulting

in gene silencing.98 HDAC inhibitors in pain conditions

emerged to be potentially implicated in analgesia, in

both inflammatory and neuropathic pain.99,100 Their

clinical effect is thought to be partially attributed to

the reduced production of inflammatory cytokines such

as TNF-a and IL-1.101 However, histone modifications

in FM patients have not yet been investigated.

Gene expression

Since epigenetic mechanisms modulate gene expression,
studies investigated transcription changes comparing
FM patients and controls: FM alterations in gene
expression should be viewed considering that they
might not be exclusively related to FM pathology
because of FM concomitant diagnoses, as osteoarthritis,
depression, and obesity.102

A recent analysis identified 482 differentially
expressed genes between patients and healthy controls,
shedding light on the relationship between FM status
and upregulated inflammatory cytokines’ genes (IL10,
IL25, and 1L36A).102 IL-10, one of the most powerful
anti-inflammatory cytokines,103 has been shown to reg-
ulate substance P expression, thus probably increasing
the pain threshold. IL-25104 was found to upregulate the
expression of pro-inflammatory cytokines, especially
Th2 cytokines. Both these cytokines have been proposed
as key mediators of Th2 cytokine response, linked to
chronic fatigue syndrome. In addition, several solute
carrier molecules’ genes were found upregulated in FM
subjects including SLC1A5 and SLC25A22, which
encode for glutamate transporters in the CNS.105 The
metabotropic glutamate receptor gene (GRM6), encod-
ing for a group III G protein-coupled receptor linked to
the inhibition of the cyclic AMP cascade and involved in
neuropathic pain signaling in dorsal horn neurons, was
also upregulated in FM subjects.106

A dysregulation of these pathways105,106 may be rel-
evant to the pathogenesis of FM and thus need to be
validated in a large, multicenter, independent cohort of
subjects with greater clinical heterogeneity. In addition,
no studies investigated if epigenetic mechanisms reflect
the observed changes in gene expression.

Conclusions

FM is a complex disorder characterized by chronic pain,
joint stiffness, fatigue, sleep disturbance, cognitive dys-
function, and depression. Research on FM is becoming
increasingly important because of patients impaired
quality of life and for the economic burden placed on
the medical care system. FM patients often show con-
comitant diagnoses, such as osteoarthritis, depression,
and obesity, with the consequently high risk of misdiag-
nosis. Most of the studies have been thus focused on
research of specific and measurable biomarkers to objec-
tively identifying susceptible individuals, to confirm dis-
ease diagnosis, and to facilitate treatment.

To achieve these goals, many familial studies were
conducted demonstrating an increased risk to develop
FM in first-degree relatives; candidate gene studies
highlighted potential mechanisms involved in FM path-
ogenesis, identifying associated SNPs to the disease:
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central sensitization to pain and HPA axis impairment.
Beside a genetic predisposition, environmental factors,
like infant trauma, stress, and depression, play a funda-
mental role in the onset and development of FM,
through epigenetic modulations. In particular, a hypo-
methylation state is shown in FM patients compare to
healthy controls, especially in promoter of genes impli-
cate in DNA repair, immune system, and membrane
transport genes. Many studies investigated miRNAs
expression in FM condition in a variety of biological
samples, highlighting the involvement of both peripheral
and central processes.

It should be noted that many of the epigenetics stud-
ies have been performed on blood samples. Despite
DNA methylation patterns are tissue specific107 and
their study in chronic pain should be thus limited to
the brain. Recently, a correspondence across different
tissues emerged: Massart et al.108 have found that 72%
of the genes affected in T cells were also differentially
methylated in prefrontal cortex post-nerve injury; other
studies have identified a correspondence between 35%
and 80% of known transcripts in both peripheral blood
and brain tissues.109 The observed correspondences iden-
tify blood samples as a reliable and more accessible
source of FM biomarkers. This paper reviewed relevant
FM studies in order to better understand the still unclear
mechanisms underlying this complex disease. However,
some of the results should be considered with caution in
light of the following limitations, representing also
important directions for future researches. Despite the
relatively high prevalence of FM, many studies included
small size sample and, because of FM comorbidities,
enrolled patients with no precise exclusion criteria and
attention for ongoing therapies. In addition, to clarify
the temporal onset between FM and its additional symp-
toms, the use of longitudinal follow-ups could be con-
sidered. Details on patients’ history could improve
everyday clinical practice: Dietary and lifestyle that
may lead to alteration in gastrointestinal microbiome,
observed in this complex disease, should be also deepen.

If the obtained preliminary data will be confirmed,
research in future could focus on the identification of
more selective analgesics or new pharmacological
approaches, as currently being testing against pain of
diverse etiologies, including Postherpetic Neuralgia,110

Inherited Erythromelalgia,111 and Lumbosacral
Radiculopathy,112 with three phase II clinical trials on
selective blockers drugs for sodium channels Nav1.7. In
particular, since epigenetics plays a major role in regu-
lating expression of pro- or antinociceptive genes, epige-
netic drugs might potentially reverse aberrant gene
expression profiles associated with FM states. First, pre-
clinical data suggest chromatin-modifying drugs rele-
vance for treating pain in particular in the context of
inflammation113: 5-azacytidine administration in rats

following tissue damage resulted in the inhibition of
global DNA methylation increment and MeCP2 expres-
sion with subsequent decrease of painful behavior.114

Drugs targeting epigenetic mediators as histone
deacetylase and acetylase or involving DNA methylation
maintenance have been developed for different patho-
logical conditions.115 Similarly, improving FM bio-
markers research, a new treatment scenario based on
personalized medicine may be revealed, with major ben-
efits and less side effects for FM patients and reduced
cost for the national health-care systems.
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