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Abstract
Vascular cognitive impairment (VCI) defines an entire spectrum of neurologic disorders from mild cognitive impairment to
dementia caused by cerebral vascular disease. The pathogenesis of VCI includes ischemic factors (e.g., large vessel occlusion
and small vessel dysfunction); hemorrhagic factors (e.g., intracerebral hemorrhage and subarachnoid hemorrhage); and other
factors (combined with Alzheimer’s disease). Clinical evaluations of VCI mainly refer to neuropsychological testing and imaging
assessments, including structural and functional neuroimaging, with different advantages. At present, the main treatment for
VCI focuses on neurological protection, cerebral blood flow reconstruction, and neurological rehabilitation, such as phar-
macological treatment, revascularization, and cognitive training. In this review, we discuss the pathogenesis, neuroimaging
evaluation, and treatment of VCI.
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Vascular cognitive impairment (VCI) is a syndrome that

includes all cognitive disorders attributable to various kinds

of cerebral vascular disease and relative risk factors, and it is

generally used to capture the entire spectrum of neurologic

disorders, ranging from mild to severe1. It usually affects

advanced brain functions, especially executive function and

memory2. Although the definition and diagnostic criteria of

VCI remain disputed, VCI can be classified by its clinical

characteristics as vascular mild cognitive impairment, vas-

cular dementia, and mixed dementia (MD) associated with

vascular dysfunction, whose risk factors include age, hyper-

tension, hyperlipidemia, hyperuricemia, diabetes, cardiopa-

thy, stroke, carotid plaque, smoking, and low educational

level3,4. Recent studies of VCI have mainly focused on its

pathogenesis, evaluation, and treatment, and the present

study aimed to summarize these advances.

Pathogenesis

The pathogenesis of VCI can be attributed to ischemic fac-

tors, hemorrhagic factors, and other factors affecting func-

tional brain regions5,6. On this basis, atrophy of the gray

matter and hemispheric white matter lesions caused by cere-

bral vascular diseases (CVD) becomes the main structural

change of VCI7–9. Relating to these pathophysiological

changes, many studies have provided new insight10,11.

Ischemic Factors

Large Vessel Occlusion. The occlusion of large vessels, such as

ischemic stroke caused by cardio embolic and atherosclero-

tic diseases, constitutes a large brain infarct5. Many findings

and the TABASCO study have confirmed that inflammatory

mediators play an important role, together with amyloid

deposition, in the development of VCI after stroke12. Back

et al.13 reported that the occlusion of a large vessel may
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interfere with amyloid clearance through the glymphatic

pathway and concomitant neuroinflammation to form VCI.

Relevant results have suggested that cognitive decline

appears, on average, after 2 years because of long-lasting

effects on remote white matter integrity8. In particular, Man-

dzia et al.14 found that changes in executive function and

psychomotor processing speed appear within 90 d after stroke.

Small Vessel Dysfunction. The dysfunction of small vessels

supplying important brain regions, such as arteriosclerosis

and arteritis, can cause cortical and subcortical micro-

infarcts15, which result in long-time hypoperfusion because

of decompensation of collateral circulation, and which

appear to be the most robust substrates of cognitive dysfunc-

tion16,17. In particular, some findings18 on hereditary dis-

eases, such as cerebral autosomal dominant arteriopathy

with subcortical infarcts and leukoencephalopathy (CADA-

SIL), have provided new insight into the mechanisms of

dementia associated with cerebral small vessel disease.

Rosenberg19 found that cerebral hypoperfusion leads to

fibrosis of the extracellular matrix and activates neuroin-

flammation, which is most damaging to the deep white

matter. These types of multiple infarctions and diffuse white

matter lesions often appear in the lateral ventricle and sub-

cortex, resulting in multicognitive domain impairment.

Hemorrhagic Factors

Intracerebral Hemorrhage. Patients have significant cognitive

impairment after intracranial hemorrhage (ICH)20,21. Visual-

processing functions decline obviously in this type22,23.

Many studies22,24–27 on intracranial microbleeds have con-

firmed that cerebrovascular amyloidosis contributes to

dementia and cognitive impairment by means of worsening

vascular amyloid-b accumulation, activation of vascular

injury pathways, and impaired vascular physiology6, while

others28 indicate that the disturbance of brain iron metabo-

lism after ICH caused by inflammation can also enhance

brain injury and contribute to VCI.

Subarachnoid Hemorrhage. Cognitive dysfunction commonly

appears with subarachnoid hemorrhage (SAH)29. The anterior

cingulate gyrus and frontobasal regions are often involved in

SAH, resulting in neurocognitive deficits including visuospa-

tial memory and language30. A recent study31 showed that the

left parahippocampal gyrus, left inferior temporal gyrus, and

left thalamus are also involved in the formation of VCI in

patients with SAH. New findings32 established that the patho-

genesis of VCI may be attributed to the impact of the subdural

membrane on dural lymphatics. This mechanism, however, is

still controversial, and relevant research is needed.

Other Factors

VCI can appear in the condition of CVD combined with

Alzheimer’s disease (AD), which often results from both

vascular disorders and structural changes in protein in brain

tissue1. Apart from the increased levels of tau protein in

cerebrospinal fluid among patients with VCI, Kalaria33

believes that there is a vascular basis for neuronal atrophy

in MD entirely independent of AD pathology, which often

appears with memory decline34.

Evaluations

Clinical Evaluation

The diagnosis of VCI relies on wide-ranging clinical evalua-

tions, including pathological confirmation, neuropsycholo-

gical tests, and multi-modal neuroimaging measures35.

When lacking the appropriate brain samples for pathological

diagnosis, Skrobot et al.36 suggest using neuropsychological

and imaging assessments for the diagnosis of VCI. However,

there are no specific neuropsychological tests for patients

with VCI37. Neuropsychological testing is easy to do in the

clinic, although, due to self-limitations such as ceiling

effects, floor effects, and subjective influence38–40, only neu-

roimaging has been relevant for clinical practice regarding

the differential diagnosis of dementia41.

Neuroimaging

Structural Neuroimaging. Structural changes in the brain have

tight connections with VCI, which can be detected on struc-

tural magnetic resonance imaging (sMRI)42. Some stud-

ies7,43 suggest that different sequences of MRI can make

contributions to the objective evidence of latent VCI, such

as cortical lesions and significant gray matter atrophy. By

means of using dynamic contrast enhanced MRI, Raja

et al.44 found a new mechanism of VCI as dysfunction of

the blood–brain barrier. However, routine MRI has low sen-

sitivity to brain microstructural changes, which are common

in VCI. Suri et al.45 determined the association of intracra-

nial atherosclerotic stenosis and cognitive dysfunction with

the evidence of white matter hyperintensity and vascular

change using 3.0 T time-of-flight MRI. In addition, the

application of high-field MRI can provide high resolution

to the evidence of VCI, such as changes in the cerebral

perivascular spaces46.

Other sequences of MRI, such as diffusion tensor imaging

(DTI) in animals, suggest the structural damage of white

matter can become a biomarker of VCI47, which is also

confirmed with the evidence of white matter connective

dysfunction. Fragata et al.48 suggested that DTI parameters

can make contributions to the monitoring of delayed cerebral

ischemia at early stages of post-SAH, which is indepen-

dently associated with functional outcome and can be a prog-

nosis in SAH-related VCI. Williams et al.49 used a

segmentation technique to predict white matter microstruc-

tural damage as a surrogate marker of VCI.

Hemorrhagic factors related to VCI, however, may pro-

duce obvious structural changes, while ischemic factors,

such as hypoperfusion, may result in VCI with functional
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changes at first50. Such differences should be differentiated

and clarified.

Functional Neuroimaging. Cerebral hemodynamic perfusion,

such as single photon emission computed tomography

(SPECT) and positron emission computed tomography

(PET), can evaluate the level of brain metabolism and blood

perfusion to reflect brain function and provide evidence of

VCI6. Ishikawa et al.51 reported that cognitive dysfunction

has a correlation with cerebral perfusion. Although it has

been confirmed that mild cognitive impairment is tightly

related to cerebral glucose hypometabolism, the relevance

of cerebral metabolism to VCI is still not clear52.

As a burgeoning, noninvasive examination with high spa-

tial sensibility, functional MRI (fMRI) has become an effi-

cient method to assess neural function based on the principle

of contrast enhancement of blood oxygen level dependence

(BOLD), which measures the neuron activity related to

hemodynamic changes in various brain regions53. fMRI pro-

vides us a chance to understand the pathogenesis of VCI

from neural, regional, and network levels54. At the regional

level, Diciotti et al.55 noted that high regional homogeneity

in the left posterior cerebellum and middle cingulate cortex

indicates global cognitive impairment and worse executive

functions. At the network level, Lei et al.56 found that the

default mode network and executive-control network can

influence executive performance for patients with VCI by

means of analyzing the amplitude of low-frequency fluctua-

tions in the dorsolateral prefrontal cortex and posterior cin-

gulate cortex. fMRI is a measurement of high spatial

resolution but low temporal resolution, thus other measure-

ments with high temporal resolution are needed.

Electroencephalogram (EEG), which can reflect the over-

all electrophysiological effect and the function of the brain

network, is a noninvasive, time-focused information trans-

mission and processing method with high temporal resolu-

tion that uses nonlinear dynamic analysis and time frequency

analysis to reflect the dynamic time processing of informa-

tion transmission accurately57. Moretti et al.52 found that

patients with cognitive impairment show abnormal activa-

tion in the H-alpha/L-alpha power ratio compared with nor-

mal persons, as a clinical biomarker, indicating the

adaptation in these brain region changes. With the progres-

sion of cognitive dysfunction, the degree of abnormal EEG is

also aggravated, especially in event-related potentials, which

indicates that EEG can be used as a reliable objective index

for evaluating the severity of cognitive impairment58. The

application of EEG in brain default networks provides new

insight into the mechanism of cognitive impairment, while

related research on VCI by means of EEG is still poor. Some

limitations of EEG also restrict the use of this technique to

only detect the neuronal activity of the cortex, and it is easily

affected by the skull. Some deep neuronal activity can hardly

be observed with existing devices, which suggests that new

methods need to be developed59,60 (Fig. 2).

Functional near-infrared spectroscopy (fNIRS) has been

used as a new monitoring method to reflect the level of

advanced cognition. It has the advantage to reflect neural

mechanisms in natural situation from special tasks in the cog-

nitive evaluation61. Beishon et al.62 used fNIRS to evaluate

brain hemodynamics and oxygen metabolism to predict cog-

nitive decline at an early stage. Similar to EEG, magnetoen-

cephalography (MEG) is another new method to detect deeper

comprehension of brain dynamics with fewer conduction

effects and higher temporal resolution compared with EEG63.

Using MEG, Baillet64 concluded the mechanisms of func-

tional connectivity between regions and the emergence of

modes of network communication in brain systems.

Fig. 1. Various pathogenic factors of VCI. From the angle of pathogenic factors, VCI can be classified into three subtypes. The ischemic type
includes large vessel occlusion and small vessel dysfunction. The hemorrhagic type often refers to all kinds of intracranial hemorrhage as well
as subarachnoid hemorrhage. In addition, AD can often appear along with vascular disorder to form mixed dementia.
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Treatment

Medical Treatment

VCI and AD often coexist and share clinical features and

multiple neurotransmission involvement. According to the

mechanism of cognitive impairment, acetylcholinesterase

inhibitors, such as donepezil and rivastigmine, have been

proven to decrease the amyloid beta deposition in the devel-

opment of AD in mouse models65. Excitatory amino acid

receptor antagonists, such as memantine, are another phar-

macotherapy for cognitive impairment that have been con-

firmed in the clinic. Recently, various new drugs have been

explored for the treatment of cognitive impairment. Guekht

et al.66 reported that actovegin has been tested for post-

stroke cognitive impairment in clinical trials. Some drugs

used in the treatment of cognitive dysfunction, such as done-

pezil and galantamine, have been generally accepted to treat

AD and approved for modest cognitive benefits for VCI in

the clinic67. More evidence and related research are still

needed to confirm efficiency.

Revascularization

According to the pathogenesis of VCI, increasing regional

cerebral blood flow by means of revascularization is

hypothesized to improve cognition68,69. Lattanzi et al.70

Fig. 2. Various kinds of neuroimaging in the evaluation of VCI. Different kinds of neuroimaging (A. Gray matter volume, B. DTI, C. EEG, D.
PET/SPECT, E. fMRI) in the contributions of VCI are summarized from six dimensionalities including the evidence from relevant studies and
individual application in diagnosis for VCI (Relevant Studies, Individual Application), spatial and temporal resolution (Spatial Resolution,
Temporal Resolution), and functional and structural characteristics of each neuroimaging (Functional Characteristics, Structural Charac-
teristics). Each dimensionality is divided into three levels of excellent, medium, or lacking. The superior and inferior kinds of neuroimaging
are shown below.
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showed that cognitive performance can be improved with the

development of cerebral vasomotor reactivity after carotid

endarterectomy. Carotid artery stenting is another method

used to improve cerebral perfusion that is also reported,

using fMRI, to partly improve global cognition and memory,

resulting from the increased perfusion in the left frontal

gyrus and amplitude of low-frequency fluctuation in the

right precentral gyrus connectivity to the posterior cingulate

cortex in the right supra frontal gyrus71. Noshiro et al.72

confirmed the improvement of brain networks by means of

neuroimaging after bypass surgery in moyamoya disease.

With the accumulating evidence, it is generally accepted that

the cerebrovascular reserve may be related to cognition51,

which provides a potential method for the surgical treatment

of VCI.

In contrast, some studies have shown that there is no

significant improvement of cognitive level after revascular-

ization73. Turan et al.74 argued that angioplasty and stenting

showed no improvement in cognitive impairment compared

with medical treatment alone during follow-up. The RECON

trial75 showed cognitive improvement following bypass sur-

gery was not superior to medical therapy. The inconsistent

results across different studies may be attributed to the dif-

ferent evaluating standards and methods, and more studies

and randomized clinical trials are needed to confirm the

efficiency of surgical treatment.

Neurological Rehabilitation

Although neuroprotection and neurorecovery enhancement

have become important methods for treating VCI, studies

regarding neurological rehabilitation are also faced with the

difficulty of establishing a standard protocol that can

embrace a holistic approach in cognitively impaired

patients76. Perng et al.77 performed a meta-analysis and

found that symptomatic cognitive training is an effective

intervention for VCI. Ahn et al.78 also suggested that long-

term treadmill exercise can restore memory function through

replacement of multiple damaged structures in the ischemic

aged hippocampus, and indicated that long-term exercise

begun after ischemic neuronal death as a chronic neurores-

torative strategy is efficient.

Transcranial magnetic stimulation (TMS) was first used

in cerebrovascular disease to identify a pattern of cortical

hyperexcitability, which is caused by a disruption in the

integrity of white matter79; however, in VCI, the application

of TMS points to enhancing brain cortical excitability and

synaptic plasticity, indicating its potential to become an

innovative rehabilitative tool to restore impaired neural plas-

ticity and provide further understanding of neurotransmis-

sion pathways and plastic remodeling in the pathogenesis of

VCI80. More relative research is needed to confirm the effi-

ciency and safety of TMS to find more alternative methods

for the neurological rehabilitation of VCI.

Conclusion and Future Direction

In conclusion, the pathogenesis, neuroimaging evaluation,

and treatment of VCI have made a lot of progress. However,

there is still scope for further exploration of the mechanism,

especially in the field of correlation between molecular biol-

ogy and multi-model neuroimaging, and there is great poten-

tial for the early identification and diagnosis of VCI.

Meanwhile, more evidence about medical treatment in VCI

is needed. The safety and efficiency of neurological rehabi-

litation should also be confirmed. The combination of phar-

macotherapy, revascularization, and rehabilitation may

become a main therapeutic method for VCI in the future.

Author Contribution

Xin Zhang and Jiabin Su, equal contribution on this work as the first

authors.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect

to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support

for the research, authorship, and/or publication of this article: This

study was supported by the National Natural Science Foundation of

China (No. 81771237, 81501120, 81870917 & 81500987); the Nat-

ural Science Foundation and Major Basic Research Program of

Shanghai (No. 16JC1420100); the “Dawn” Program of Shanghai

Education Commission (No. 16SG02); the Scientific Research

Project of Huashan Hospital, Fudan University (No.

2016QD082); Shanghai Rising-Star Program (No.16QA1400900);

and the Shanghai Municipal Commission of Health and Family

Planning (No.2017BR003).

References

1. Dichgans M, Leys D. Vascular cognitive impairment. Circ Res.

2017;120(3):573–591.

2. Smith EE. Clinical presentations and epidemiology of vascular

dementia. Clin Sci (Lond). 2017;131(11):1059–1068.

3. Gorelick PB, Scuteri A, Black SE, Decarli C, Greenberg SM,

Iadecola C, Launer LJ, Laurent S, Lopez OL, Nyenhuis D,

et al. Vascular contributions to cognitive impairment and

dementia: a statement for healthcare professionals from the

american heart association/american stroke association.

Stroke. 2011;42(9):2672–2713.

4. Iadecola C, Yaffe K, Biller J, Faraci FM, Gorelick PB, Gulati

M, Kamel H, Knopman DS, Launer LJ, Saczynski JS, et al.

Impact of hypertension on cognitive function: A scientific

statement from the american heart association. Hypertension.

2016;68(6): e67–e94.

5. Ernst M, Boers AMM, Aigner A, Berkhemer OA, Yoo AJ,

Roos YB, Dippel DWJ, van der Lugt A, van Oostenbrugge

RJ, van Zwam WH, et al. Association of computed tomography

ischemic lesion location with functional outcome in acute large

vessel occlusion ischemic stroke. Stroke. 2017;48(9):

2426–2433.

22 Cell Transplantation 28(1)



6. Charidimou A, Boulouis G, Gurol ME, Ayata C, Bacskai BJ,

Frosch MP, Viswanathan A, Greenberg SM. Emerging con-

cepts in sporadic cerebral amyloid angiopathy. Brain. 2017;

140(7):1829–1850.

7. Lei Y, Su J, Guo Q, Yang H, Gu Y, Mao Y. Regional gray

matter atrophy in vascular mild cognitive impairment. J Stroke

Cerebrovasc Dis. 2016;25(1):95–101.

8. Schaapsmeerders P, Tuladhar AM, Arntz RM, Franssen S,

Maaijwee NA, Rutten-Jacobs LC, Schoonderwaldt HC, Dor-

resteijn LD, van Dijk EJ, Kessels RP, et al. Remote lower white

matter integrity increases the risk of long-term cognitive

impairment after ischemic stroke in young adults. Stroke.

2016;47(10):2517–2525.

9. Love S, Miners JS. Small vessel disease, neurovascular regu-

lation and cognitive impairment: post-mortem studies reveal a

complex relationship, still poorly understood. Clin Sci (Lond).

2017;131(14):1579–1589.

10. Hainsworth AH, Allan SM, Boltze J, Cunningham C, Farris C,

Head E, Ihara M, Isaacs JD, Kalaria RN, Lesnik Oberstein SA,

et al. Translational models for vascular cognitive impairment: a

review including larger species. BMC Med. 2017;15(1):16.

11. Perneczky R, Tene O, Attems J, Giannakopoulos P, Ikram MA,

Federico A, Sarazin M, Middleton LT. Is the time ripe for new

diagnostic criteria of cognitive impairment due to cerebrovas-

cular disease? Consensus report of the International Congress

on Vascular Dementia working group. BMC Med. 2016;14(1):

162.
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