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ABSTRACT: Real-time, isothermal, digital nucleic acid amplifica-
tion is emerging as an attractive approach for a multitude of
applications including diagnostics, mechanistic studies, and assay
optimization. Unfortunately, there is no commercially available and
affordable real-time, digital instrument validated for isothermal
amplification; thus, most researchers have not been able to apply
digital, real-time approaches to isothermal amplification. Here, we
generate an approach to real-time digital loop-mediated isothermal
amplification (LAMP) using commercially available microfluidic
chips and reagents and open-source components. We demonstrate
this approach by testing variables that influence LAMP reaction
speed and the probability of detection. By analyzing the interplay of
amplification efficiency, background, and speed of amplification,
this real-time digital method enabled us to test enzymatic performance over a range of temperatures, generating high-precision
kinetic and end-point measurements. We were able to identify the unique optimal temperature for two polymerase enzymes
while accounting for amplification efficiency, nonspecific background, and time to threshold. We validated this digital LAMP
assay and pipeline by performing a phenotypic antibiotic susceptibility test on 17 archived clinical urine samples from patients
diagnosed with urinary tract infections. We provide all the necessary workflows to perform digital LAMP using standard
laboratory equipment and commercially available materials. This real-time digital approach will be useful to others in the future
to understand the fundamentals of isothermal chemistries, including which components determine amplification fate, reaction
speed, and enzymatic performance. Researchers can also adapt this pipeline, which uses only standard equipment and
commercial components, to quickly study and optimize assays using precise, real-time digital quantification, accelerating
development of critically needed diagnostics.

I n this paper, we describe a methodology to use
commercially available chips, reagents, and microscopes to

perform real-time digital LAMP. We use this methodology to
perform a mechanistic study of digital isothermal amplification
and apply the lessons learned to perform a phenotypic
antibiotic susceptibility test (AST).
Microfluidics-based diagnostics for infectious diseases are

advancing as a result of using nucleic acid testing, making them
amenable to the point of care (POC) and limited-resource
settings where they will have clinical impact. Isothermal
amplification methods in particular show promise for
simplifying nucleic acid-based POC diagnostics by circum-
venting the stringent thermal cycling requirements of PCR.1

One isothermal method that is being actively pursued in
bioanalytical chemistry and the field of diagnostics is loop-
mediated isothermal amplification (LAMP).2−6

LAMP and other isothermal technologies are fast and
sensitive, but when performed in a bulk format in microliter

volumes (e.g., in a tube), they provide only semiquantitative
(log-scale) resolution or presence/absence measurements.7−15

As a result, when optimizing an assay, it is difficult to quantify
how small changes in assay conditions (e.g., in primers,
reagents, or temperature) impact the reaction’s speed and
analytical sensitivity. To reliably understand these effects with
high precision would require hundreds of bulk experiments per
condition.16 For the field to be able to take full advantage of
the capabilities of LAMP, researchers need to be able to
optimize reaction conditions by understanding and testing the
variables that may influence reaction speed and probability of
detection. Furthermore, the semiquantitative measurements
yielded by bulk isothermal methods are insufficient for analyses
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requiring precise quantification, such as phenotypic antibiotic
susceptibility testing.17,18

These problems can be solved using “digital” approaches,
which partition single target molecules in large numbers of
compartments and give a binary (presence/absence) readout
for each compartment. These “digital” approaches thus allow
determination of the efficiency of the amplification reaction19

and provide absolute quantification with high resolution.
Digital isothermal measurements have been used to quantify
viral load for HCV,16,20,21 HIV,19,20 and influenza,22 perform
bacterial enumeration,23−25 optimize primers,16 and test for
phenotypic antibiotic susceptibility18 using LAMP18−28 and
RPA.29

Real-time digital formats are especially valuable for
examining the variables that most affect nonspecific amplifica-
tion and the speed of amplification. Many excellent approaches
for end-point19,20,22−28 and real-time16,18,21 digital LAMP
(dLAMP) have been published. Despite the value that real-
time dLAMP can bring to diagnostics, this method is difficult
to implement, especially for those without a background in
microelectromechanical systems or microfluidics, because
there is no commercial system for real-time, digital isothermal
amplification. To achieve statistical significance, a meaningful
study might require dozens of experiments; such studies are
difficult to perform without a commercial source of chips.
Consequently, the few LAMP mechanistic studies that have
been performed were not done with high precision. Further,
those who would most benefit from optimized digital
isothermal reactions (e.g., those working on POC diagnostics)
cannot efficiently improve them.
Here, we demonstrate how to generate high-precision

kinetic and end-point measurements using a real-time
dLAMP assay that is performed completely with commercially
available and open-source components (Figure 1). We use this
real-time information to investigate dLAMP reactions mech-
anistically, including the interplay of efficiency, speed, and
background amplification as a function of reaction temperature
and time on two enzymes. To illustrate one application of
using real-time dLAMP to improve a clinically relevant assay,
we optimized the assay conditions for a phenotypic AST using

the real-time dLAMP pipeline and used the optimized protocol
to compare our AST of 17 clinical urine samples to the gold-
standard method.

■ EXPERIMENTAL SECTION
Microfluidic chips used in this paper were sourced from
Applied Biosystems, Foster City, CA, USA, ref A26316,
“QuantStudio 3D Digital PCR 20k Chip Kit V2.”

LAMP Reagents. Our amplification target was the
Escherichia coli 23S ribosomal gene, which we used previously
as a target to perform rapid AST on clinical samples.18 Primers
were purchased through Integrated DNA Technologies (San
Diego, CA, USA) and were described previously.18 Final
primer concentrations were identical for all experiments: 1.6
μM FIP/BIP, 0.2 μM FOP/BOP, and 0.4 μM LoopF/LoopB.
LAMP experiments using Bst 3.0 (Figure 2; Figure

3b,d,e,f,h−j; Figure 4) contained the following final concen-
trations, optimized previously:18 1× Isothermal Amplification
Buffer II (New England BioLabs (NEB), Ipswich, MA, USA;
ref B0374S, containing 20 mM Tris-HCl 10 mM (NH4)2SO4,
150 mM KCl, 2 mM MgSO4, 0.1% Tween 20 pH 8.8 at 25
°C), 4 mM additional MgSO4 (beyond 2 mM from buffer), 1.4
mM Deoxynucleotide Solution Mix. Primers: 1.6 μM FIP/BIP,
0.2 μM FOP/BOP, and 0.4 μM LoopF/LoopB, 1 mg/mL BSA
(New England BioLabs, ref B90005), 320 U/mL Bst 3.0,
Ambion RNase cocktail (ThermoFisher, Waltham, MA, USA;
ref AM2286, 5 U/mL RNase A, 400 U/mL TNase T1), 2 μM
SYTO 9 (ThermoFisher, ref S34854), and approximately 660
copies/μL template in Ambion nuclease-free water (Thermo-
Fisher, ref AM9932).
LAMP experiments using Bst 2.0 (Figure 3a,c,e,g) contained

the following final concentrations, optimized as shown in
Supporting Information, Figure S3: 1× Isothermal Amplifica-
tion Buffer (New England BioLabs; ref B0537S, containing 20
mM Tris-HCl 10 mM (NH4)2SO4, 50 mM KCl, 2 mM
MgSO4, 0.1% Tween 20 pH 8.8 at 25 °C), additional 6 mM
MgSO4 (New England BioLabs; ref B1003S), 1.4 mM
Deoxynucleotide Solution Mix (New England BioLabs; ref
N0447S). Primers: 1.6 μM FIP/BIP, 0.2 μM FOP/BOP, and
0.4 μM LoopF/LoopB, 1 mg/mL BSA (New England BioLabs;
ref B90005), 320 U/mL Bst 2.0 (New England BioLabs; ref
M0537S), Ambion RNase cocktail (ThermoFisher, ref
AM2286, 5 U/mL RNase A, 400 U/mL TNase T1), 2 μM
SYTO 9 (ThermoFisher, ref S34854), and approximately 660
copies/μL template in Ambion nuclease-free water (Thermo-
Fisher; ref AM9932).
Template E. coli DNA was extracted from exponential-phase

cultures grown in BBL Brain−Heart Infusion media (BD,
Franklin Lakes, NJ, USA; ref 221813) using QuickExtract
DNA Extraction Solution (Lucigen, Middleton, WI, USA; ref
QE09050) as described previously.18 Serial 10-fold dilutions
were prepared in Tris-EDTA buffer (5 mM Tris-HCl, 0.5 mM
EDTA, pH 8.0) containing 2 U/mL RNase A and 80 U/mL
RNase T1 (ThermoFisher; ref AM2286). DNA dilutions were
quantified as described previously18 using the QX200 droplet
digital PCR (ddPCR) system (Bio-Rad Laboratories, Hercules,
CA, USA).

Phenotypic Antibiotic Susceptibility Testing (AST) on
Clinical Samples. For the phenotypic AST, we adopted a
workflow described previously17,18 and used archived nucleic
acid extractions from a previous study.18 Briefly, clinical urine
samples from patients with urinary tract infections (UTI) were
split and diluted into equal volumes of media with or without

Figure 1. A schematic of the pipeline for performing multiplexed, real-
time, digital loop-mediated isothermal amplification (LAMP) using
only commercially available and/or open source components.
Microfluidic chips and reagents (e.g., primers, enzymes, buffer
composition) can be purchased commercially. Multiple instrument
configurations can be used to capture results, e.g., a customized real-
time instrument (instructions for building publicly available30) or any
commercial microscope. Data analysis is automated using a MATLAB
script (Supporting Information, S-I).
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the presence of an antibiotic. Samples were incubated for 15
min at 37 °C, a nucleic acid extraction was performed, and
these samples were archived at −80 °C until use. LAMP was
performed on the archived samples to quantify the number of
copies of the E. coli 23S ribosomal gene.

We tested our optimized assay on 17 archived clinical UTI
samples containing ≥5 × 104 CFU/mL E. coli that had been
categorized previously using the gold-standard broth micro-
dilution AST (five ciprofloxacin-susceptible, five ciprofloxacin-
resistant, four nitrofurantoin-susceptible, and three nitro-
furantoin-resistant).
We assessed samples as phenotypically “resistant” or

“susceptible” by calculating the ratio of the concentration of
23S in the control and antibiotic-treated sample, which we call
the control:treated (C:T) ratio. The C:T ratio was calculated
10 min after beginning to heat the LAMP reaction. A threshold
of 1.1 was established previously,17,18 so samples with C:T
ratios >1.1 indicated that there was DNA replication in the
untreated (control) group but not in the antibiotic-treated
samples; these samples were identified as susceptible to the
antibiotic. Samples with C:T ratios of <1.1 indicated that DNA
replication occurred in both the control and antibiotic-treated
samples; these samples were identified as resistant to the
antibiotic.

■ RESULTS AND DISCUSSION

Workflow Summary of Real-Time Digital LAMP. To
evaluate a pipeline for real-time dLAMP experiments, we chose
commercially sourced microfluidic chips sold for end-point
digital PCR applications. The chips consist of an array of
20000 uniform partitions (Figure 1), each 60 μm in diameter
and an estimated 0.75 nL internal volume, which is similar to
the volumes typically used in dLAMP.16,18,20−23,25,26,28 These
chips are loaded by pipetting the sample mixture (in our case
containing the LAMP reagents: buffer components, enzymes,
template, and primers) into the plastic “blade” provided with
the chips and dragging the blade at a 70−80° angle to the chip
to load the sample mixture by capillarity. This is followed by
drying and evaporation of the surface layer for 20 s at 40 °C
and application of the immersion fluid. Manual loading
requires some skill, although a machine can be purchased to
perform the task; typically, we were able to load ∼18000 out of
the 20000 partitions. We performed our evaluation using two
different enzyme mixtures, Bst 2.0 and Bst 3.0. Our
amplification target (Figure 1) was the E. coli 23S ribosomal
gene that we previously used as a target to perform rapid AST
on clinical samples.18

The instrumentation requirements for real-time isothermal
capabilities include a heater that can hold a stable temperature
and optical components with high spatial resolution that are
capable of imaging the fluorescence intensity of the 20000
individual partitions of the chip over time (Figure 2a). Here,
we investigated two approaches: using a standard laboratory
microscope (Leicia DMI-6000B), and using the RTAI,30 which
is composed of a thermocycler, optical components, a camera,
and a light source.
We generated a custom MATLAB script to analyze the

digital real-time data (details in Supporting Information, S-I).
The software follows the change in fluorescence in individual
partitions over time. From these data, we extracted each
partition’s time to a fluorescence intensity threshold and
calculated the bulk template concentration. In our demon-
stration, we loaded the acquired images into FIJI31 as a time-
stack series and manually separated the images of the
individual chips to be analyzed separately. To process each
chip’s image stack, we used the custom MATLAB script that
tracks the mean intensity of each partition over the course of

Figure 2. Experimental demonstration of the real-time digital LAMP
(dLAMP) approach using the commercially available enzyme Bst 3.0.
Experiments were run at 70 °C and imaged using a commercial
microscope. (a) A time course of fluorescence images from a subset of
350 partitions out of 20000 partitions undergoing dLAMP reactions
(intensity range 920−1705 RFU). (b) Fluorescence intensity for a
subset of partitions over time. Blue traces indicate partitions
containing template; red traces indicate fluorescence in the absence
of template (i.e., nonspecific amplification). Partitions turn “on” at the
time point when the curve passes the threshold at 250 RFU. Vertical
traces correspond to time points illustrated in (a) and generate end-
point measurements. (c) An “end-point” measurement taken on a
subset of partitions at 25 min. Bin width is 100 RFU. Fluorescence
threshold is 250 RFU. (d) A histogram of the maximum observed
change in fluorescence of individual partitions using the full chip. Rate
threshold is 45 RFU/30 s. (e) Change in observed bulk concentration
over time from the full chip using fluorescence intensity as threshold
(solid lines) and rate (dashed lines). (f) Time at which individual
partitions in (b) cross the fluorescence intensity threshold. (g)
Maximum rate per partition plotted by time to fluorescence intensity
threshold.
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each experiment. This script could be run with only minor
modifications with images obtained from different instruments.
To calculate the bulk template concentration over time, we

(1) identified the partitions that did or did not contain
reaction solution, (2) tracked the partitions that met a
minimum fluorescence intensity, and (3) used the previous
information to calculate the concentration of template in the
bulk solution.
A summary of the script is as follows: (i) load the images

into memory, (ii) count the total number of partitions before
heating, (iii) identify positive partitions after the conclusion of
the experiment, (iv) track the intensity of positive partitions for
each image frame, (v) apply Gaussian smoothing and baseline
subtraction, (vi) save the data, and (vii) repeat for each image
stack. The output of the script contains: the raw traces of
individual partitions over time, baseline corrected traces of
individual partitions over time (Figure 2b), the number of

partitions exceeding the manually defined minimum fluo-
rescence intensity threshold with time (Figure 2f), and the
maximum relative rate in RFU per 30 s for individual partitions
(Figure 2d). These data provide all the necessary information
to conduct the analyses detailed in Figure 2.

Digital, Real-Time Experiments to Quantify LAMP
Performance. We next sought to experimentally evaluate this
pipeline (Figure 1). First, we established whether the
fluorescence from LAMP reactions could be reliably measured
from individual partitions over time (Figure 2a). We used
LAMP reagents for Bst 3.0, commercial chips, a resistive heater
held at 70 °C, and a commercial microscope. Although the
microscope is capable of collecting all 20000 partitions on one
chip in a single image, for simplicity, in Figure 2a, we cropped
the image to include only 350 of the 20000 partitions. Before
turning on the heater (t = 0), we measured the
autofluorescence from SYTO 9 to quantify the total number
of partitions loaded with reaction solution. (To calculate
template concentration using the Poisson distribution,32,33 we
must know the total number of partitions containing the
reaction mixture.) Autofluorescence from SYTO 9 decreases as
the chip is heated and is completely eliminated within 3 min.
The heater used on the microscope reaches reaction
temperature within 120 s. In less than 10 min, an increase in
fluorescence was observed within some of the individual
partitions, indicating amplification of individual template
molecules inside those partitions. Because of the stochastic
nature of amplification initiation, some of the partitions
fluoresced later.
In the negative-control (no template) partitions, fluores-

cence was not observed for the first 45 min. However, we
began to observe nonspecific amplification after ∼60 min. In
these experiments, the negative control contains only 0.05×
Tris-EDTA buffer in place of template and represents a best-
case scenario. We attribute amplification in the absence of
template to primer dimers and other nonspecific LAMP
products.
Second, we asked if the signal from nonspecific amplification

was sufficiently delayed to differentiate it from the signal
arising from specific amplification in the presence of template.
To answer this question, we generated real-time fluorescence
curves by plotting the change in fluorescence of individual
partitions as a function of time (Figure 2b). We observed
specific amplification (blue curves) beginning to initiate at ∼7
min and nonspecific amplification beginning to initiate at ∼50
min (red curves) and concluded that we could discriminate
specific and nonspecific amplification by time.
Third, we asked whether enzymatic heterogeneity16,21,34 of

specific amplification can be quantified to differentiate specific
from nonspecific amplification. We plotted the maximum
change of fluorescence achieved by each partition of the full
chip per 30 s interval (Figure 2d). For the negative-control
sample (red bars), we observed nonspecific amplification
following a bimodal distribution of rates, with a first peak with
little to no rate of fluorescence increase and a second peak at
∼25 RFU per 30 s. For the sample containing template (blue
bars), rates for specific amplification were heterogeneous and
centered around a rate of 70 RFU/30 s. We note that in PCR,
which is gated by temperature cycling, there is no equivalent
concept of “rate” as long as replication of DNA occurs faster
that the duration of each elongation step. We found in our
dLAMP experiments that the rate of specific amplification was
greater than nonspecific amplification. Hence, tracking

Figure 3. Evaluation of reaction conditions (enzymes and temper-
ature) using real-time digital LAMP. (a,b) Amplification efficiency
(percent template copies detected out of copies loaded) of Bst 2.0 (a)
and Bst 3.0 (b) as a function of temperature. Green boxes indicate the
optimal temperature range for the greatest probability of template
detection. (c,d) Nonspecific amplification in template-free buffer
samples using Bst 2.0 (c) and Bst 3.0 (d) for conditions matching (a)
and (b). (e,f) Distribution of time to fluorescence threshold using Bst
2.0 (e) and Bst 3.0 (f). (g) The fractional cumulative distribution
function (CDF) compares the enzymes at their optimal temperatures
(68 °C). (h) Fractional CDF plots of Bst 3.0 rate at three
temperatures. Error bars are SD. For all data sets, N = 3 chips
(technical replicates). CDF plots are the sum of three technical
replicates.
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amplification in real-time made it possible to distinguish true
positives from false positives (nonspecific amplification).
Fourth, we asked if the distribution in time to fluorescence

threshold is sufficiently narrow to discriminate specific and
nonspecific amplification. By plotting the number of “on”
partitions (i.e., partitions that crossed the fluorescence
intensity threshold defined in Figure 2b) against time, we
generated a distribution curve (Figure 2f) that illustrates the
number of partitions that turn on per time point. This is
related to the derivative of the change in concentration over
time. This plot contains the time to threshold of all partitions
within the entire chip, rather than a subset, to minimize
sampling bias. In the sample containing template (blue curve),
most partitions reached the threshold in 7−20 min, whereas
the negative-control sample (red curve) had little nonspecific
amplification until approximately 60 min. Graphing time to
threshold (Figure 2f) illustrates the overall reaction’s speed
(defined as the location of the peak or mode time to
threshold) and efficiency (proportional to the area under the
curve and illustrated in Figure 2e as the calculated
concentration). In our experiment, the peak of the sample
containing template was narrow and well separated from the
nonspecific amplification of the negative control (Figure 2f),
indicating sufficiently low heterogeneity in amplification rate
and time to initiation of the reaction.
Fifth, we asked how the calculated bulk concentration

changes over time. To answer this question, we generated end-
point-style measurements for each 30 s time point and
calculated how the concentration changed over time. To
demonstrate how to generate a single end-point-style measure-
ment, we selected one time point (25 min) and plotted RFU as
a factor of the number of partitions (Figure 2c). Partitions
were classified as either “on” (>250 RFU threshold) or “off”
(<250 RFU threshold). Partitions that are defined as having
turned “on” contain a template molecule that amplified,
whereas partitions that are ”off” either lack a template molecule
or have not yet begun amplification. The sum of the partitions
passing the threshold out of the total number of partitions with
solution was used to determine a precise bulk concentration of
template in the sample using the Poisson equation, as has been
documented elsewhere.32,33 We plotted the calculated
concentration as it changed over time in Figure 2e (solid
lines).
When the aim is to determine a precise concentration, we

need to determine the best time at which to stop the assay.
Deciding the best time to end the assay is complicated because
each reaction initiates stochastically,16,21 causing the calculated
concentration to asymptotically approach the true concen-
tration (Figure 2e). It would be ideal for the calculated
concentration to rapidly rise to the true bulk concentration and
plateau near the true concentration; however, the reaction
should be stopped before the rise in nonspecific amplification
(observed in our example starting at 60 min; red curves, Figure
2e,f). We tested whether there is heterogeneity in amplification
rate (i.e., whether partitions with slow amplification rates take
longer to reach the fluorescence intensity threshold than
partitions with fast amplification rates) and found that
initiation time was stochastic, but the reaction rates for true
and false positives were consistent (Figure 2g). Hence, two
molecules could have the same TTP yet initiate at different
moments, resulting in variable amplification rates.
Combining information about the concentration of template

(Figure 2e) and the time it takes for partitions to turn “on”

(Figure 2f) can be used to inform the choice of an optimal
assay length for end-point measurements for situations where
real-time quantification is not feasible. For example, in Figure
2, the optimal assay length for an end-point readout would be
∼45 min. This approach allows one to balance stochastic
initiation of amplification, overcome enzymatic heterogeneity,
and reduce the incidence of false positives caused by
nonspecific amplification.
However, in cases where real-time measurements are

desirable, thresholding by rate may be used to separate specific
and nonspecific amplification. For example, to correct for the
observed increase in nonspecific amplification (after 45 min),
we implemented a threshold (Figure 2d) on the maximum rate
per partition, thus eliminating some of the nonspecific
amplification in both the presence and absence of template
(compare solid and dashed lines in Figure 2e). For example,
the measured value at 60 min is 280 copies per μL (solid line),
and the corrected value is 258 copies per μL (dashed line). In
the no-template control, at 60 min, the measured value is 16
copies per μL (solid line), whereas the corrected value is 3
copies per μL (dashed line). The correction is more
pronounced at 80 min where nonspecific amplification is
greater. At 80 min, the measured value in the presence of
template is 325 copies per μL and the corrected value 266
copies per μL, indicating that almost 20% of the signal could
arise from nonspecific amplification. In the absence of
template, the uncorrected value at 80 min is 187 copies per
μL, however if the rate is accounted for, then the value can be
corrected to 16 copies per μL, thus eliminating the majority of
the false positives.
Finally, we note that although we calculated template

concentration, the value is precise but could be inaccurate if
not all target molecules loaded into the chip undergo
amplification (in other words, if efficiency of amplification is
not 100%). Thus, we next sought to measure the absolute
likelihood of detecting a molecule as a function of reaction
condition.

Evaluation of the Effect of Temperature on dLAMP
with Two Different Enzymes to Analyze the Interplay of
Amplification Efficiency, Background, and Speed of
Amplification. After establishing a protocol for generating
real-time, digital measurements, we evaluated the absolute
amplification efficiency of LAMP as a function of temperature
for two different enzymes. We selected two commercial
polymerases that worked well for us previously. Both enzymes
are in silico homologues on the Bacillus stearothermophilus
DNA polymerase I and large fragment. NEB describes Bst 3.0
as an improvement of Bst 2.0 by adding reverse transcriptase
activity, increased amplification speed, and increased thermo-
stability. We sought to understand the differences in
performance between these two enzymes at the single-template
level. For this experiment, we used the previously described
RTAI.30 The field of view for this instrument is larger than a
microscope, allowing up to six samples to be observed
concurrently. Hence, both the positive and negative controls
could be collected in triplicate simultaneously. We expect some
differences in measurements made on different instruments as
a result of differing camera sensitivities and differences in the
heating mechanism. Indeed, when we ran a single-concen-
tration amplification reaction under identical conditions and
compared measurements from the microscope and the RTAI,
we found that there was significant difference (P = 0.03) in
amplification efficiency between the two instruments (Support-
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ing Information, Figure S2), with the RTAI generating higher
amplification efficiency. Hence, we performed all enzyme−
performance comparisons on a single instrument.
Amplification Efficiency. First, we sought to establish the

amplification efficiency of dLAMP, i.e., the fraction of template
copies loaded that are detected (Figure 3a,b). We calculated
the bulk concentration of template molecules from the digital
measurement and plotted the observed template concentration
as a fraction of template molecules loaded. To calculate the
amplification efficiency, we determined template concentration
using ddPCR and assumed all template molecules were
amplified. Using the real-time component of our measure-
ments, we plotted the percent of copies detected over time
compared with ddPCR.
We next asked how temperature impacts amplification

efficiency. In general, we observed greater amplification
efficiency at longer amplification times, which aligned with
our previous observation (Figure 2d,e). Second, when
observing at a fixed time, increasing temperature increased
amplification efficiency to an optimum (green box in Figure
3a,b) before activity decreased.
Several observations can be made by comparing the results

from Bst 2.0 and Bst 3.0 (Figure 3a,b). Although Bst 2.0 and
Bst 3.0 have an identical reported optimal incubation
temperature in bulk (65 °C), we observed they had different
optimal temperature ranges for amplification efficiency (Bst 2.0
at 66−68 °C; Bst 3.0 at 68−70 °C). We detected lower
amplification efficiency at higher temperatures with Bst 2.0
compared with Bst 3.0. Bst 2.0 failed to amplify at 72 °C,
whereas Bst 3.0 continued amplifying until 76 °C. At short
amplification times, (such as 10 min), Bst 3.0 had greater
amplification efficiency than Bst 2.0 (42.8% vs 20.8%,
respectively). In contrast, at longer amplification times, such
at 30 or 45 min, efficiency for the enzymes was similar (77.6%
vs 71.5% at 45 min, respectively), although Bst 2.0 had slightly
greater amplification efficiency than Bst 3.0.
We hypothesize that increased temperature improved

amplification efficiency (presumably by increasing the breath-
ing of dsDNA and facilitating primer annealing) until, at higher
temperatures, a combination of enzyme denaturation or failure
of the primers to anneal occurred. Our primers had melting
temperatures ranging from 56−61 °C, when excluding the
secondary FIP and BIP annealing regions, as calculated using
OligoCalc.35 We found that chip-to-chip variability was
extremely low. Relative error for Bst 2.0 at optimal temperature
(68 °C) and 45 min of amplification was ∼2% (Figure 2a),
whereas the predicted Poisson noise for a single chip is 0.7%.
Achieving such high precision using bulk measurements would
require hundreds of experiments. The low variability among
these measurements indicates that we were correctly
determining whether a partition contained solution and
whether it amplified.
Nonspecific Background Amplification. Next, we

quantified the amount of nonspecific amplification (Figure
3c,d) as a function of time and temperature. We plotted the
number of wells that turned “on” in the absence of template
relative to the total number of wells filled with LAMP solution.
As previously stated, these nonspecific amplification reactions
included buffer in place of template and represented a best-
case scenario. We concluded that at least for these idealized
conditions, nonspecific amplification in dLAMP was extremely
low. For example, a fraction of 0.001 could correspond to 20
partitions turning on from among a total of 20000 possible

partitions. For both enzymes, we found the maximum fraction
of nonspecific amplification per total partitions was 0.0012 for
times 20 min or less. The highest fraction of nonspecific
amplification observed was 0.017 at 45 min, corresponding to
fewer than 350 nonspecific partitions of the 20000 total
(Figure 3c,d). Furthermore, we observed that higher temper-
atures resulted in lower nonspecific amplification (Figure
3c,d). Finally, at extremely long amplification times (e.g., 60
min amplification, data not shown), Bst 2.0 had lower
background than Bst 3.0.

Variations in Speed and Amplification Efficiency.
Third, we quantified the variation in speed and amplification
efficiency across partitions in the time to reach fluorescence
intensity threshold (Figure 3e,f). We first plotted the percent
copies detected as a function of time for each temperature. As
described previously, these curves represent the distribution in
the time to threshold across all partitions and thus illustrate the
interplay of (i) detecting a molecule (area under the curve
from zero to a given time corresponding to the values plotted
in Figure 3a,b), (ii) the speed of the reaction (the time at
which the peak reaches a maxima), and (iii) several parameters
of peak width summarized in Supporting Information, Table
S1. We hypothesize peak width is related to both the enzyme
amplification rate, overall amplification efficiency, and the time
at which the reaction initiates. Next, we plotted the peak time
to threshold (Supporting Information, Figure S1). Images were
collected in 30 s intervals, and we report the average of three
trials. In some cases, the difference in time to threshold was
less than the imaging time interval. For each time point, if
fewer than 15 partitions (0.075% of total partitions) were “on,”
that time point was not included in the calculation of the
mode. For these measurements, at the start of the reaction, the
heat block was at 25 °C and the time to threshold included the
time for the heat block to come to reaction temperature (∼70
s). Hence, there will be minor differences (seconds) in the
time for each reaction to reach the fixed temperature. We do
not see evidence that this difference manifests in the mode
time to positive (TTP) measurements.
In reactions with Bst 2.0, below 68 °C, mode TTP was

narrowly clustered around 9.5 min. At 70 °C, mode TTP
increased and the reaction failed to amplify beyond 72 °C. In
reactions with Bst 3.0, the mode TTP decreased from 8.2 ± 0.3
(mode ± SD) min at 64 °C to 6.6 ± 0.3 min at 70 °C, then
increased with increasing temperature until amplification failed
for all partitions at temperatures ≥76 °C. In the negative
controls for both enzymes (Supporting Information, Figure
S1), amplification either failed or started after 75 min.
Several observations can be made by comparing the results

from Figure 3e,f. We found that the optimal temperature for
time to threshold corresponded with the optimal temperature
for amplification efficiency (Figure 3a,b) and that the optimal
temperatures also had the smallest tailing factors, full width at
half-maximum (fwhm) and asymmetric factor (i.e., narrowest
peak widths) (Figure 3e,f; Supporting Information, Table S1).
At optimal efficiency, Bst 3.0 was approximately 2 min faster in
mode TTP, had much narrower fwhm, smaller tailing factor,
and lower asymmetry than Bst 2.0. Finally, as efficiency
decreased, measurements of peak shape and width increased.
To the best of our knowledge, this is the first published
quantification that explicitly tests and quantifies the time
dependence of LAMP efficiency using these enzymes. Real-
time digital enables us to identify the time point at which the
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observed concentration most closely approximates the true
concentration thus optimizing the assay duration.
Rates of Amplification (Specific and Nonspecific).

Fourth, we compared the rates of specific and nonspecific
amplification between Bst 2.0 and Bst 3.0. The data shown
represent the combined rates of three separate trials. We found
that nonspecific amplification rates were similar for the two
enzymes (Figure 3g, dashed lines), whereas in the presence of
template, amplification rates were faster for Bst 2.0 than Bst 3.0
(Figure 3g, solid lines) despite lower efficiency at short times.
Differences in camera sensitivity between the microscope
(used for real-time images in Figure 2) and the RTAI (used for
Figure 3) result in different apparent amplification rates.
We also examined the relationship between temperature,

efficiency, and maximum rate. In the case of Bst 3.0, maximum
reaction amplification rate does not correspond with optimal
efficiency (Figure 3h). A temperature of 64 °C had the fastest
amplification rates but suboptimal efficiency (57.3% at 45
min). Optimal amplification efficiency occurs at 68 °C (71.5%
at 45 min) but slightly slower amplification rate than 64 °C. At
74 °C, we observed both poor efficiency (32.7% at 45 min)
and the slowest reaction rate. We attribute this to a
combination of decreased enzymatic velocity and decreased
primer annealing. Additionally, we note that different thresh-
olds for amplification rate would be needed for each
temperature. This is expected given changes in enzymatic
velocity.

Application of the Pipeline to a Phenotypic Anti-
biotic Susceptibility Test (AST) Using Clinical Samples.
We next asked whether we could apply the output of this
digital real-time pipeline to perform a rapid phenotypic AST.
Specifically, we aimed to categorically sort clinical samples as
phenotypically “susceptible” or “resistant” to an antibiotic in
agreement with the gold-standard reference method. This
study was constructed as a demonstration of the capability of
the microfluidic chips and the value gained from using this

digital real-time pipeline to optimize reaction conditions; it was
not an assessment of the digital AST (dAST) methodology
established previously.17,18 We selected the optimal dLAMP
conditions for Bst 3.0 based on the measurements of mode
TTP and amplification efficiency established in the previous
experiments (Figure 3b), 70 °C and a reaction time of 10 min.
We used archived clinical urine samples from patients
diagnosed with urinary tract infections (UTI) containing E.
coli. These samples had been categorized as phenotypically
susceptible or resistant to the antibiotics ciprofloxacin or
nitrofurantoin using the gold-standard (broth microdilution)
method.18 We tested exactly 17 samples and observed 100%
categorical agreement with the gold-standard method (0 major
errors; 0 minor errors). We conclude that the pipeline
presented in this paper performs well and could be used,
among other applications, to optimize reaction conditions for
speed and sensitivity and apply those conditions to a
determination of phenotypic antibiotic susceptibility in clinical
samples.

■ CONCLUSION
We have presented a pipeline to generate real-time, digital
isothermal amplification measurements using only commercial
and open-source components. We used this pipeline to
examine how small changes in reaction conditions influence
the interplay of LAMP efficiency, speed, and background by
performing 124 real-time dLAMP experiments. As one
practical application of this approach, we determined the
optimal reaction conditions for a phenotypic test of antibiotic
susceptibility using 17 clinical urine samples from patients
diagnosed with urinary tract infections. In all cases, the results
of the optimized dLAMP assays were in agreement with the
clinical gold-standard AST.
These experiments validate that real-time digital measure-

ments enable tests of enzymatic performance in dLAMP.
Generally, we found that each enzyme had a unique optimal
temperature for amplification efficiency (probability of
detecting a target molecule) and for eliminating nonspecific
amplification. This “optimal” temperature produced the fastest
mode TTP and the narrowest, most symmetrical distribution
curves; interestingly, the optimal temperature did not
necessarily yield the fastest amplification rate. Together,
these data suggest that amplification efficiency is an interplay
of enzymatic rate, diffusive transport, and DNA breathing.
When reactions are performed away from optimal temperature,
the distribution curves broaden and decrease in total area,
resulting in reduced overall amplification efficiency and slower
mode TTP, whereas amplification rate decreases with
increasing temperature. With regard to the specific enzymes
in this study, although efficiency was similar at long
amplification times (>20 min), Bst 3.0 had a faster mode
TTP than Bst 2.0 by approximately 2 min and more narrow
and symmetrical distribution curves. However, Bst 2.0 had
faster amplification rates than Bst 3.0, so reactions with Bst 2.0
took longer to initiate but proceeded more rapidly. For both
polymerases, nonspecific amplification in buffer was extremely
low.
In the future, this pipeline can be used to understand the

fundamental pieces of LAMP. The field of diagnostics would
benefit from a thorough mechanistic study of LAMP by asking
which components determine amplification fate and how
components, such as primers and heating rate (Supporting
Information, Figure S2), impact reaction and enzymatic speed.

Figure 4. Phenotypic antibiotic susceptibility tests of 17 clinical urine
samples from patients infected with a urinary tract infection
containing E. coli. Susceptibility to the antibiotics nitrofurantoin and
ciprofloxacin were tested using dLAMP conditions optimized using
digital real-time experiments (Figure 3). Urine samples were exposed
to media without antibiotic (control) or media with an antibiotic
(treated) for 15 min, and then concentrations of nucleic acids were
quantified to calculate a control:treated (C:T) ratio. Samples were
categorized by dLAMP as susceptible (above the susceptibility
threshold) or resistant (below the threshold). All samples were
categorized in agreement with the clinical gold-standard method.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.8b04324
Anal. Chem. 2019, 91, 1034−1042

1040

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.8b04324/suppl_file/ac8b04324_si_001.pdf
http://dx.doi.org/10.1021/acs.analchem.8b04324


This pipeline makes such a mechanistic study possible. For
example, in this study, we corrected the observed concen-
tration by separating true positives from background
amplification using rate and fluorescence, but we did not
explore the origins of nonspecific amplicons, which deserves its
own study and development of more precise tools for studies
of nonspecific amplification. Finally, this pipeline can be
extended to optimize other isothermal amplification chem-
istries that could be suited to other types of diagnostic assays.
Ultimately, this pipeline will make digital real-time measure-

ments more accessible to researchers, even those who lack
microfluidic expertise or specialized equipment. The commer-
cially available chips and reagents used here could be coupled
with many combinations of standard laboratory or field
equipment such as a hot plate and a fluorescent stereoscope
or a chemical heater and a cell phone camera. Although we
believe the general trends found in this paper will extend to
other primer sets, we hope this pipeline will enable others to
study other primer sets and conditions of interest to them.
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