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Abstract

Background: Arthropod-borne diseases remain a major health-threat for humans and animals worldwide. To
estimate the distribution of pathogenic agents and especially Bartonella spp., we conducted tick microbiome
analysis and determination of the infection status of wild animals, pets and pet owners in the state of Hesse,
Germany.

Results: In total, 189 engorged ticks collected from 163 animals were tested. Selected ticks were analyzed by next
generation sequencing (NGS) and confirmatory PCRs, blood specimens of 48 wild animals were analyzed by PCR to
confirm pathogen presence and sera of 54 dogs, one cat and 11 dog owners were analyzed by serology. Bartonella spp.
were detected in 9.5% of all ticks and in the blood of 17 roe deer. Further data reveal the presence of the human and
animal pathogenic species of genera in the family Spirochaetaceae (including Borrelia miyamotoi and Borrelia garinii),
Bartonella spp. (mainly Bartonella schoenbuchensis), Rickettsia helvetica, Francisella tularensis and Anaplasma
phagocytophilum in ticks. Co-infections with species of several genera were detected in nine ticks. One dog
and five dog owners were seropositive for anti-Bartonella henselae-antibodies and one dog had antibodies
against Rickettsia conorii.

Conclusions: This study provides a snapshot of pathogens circulating in ticks in central Germany. A broad
range of tick-borne pathogens are present in ticks, and especially in wild animals, with possible implications
for animal and human health. However, a low incidence of Bartonella spp., especially Bartonella henselae, was
detected. The high number of various detected pathogens suggests that ticks might serve as an excellent
sentinel to detect and monitor zoonotic human pathogens.
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Background
Globalization and climate change both contribute to the
spread of infectious diseases often transmitted by insects
and arthropod vectors. The monitoring and control of
vector-borne diseases is an important task in public
health, consolidating medical, veterinary and environ-
mental research to realize potential health threats and to
avert and reduce them [1].
Ticks are distributed worldwide and are of special interest

in infection epidemiology research as these vectors are able
to transmit a broad variety of infectious agents to humans
and animals. Hard ticks usually feed three times during
their life-cycle and pathogens can be acquired or transmit-
ted during every blood meal. Furthermore, pathogens are
transmitted transstadially from larvae to nymphs or from
nymphs to adults, or vertically from mother ticks to eggs
[2]. For the last two decades, pathogen-harboring-ticks
were mainly analyzed by PCR-based applications, e.g. for
Borrelia spp. and Bartonella spp. [3–5]. However, these
analyses were limited naturally in their spectrum of detect-
able pathogens. With the availability of next generation se-
quencing (NGS) technologies, several studies have analyzed
the microbiome of ticks, and besides endosymbionts, a
large variety of bacterial pathogen DNA has been found
(e.g. Francisella spp., Rickettsia spp., Anaplasma spp., Bar-
tonella spp. and Borrelia spp.) without the need to select
particular tests in advance [6–12].
Bartonella spp. are typical examples for vector-borne

pathogens. These Gram-negative, facultative intracellular
bacteria cause long-lasting intraerythrocytic infections in
their respective reservoir hosts and are usually transmit-
ted by blood sucking arthropods [13–15]. For example,
rodents and bats serve as primary reservoirs for various
Bartonella spp., including species with medical relevance
for humans [16, 17]. Today, Bartonella henselae is the
most common pathogenic representative of the genus
Bartonella. Its reservoir host is the cat from which it is
transmitted to humans (causing cat-scratch disease and
other diseases) and dogs (causing endocarditis, fever of
unknown origin and peliosis hepatis) [13, 18–20]. Barto-
nella schoenbuchensis was isolated first from the blood
of wild roe deer in 1999 [21] and it turned out that sev-
eral ruminant species serve as a reservoir hosts for this
particular pathogen [22–29]. In animal reservoir hosts,
asymptomatic infections with Bartonella spp. are
common, although their pathogenicity remains unclear
[30, 31]. Bartonella schoenbuchensis has been suggested
to cause deer ked dermatitis in humans [30] and was
isolated from a patient with a history of tick bites who
suffered from fatigue, muscle pain and fever [32]. Cur-
rently, at least 37 Bartonella spp. are known to infect
humans and animals [33].
In ticks, the prevalence of B. henselae DNA has been

demonstrated to be up to ~40% [3] and, although

controversially discussed [34], ticks are suspected to
transmit Bartonella spp. [35]. The vector-competence of
ticks has been confirmed in a murine infection model
[36] and by using an artificial feeding system [37]. Sev-
eral studies have shown that various tick species harbor
several pathogenic bacteria alongside with Bartonella
spp. [5, 38, 39], leading to a potential risk of co-infec-
tions in humans and animals. Two studies have reported
co-infections with Borrelia burgdorferi [not specified, re-
spectively B. burgdorferi (sensu lato)] and B. henselae in
humans [40, 41]. As co-infections can result in more se-
vere and irregular courses of disease, studies of the
microbiome are a crucial prerequisite to estimate the
health threat for humans and animals arising from tick
bites and allow broader insights in the epidemiology of
tick-borne pathogens.
We investigated the presence of Bartonella spp. and other

pathogens in feeding ticks and blood of pets and wild ani-
mals in central Germany (federal state of Hesse) by combin-
ing NGS and conventional PCRs for pathogen detection.
Moreover, we attempted to detect pathogen-specific anti-
bodies in the serum of pets and their owners.

Methods
Sample collection
Ticks and serum from pets were collected by veterinarians
located in the state of Hesse, Germany, and tick and blood
samples from wild animals were collected by hunters dir-
ectly after shooting and by employees of the Landesbetrieb
Hessisches Landeslabor, Gießen, Germany. All locations
are given in Table 1. Blood was collected in EDTA- and
serum-tubes and ticks were stored in sterile, DNA-free
vials (Eppendorf, Hamburg, Germany) containing 70%
DNA-free ethanol. Human blood samples were taken by
general practitioners or in the outpatient clinics of the In-
stitute for Medical Microbiology and Infection Control,
Frankfurt am Main, Germany. The workflow of all sam-
ples is shown in Fig. 1.

DNA-extraction from ticks and whole-blood
The laboratories of the Institute for Medical Microbiol-
ogy and Infection Control at the University Hospital of
the Goethe University in Frankfurt (Germany) undergo a
strict and externally reviewed quality control manage-
ment with all required positive and negative controls (la-
boratory accreditation according to ISO 15189:2014
standards; certificate number D-ML-13102-01-00, valid
through January 25th, 2021) and are appointed as Na-
tional Consiliary Laboratories for Bartonella by the Rob-
ert Koch Institute, Berlin, Germany. There was no
increase of Bartonella-positive cases during this study;
therefore, the possibility of DNA contamination from
non-study sources is highly unlikely.
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DNA extraction from ticks was conducted as previ-
ously described [42]. All ticks were individually removed
from tubes with sterile forceps, identified using standard
taxonomic keys [43] and washed twice in sterile ethanol
and once in sterile water to avoid DNA contamination
by environmental microorganisms present on the cuticle
of the ticks. Each tick was treated individually to prevent
DNA cross-contamination. DNA was extracted by using
the QIAamp DNA Mini kit (Qiagen, Hilden, Germany)
according to manufacturer’s instructions and eluted in
200 μl elution buffer. Grinding was conducted with dis-
posable sterile mortars and pestles. The extraction pro-
cedure was strictly controlled using specific
pathogen-free ticks (Insect Services, Berlin, Germany) in
which Bartonella spp. were never detected (data not
shown). DNA from whole-blood was extracted using the
DNeasy Blood and Tissue Kit (Qiagen) and eluted in

200 μl of elution buffer as recommended by the
manufacturer.

PCR-detection of pathogen-specific genes by PCR
In this study, we focused on the detection of Bartonella
spp. in addition to other pathogens. Therefore, all ticks
and EDTA-blood were analyzed for Bartonella spp.
DNA using two different PCR methods [42]: 16S riboso-
mal DNA (rDNA) nested PCR [3, 44] using the Taq
DNA Polymerase-Kit (Invitrogen, Schwerte, Germany)
and 16S-23S rDNA internal transcribed spacer (ITS) re-
gion PCR [45] using the Platinum Taq Polymerase-Kit
(Invitrogen). Positive (B. henselae Houston ATCC 49882,
1 ng) and negative (water) intra-assay controls were al-
ways included. DNA was amplified in a Biometra T3000
thermocycler (Biometra, Goettingen, Germany). Prod-
ucts were separated on agarose gels, stained with

Table 1 Geographical coordinates of hunting sites, veterinary practices and state health authorities in Germany where samples were
taken

Animal species (n) Location Geographical coordinates

Hunting sites

Boar (n = 1) Urban forest, Frankfurt am Main 50°04'19.8"N, 8°40'52.2"E

Roe deer (n = 9); boar (n = 3); raccoon (n = 1) Vogelsberg, Schotten 50°31'00.8"N, 9°14'30.1"E

Roe deer (n = 3) Hainchen 50°51'15.912"N, 8°12'57.51"E

Roe deer (n = 1) Koenigstein 50°10'43.464"N, 8°28'18.876"E

Roe deer (n = 1) Altenhain, Taunus 50°9'22.428"N, 8°28'14.048"E

Roe deer (n = 1) Hofheim-Wallau 50°3'43.186"N, 8°22'20.345"E

Roe deer (n = 7) Biedenkopf 50°54'24.35"N, 8°32'9.55"E

Roe deer (n = 6); boar (n = 1) Neu-Anspach, Gruenwiesenweiher 50°19'33.8"N, 8°29'38.4"E

Roe deer (n = 1) Buedingen 50°17'10.667"N, 9°6'40.982"E

Roe deer (n = 3) Biblis / Wattenheim 49°41'28.0"N, 8°24'24.9"E

Roe deer (n = 2) Gedern 50°26'54.0"N, 9°14'21.9"E

Veterinary practices and government agencies

Dog (n = 19) Oberursel 50°12'16.7"N, 8°35'40.3"E

Dog (n = 4) Hattersheim 50°04'11.2"N, 8°28'22.1"E

Dog (n = 1) Bad Vilbel 50°11'13.2"N, 8°44'24.5"E

Dog (n = 1); cat (n = 1) Offenbach 50°06'14.3"N, 8°45'19.9"E

Dog (n = 2) Bad Homburg 50°13'11.8"N, 8°38'46.4"E

Dog (n = 16) Frankfurt am Main 50°07'00.3"N, 8°38'35.7"E

Dog (n = 2) Frankfurt am Main 50°10'50.5"N, 8°39'37.9"E

Dog (n = 1) Frankfurt am Main 50°05'11.2"N, 8°35'05.2"E

Dog (n = 2) Hofheim 50°03'52.7"N, 8°23'15.7"E

Dog (n = 3) Moerfelden-Walldorf 49°59'43.5"N, 8°34'34.1"E

Dog (n = 1) Dreieich 50°01'07.8"N, 8°40'23.8"E

Dog (n = 1) Dreieich 50°01'14.7"N, 8°41'12.3"E

Dog (n = 1) Frankfurt am Main 50°08'49.0"N, 8°40'00.1"E

Roe deer (n = 3); boar (n = 1); red fox (n = 1); wisent (n = 1) Landesbetrieb Hess, Landeslabor Gießen 50°34'03.2"N, 8°39'45.2"E

Roe deer (n = 2) Forestry district, Koenigstein 50°10'43.464"N, 8°28' 18.876"E
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Fig. 1 Workflow of all samples. DNA of ticks and animal blood samples was extracted and PCRs for Bartonella-specific genes (16S rDNA, 16S-23S
ITS) were conducted (with subsequent Sanger-sequencing of the amplicons). 16S rDNA metagenomics was used for determination of the tick
microbiome (confirmed by specific PCRs) revealing the presence of further pathogens. Serum of pets and, if available, of pet owners was
analyzed for serological infection markers (antibodies) known to indicate previous infections in regard to the molecular findings from ticks

Table 2 Targets, primers and amplicon size for the PCR-testing from ticks and EDTA-blood

Target sequence Designation Sequence (5'-3') Amplicon length (bp) Reference

Bartonella spp. 16S rDNA, 1st round A-proteo AGAGTTTGATC(AC)TGGCTCAGA 1210 [44]

r-Alpha-sh GTAGCACGTGTGTAGCCCA

Bartonella spp. 16S rDNA, 2nd round Bart CACTCTTTTAGAGTGAGCGGCAA 990 [44]

r-BH CCCCCTAGAGTGCCCAACCA

Bartonella 16S-23S ITS region 325s CTTCAGATGATGATCCCAAGCCTTCTGGCG various Bartonella spp., ~500 bp [45]

1100as GAACCGACGACCCCCTGCTTGCAAAGCA

Bartonella spp. rpoB prAPT0244 GATGTGCATCCTACGCATTATGG 406 [51]

prAPT0245 AATGGTGCCTCAGCACGTATAAG

Anaplasma spp. 16S rDNA 1st round ge3A CACATGCAAGTCGAACGGATTATTC 932 [48]

ge10r TTCCGTTAAGAAGGATCTAATCTCC

Anaplasma spp. 16S rDNA 2nd round ge9f AACGGATTATTCTTTATAGCTTGCT 546 [48]

ge2 GGCAGTATTAAAAGCAGCTCCAGG

C. burnetii IS1111 CB_S4k GAAACGGGTGTTGAATTGTTTG 290 [47]

CB_A2k ATCACCAATCGCTTCGTCCCGGT

Rickettsia spp. 23S-5S ITS region 23S for GATAGGTCGGGTGTGGAAGCAC various Rickettsia spp., ~500 bp [46]

23S rev GGGATGGGATCGTGTGTTTCAC

Leptospira spp. LipL32 LipL32-270F CGCTGAAATGGGAGTTCGTATGATT 423 [49]

LipL32-692R CCAACAGATGCAACGAAAGATCCTTT

Borrelia spp. 16S rDNA 16S FW GGCTTAGAACTAACGCTGGCAGTGC 552 [50]

16S RV CCCTTTACGCCCAATAATCCCGA
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ethidium bromide and visualized under UV light. PCR
products were sequenced by a commercial provider
(GATC, Konstanz, Germany), analyzed using the
Chromas software (Technelysium, v.2.6, South Brisbane,
Australia) and compared to Bartonella spp. strains de-
posited in the NCBI databank using the BLAST online
tool for species level identification.
Whenever potentially pathogenic bacterial species were

detected by NGS in the microbiome analysis (see below),
subsequent PCRs for species determination were con-
ducted from ticks and from EDTA-blood of the animals, if
available. Primers for the detection of the Bartonella spp.
16S-rDNA nested PCR and the Bartonella spp. 16S-23S
rDNA ITS region PCR, the Rickettsia spp. 23S-5S ITS re-
gion [46], the Coxiella burnetii IS1111 region [47], 16S
rDNA of Anaplasma spp. [48], the Leptospira spp. LipL32
gene [49] and Borrelia spp. 16S rDNA [50] are given in
Table 2. PCRs were conducted employing the standard
protocol for the Platinum Taq Polymerase Kit and all
PCR-products were sequenced and analyzed. Detection of
the ospA gene of Borrelia spp. in ticks and of Francisella
tularensis were conducted using LightMix Kits (TIB
MOLBIOL, Berlin, Germany) according to the manufac-
turer’s instructions. Positive controls (each containing 1
ng of DNA) were the following: Rickettsia helvetica
(friendly gift of Dr. Dobler, München, Germany), Coxiella
burnetii (German laboratory quality assessment trials,
INSTAND e.v., Düsseldorf, Germany), Anaplasma phago-
cytophilum Webster (friendly gift of Prof. von Loewenich,
Mainz, Germany), Leptospira interrogans (German Federal
Institute for Risk Assessment, Berlin, Germany) and Bor-
relia miyamotoi HT31 (CDC, Fort Collins, USA).

Differentiation of ruminant-associated Bartonella spp. by
rpoB-PCR
To increase the species-discriminatory power of the
rDNA-sequences within the Bartonella ruminant-lineage,
a PCR protocol specific for a 406 bp internal fragment of
the rpoB gene (β-subunit of the bacterial RNA polymer-
ase) was performed [51]. Bartonella rpoB DNA was ampli-
fied by using 5 μl of starting material. Positive (B. henselae
Houston ATCC 49882, 0.5 ng) and a negative (water) con-
trols were always included. Primers are given in Table 2.
PCR products were sequenced (GATC) and analyzed
using Chromas software. To analyze the Bartonella
species-discriminatory nucleotide polymorphism of the
403 bp rpoB fragment, the obtained sequences were
aligned to sequences of Bartonella schoenbuchensis (type
strain R1, AY167409.1), B. capreoli (type strain IBS193,
AB290188.1), Bartonella chomelii (type strain A828,
AB290189.1), B. bovis (type strain 91-4, AY166581.1) and
Bartonella melophagi (type strain K-2C, EF605288.1)
using Clone Manager Professional Suite 8 (Scientific and
Educational Software, Denver, USA). As shown in Fig. 2,

the 406 bp rpoB fragment allows species discrimination of
B. chomelii, B. bovis and B. melophagi based on multiple
nucleotide positions, as well as species discrimination of
B. schoenbuchensis and B. capreoli based on a single nu-
cleotide position (position 391). Co-infections with B.
schoenbuchensis and B. capreoli were detected by analyz-
ing double peaks at the discriminatory nucleotides.

Microbiome analysis of ticks using next generation
sequencing by Illumina technology
The V4 region of the 16S rRNA gene of each tick was
amplified using previously described primers [52]. Amp-
lification was done using the Platinum SuperFi PCR
Master Mix (Thermo Fisher Scientifc, Carlsbad, USA).
Each PCR reaction was performed in a total of 25 μl of
reaction solution comprising 2× SuperFi PCR Master
Mix, 1.25 μl of 10 pmol forward and reverse primers
and a maximum of 10 μl of DNA per reaction. After
mixing the solutions, the following thermocycler condi-
tions were run: 98 °C for 2 min; 25 cycles at 98 °C for 10
s, 55 °C for 10 s and 72 °C for 30 s; and a final extension
step at 72 °C for 5 min. The size of PCR products was
confirmed on a 2% agarose gel and purified using
AMPure XP DNA beads (Beckman Coulter, Brea, USA).
The index and adapter ligation PCR was done using a
Nextera XT Index Kit v2 Set A and B (Illumina, San
Diego, USA) and performed according to the manufac-
turer’s protocol. PCR conditions were set as follows: 95 °
C for 3 min; 8 cycles at 95 °C for 30 s, 55 °C for 30 s
and 72 °C for 30 s; and a final extension step at 72 °C
for 5 min. Quality and quantity control of purified PCR
products were done using a Qubit 2.0 Fluorometer
(Thermo Fisher Scientific) and a 2100 Bioanalyzer (Agi-
lent Technologies, Santa Clara, USA). All samples were
diluted to the same molarity, pooled together, spiked
with an internal control (15% PhiX) and paired-end se-
quenced on the MiSeq Illumina platform using a flow
cell with V2 chemistry (500 cycles). Negative controls
(kit and PCR controls) were performed using pure water
and elution buffer. In addition, microbial mock commu-
nities (Zymo Research, Freiburg, Germany) were run
alongside as a standard and as quality control for deter-
mining contamination bias of DNA extraction. To en-
sure the best quality sequencing results, the 16S rDNA
nested PCR and the 16S-23S-rDNA-ITS region PCR
were always run in parallel to the NGS were compared.
Furthermore, whenever human pathogens were detected
by NGS, all positive results were confirmed by conven-
tional PCR methods (see above).

16S full length rRNA gene sequencing using Nanopore
In brief, the entire 16S rRNA gene (~ 1.5kb) of selected
samples was amplified using the native 16S Barcoding Kit
SQK- RAB204 (Nanopore Technologies, Oxford, England).
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Fig. 2 (See legend on next page.)
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Library preparation and sequencing were done following
the manufacturer’s instructions. Each PCR reaction was
performed in a total of 50 μl of reaction solution comrpis-
ing 14 μl of nuclease-free water, 10 ng of input DNA, 1 μl
of barcode and 25 μl of LongAmp Taq 2X Mastermix (New
England Biolabs, Frankfurt, Germany). The following PCR
protocol was performed: 95 °C for 1 min; 25 cycles at 95 °C
for 20 s, 55 °C for 30 s and 65 °C for 2 min, and a final ex-
tension step at 72 °C for 5 min. PCR products were purified
using 30 μl of AMPure XP DNA beads (Beckman Coulter).
Samples were eluted in 10 μl of 10 mM Tris-HCl pH 8.0
with 50 mM NaCl. Quantification of the libraries was per-
formed using a Qubit 2.0 Fluorometer (Thermo Fisher Sci-
entific); subsequently they were pooled together, prepared
for loading and eventually sequenced on a R9.4.1 FLO-
MIN106 flowcell.

Bioinformatic microbiome analysis workflow
MiSeq Software v.2.6 was used to split the sequences by
barcode and to generate the fastq files. The microbiome
analysis was done following the MiSeq standard oper-
ation procedures [53] using Mothur (v.1.36.1) [54].
Qiime (v.1.9.1) was used for the alpha-diversity calcula-
tion and the taxa summary plots [55].
The paired-end reads were joined and the primer se-

quences were removed. We filtered for the expected ampli-
con length and removed reads with ambiguous base calls or
with homopolymers longer than eight nucleotides. Duplicate
sequences were merged. The unique reads were aligned
against the SILVA-bases bacterial reference alignment [56].
Nucleotides outside the expected alignment region were
trimmed. Reads with a difference of two nucleotides were
merged during pre-clustering. Chimeric reads were removed
using the Mothur implementation of the uchime algorithm.
After chimera removal, taxonomy was assigned and
non-bacterial reads were removed. OTUs were created using
the cluster split method of Mothur. After clustering, we reas-
signed the taxonomy to the OTUs. In preparation for the
analysis with Qiime, a phylogenetic tree and an OTU table
in biom format was created. Alpha-diversity analysis and the
taxa summary plots were created using the Qiime core diver-
sity analysis script. The workflow is summarized in Fig. 3.
16S full length rRNA gene sequencing data were analyzed
applying the EPI2ME platform with FASTQ 16S (v.3.0.0)
from Oxford Nanopore Technologies.

Serodiagnostics of pets and pet owners
All serum samples were screened for the presence of anti-B.
henselae-antibodies by indirect immunofluorescence assay

(IIFA) using a B. henselae/B. quintana (IgG) kit (Euroim-
mun, Luebeck, Germany) according to the manufacturer’s
instructions with slight modifications [42]. Pet sera were
tested with a 1:100 dilution of Alexa Fluor 488-conjugated
AffiniPure Goat Anti-Dog/Cat IgG (Jackson ImmunoRe-
search laboratories, West Grove, USA) as secondary anti-
bodies. Serum dilutions from 1:20 to 1:2560 were screened
for Bartonella dog/cat IgG antibodies. Signals were evaluated
as positive when specific fluorescence was detected at a titer
of ≥ 1:64 [57] for animals and > 1:80 for humans.
Whenever potentially pathogenic genera were found in

ticks by NGS or PCR, the corresponding animal sera and, if
available, sera of the respective pet owners were analyzed
for antibodies against the most common pathogenic bacter-
ial species of these genera. Animal sera were sent to the vet-
erinarian diagnostic laboratory Laboklin (Bad Kissingen,
Germany) for the detection of pet antibodies against Ana-
plasma phagocytophilum (ELISA; cut-off: ≥ 8 TE), Rickett-
sia conorii (IIFA) (cut-off: ≥ 1:256), R. rickettsii (IIFA;
cut-off: IgG ≥ 1:256), Borrelia spp. (ELISA; cut-off: ≥ 8
units), Leptospira spp. (microagglutination test; cut-off: ≥
1:400), Coxiella burnetii (IIFA; cut-off: ≥ 1:1:20) and Franci-
sella tularensis (qualitative serum slow agglutination test).
Serodiagnostics of human sera was performed in the diag-

nostic laboratories of the Institute for Medical Microbiology
and Infection Control at the University Hospital of the Goe-
the University in Frankfurt am Main (Germany) under fully
certified conditions (ISO 15189:2014, certificate number
D-ML-13102-01-00, valid through January 25th, 2021). The
method used for the detection of antibodies against Ana-
plasma phagocytophilum was IIFA (A. phagocytophilum IFA
IgG/IgM (Focus Diagnostics, Cypress, CA, USA; cut-off: IgG
≥ 1:64, IgM ≥ 1:20), for Rickettsia typhi and Rickettsia rickett-
sii it was IIFA (Rickettsia IFA IgG/IgM Focus Diagnostics;
cut-off: ≥ 1:64), for B. burgdorferi (sensu lato) it was ELISA
(Enzygnost® Borreliosis/IgM/Lyme link VlsE/ IgG, Siemens,
Marburg, Germany; cut-off: ≥ 7 U/ml), for Leptospira spp. it
was ELISA (Leptospira IgG/IgM Serion ELISA classic, Ser-
ion, Wuerzburg, Germany; cut-off: IgG ≥ 10 U/ml, IgM ≥15
U/ml) and for Coxiella burnetii it was IIFA (C. burnetii IgG/
IgM IFA Kit, Fuller Laboratories, Fullerton, CA, USA; cut-off
≥ 1:16). Testing for anti-Francisella tularensis antibodies was
conducted at the Institut für Mikrobiologie der Bundeswehr,
München, Germany by ELISA (qualitative cut-off OD 0.25).

Results
Sample collection
From March to October 2017, 189 engorged ticks from
103 animals were collected at four collection sites in the

(See figure on previous page.)
Fig. 2 Discrimination of ruminant-associated Bartonella spp. by SNP-analysis. a Alignment of B. bovis, B. melophagi, B. chomelii, B. capreoli and B.
schoenbuchensis. Discriminatory nucleotide positions are on 27 positions. b Left: unibacterial B. schoenbuchensis infection (sequence at the discriminatory
nucleotide…TGCAGCGTC…); right: B. schoenbuchensis and B. capreoli-co-infection (sequence at the discriminatory nucleotide…TGCAG/ACGTC…)
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federal state of Hesse, Germany shown in Fig. 4a. Pet
samples comprised samples from 54 dogs (54 dog sera,
84 ticks, 17 whole-blood samples) and one cat (serum,
whole-blood and one tick). Pet owner samples com-
prised 11 sera obtained from dog-owners. The samples
of wild animals comprised samples from 39 roe deer
(Capreolus capreolus; 39 whole-blood samples and 95
ticks), 6 boar (Sus scrofa; 6 whole-blood samples and 6
ticks), 1 wisent (Bos bonasus; 1 whole-blood sample and
1 tick), 1 raccoon (Procyon lotor; 1 whole-blood sample
and 1 tick) and one red fox (Vulpes vulpes; 1
whole-blood sample and 1 tick). The number of sampled
animals is summarized in Fig. 4d. Ticks were mostly fe-
male adult Ixodes ricinus ticks (identified by standard
taxonomic keys). Among the 189 ticks, two were nymphs
and 6 were male adults. Two tick samples (1 dog and 1
cat) were identified as Rhipicephalus sanguineus.

PCR detection of Bartonella spp.
In addition to the detection of multiple pathogens by
microbiome analysis, we focused on the detection of Bar-
tonella spp. since there is a broad spectrum of Bartonella
spp. that can lead to severe infections in humans and ani-
mals [33]. Bartonella spp. were detected in ticks and full
blood of roe deer. DNA of two different Bartonella spp.
was found in roe deer blood: B. schoenbuchensis in 10

(25.6%) animals, B. capreoli in 4 (10.3%) animals and a
co-infection of both Bartonella spp. was detected in the
blood of 3 (7.7%) roe deer. Among the roe deer with blood
positive for Bartonella spp., nine did not have Bartonella
spp.-positive ticks. DNA of Bartonella spp. was found in
9.5% of all ticks. Bartonella schoenbuchensis DNA was de-
tected in 14 ticks (7.4% of all ticks) from 10 roe deer, B.
capreoli DNA was found in one tick (0.5% of all ticks) and
B. henselae DNA was detected in three ticks (1.6% of all
ticks) of three roe deer. Moreover, Bartonella spp. DNA
was found in ticks of three animals whose blood contained
no Bartonella spp. DNA.

Microbiome analysis of collected tick samples throughout
the state of Hesse
It is widely known that ticks act as vectors for various
pathogens including Bartonella spp., Anaplasma spp.
and Rickettsia spp., all known to be harmful to humans.
Thus, we were interested to analyze and identify the mi-
crobial composition of blood-fed ticks from wild animals
and pets sampled throughout Hesse. For this, a 16S
rRNA gene amplicon-sequencing (V4 region) and bio-
informatics analysis workflow was established. Overall,
136 ticks sampled from 97 animals were sequenced on
the MiSeq Illumina platform, resulting in a minimum se-
quencing depth of 5000 reads per sample for further

Fig. 3 Schematic overview of microbiome bioinformatic analysis workflow. The hypervariable V4 region of 16S rDNA from tick samples was sequenced
and split by barcode with Illumina MiSeq. Resulting paired-end reads were joined and the primer region was removed. Reads were filtered by amplicon
length and aligned to SILVA as the reference database. After removal of chimeras, reads were clustered into operational taxonomic units (OTU) and
taxonomically classified. Finally, an OTU-table was created and results were visualized
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Fig. 4 a Geographical map of the federal state of Hesse (Germany) displaying the locations of feeding-tick collections. The red marks represent
the locations where the ticks were collected. From top to bottom, numbers in red: 1, North Hesse; 2, Mid-west Hesse; 3, Greater metropolitan
area Frankfurt am Main; 4, South Hesse. The base map was generated using EasyMap 11.0 © Lutum+Tappert DV-Beratung GmbH. b Distribution
of sampled ticks and their hosts in relation to their location. From top to bottom: 1, North Hesse; 2, Mid-west Hesse; 3; Greater metropolitan area
Frankfurt am Main; 4, South Hesse. c Map of Europe with exact location of Hesse tagged. d Fractions of all animals examined in this study: dogs,
roe deer, cat, raccoon, fox, wisent and boars
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analysis. After performing the initial NGS sequencing of
136 ticks we continued tick collection, resulting in the
fact that not all of the total collected ticks (n = 189)
underwent microbiome analysis.
The alpha diversity of ticks sampled from wild animals

showed a dominant higher number of operational taxo-
nomic units (OTUs) compared to ticks collected from
pets, indicating greater species richness in wild animals
(Fig. 5). Here, we also observed more outliers and a
wider range for the group of wild animals compared to
the pet group.
To examine the microbial taxonomic distribution of sam-

pled ticks, cumulative bar charts composed on family level
were created. Comparing both groups, we observed that
Midichloriaceae, a common tick endosymbiont, is repre-
sented as the most dominant OTU for pets (~ 80%) and
wild animals (~75%) (Fig. 6a). As seen in Fig. 6b, which rep-
resents the variation in relative abundances of the top 20
OTUs between wild animals and pets, the group of wild an-
imals revealed a higher abundance of Rickettsiaceae, Spiro-
chaetaceae, Bartonellaceae and Anaplasmataceae. Other
tick-associated OTUs which were found more dominantly
represented in ticks sampled from pets included Coxiella-
ceae and Francisellaceae. Interestingly, ticks of wild animals
exhibit a “companion microbiome” as observed in higher

abundances of Ruminococcaceae, Carnobacteriaceae and
Lachnospiraceae, which regularly colonize the intestine of
animals and can be detected in microbiome studies. We
also observed the families of Prevotellaceae and Veillonella-
ceae enriched in wild animals, which are representatives of
anaerobic bacteria known to colonize, for example, the oral
cavity. A well-known issue of the microbiome analysis is
the “kitome” contamination problem, which was extensively
reported by several groups [58, 59]. As identification of false
positive OTUs generated from DNA kits as well as PCR
contaminations are critical issues in the analysis of micro-
biome data, kit and water controls together with the tick
microbiome samples were performed. Here, we identified
species of the genera Halomonas and Shewanella as poten-
tial kit DNA contaminants which were, however, absent in
the top 20 families found in the herein described tick sam-
ple microbiome results. These species with low abundance
were present in few samples but had no deeper impact in
our further analysis. We also identified barcode crosstalk as
background noise in barcode controls, but this
sequencing-specific artifact did not affect the results of this
study.
In order to identify bacteria to the species level, full

length sequencing of the 16S rRNA gene using Oxford
Nanopore Technology was applied. Three samples reveal-
ing a higher percentage of unclassified bacteria (relative
abundance > 15%) were selected in addition to two sam-
ples indicating the presence of the genus Borrelia. Our re-
sults revealed that the previously identified OTU “Bacteria
unclassified” was resolved to Spiroplasma ixodetis, an-
other known tick endosymbiont [60]. Borrelia miyamotoi
was found in the selected two tick samples formerly by
Illumina sequencing and PCR confirmation, and was also
identified by Nanopore sequencing to species level.
Confirmation PCRs were conducted for all pathogenic

species (Table 2). DNA of Bartonella spp. was detected
in four ticks (5.3%) from three roe deer. Three were con-
firmed to be B. schoenbuchensis by PCR. DNA of Spiro-
chaetaceae was found in 13 ticks (17.1%) from six roe
deer, four dogs and one boar. The presence of Borrelia
garinii was confirmed in one tick from a dog and that of
Borrelia miyamotoi in one tick from another dog and
two ticks from two roe deer. Rickettsia DNA was de-
tected in 15 ticks (19.7%) from 10 roe deer, one raccoon,
two dogs and one boar. The presence of Rickettsia helve-
tica was confirmed in nine of those ticks. Coxiella DNA
was detected in three ticks (3.9%) from two dogs and
one raccoon. Confirmation PCRs for Coxiella burnetii
remained negative so, potentially, those Coxiella spp. de-
tected by NGS and not confirmed in Coxiella burnetii-s-
pecific PCRs represent Coxiella-like tick endosymbionts
[61]. Francisella tularensis DNA was detected in one fe-
male adult Rhipicephalus sanguineus tick from a dog.
This result was confirmed by real-time PCR. Anaplasma

Fig. 5 Number of operational taxonomic units (OTUs) in ticks from
pets and wild animals at a sampling depth of 5000 reads. Subsampling
without replacement was repeated 1000 times and averages reported
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DNA was found in 15 ticks (19.7%) from nine roe deer,
one dog and one boar and Anaplasma phagocytophilum
was confirmed to be present in 12 of those ticks.
Staphylococcus DNA was detected in eight ticks (10.5%)
from five dogs, two boars and one raccoon. Table 3
shows a summary of pathogens found by NGS data
analysis.
Whenever potentially pathogenic genera were found in

the microbiome analysis, animal whole-blood (when avail-
able) was also analyzed by PCR. Here, Anaplasma phago-
cytophilum was detected in the blood of eight roe deer.
Furthermore, co-infections of ticks with various bac-

teria were also detected. NGS revealed that nine ticks
(11.8%) were co-infected with more than one pathogen

(Table 4). One tick from a boar contained DNA from
Spirochaetaceae, Anaplasma spp. and Staphylococcus
spp. In another tick from a raccoon, Rickettsia spp., Cox-
iella spp. and Staphylococcus spp. DNA were found.
Spirochaetaceae, Bartonella spp. and Anaplasma spp.
were detected in three ticks from three roe deer. Spiro-
chaetaceae, Rickettsia spp. and Anaplasma spp. were
found in one tick from a roe deer. Furthermore, we de-
tected three ticks from three roe deer with co-infections
with two pathogens: one tick was co-infected with Bar-
tonella spp. and Anaplasma spp. DNA, another tick was
co-infected with Spirochaetaceae and Anaplasma spp.
and the third tick was co-infected with Rickettsia spp.
and Anaplasma spp. DNA.

Fig. 6 Overview of top 20 bacterial families found in ticks by NGS. a Cumulative bar charts comparing relative family abundances for ticks
collected from pets and wild animals. b Variation in relative abundance of each family in tick samples. Red line shows cut-off for noise. Families
not in the top 20 by relative abundance are categorized as other families

Table 3 Potentially pathogenic genera found in the microbiome of 76 ticks obtained from 48 animals

OTU (n) PCR confirmation (n) Host species (n)

Spirochaetaceae (n = 13) B. garinii (n = 1); B. miyamotoi (n = 3) Roe deer (n = 6); dog (n = 4); boar (n = 1)

Bartonella spp. (n = 4) B. schoenbuchensis (n = 3) Roe deer (n = 3)

Rickettsia spp. (n = 15) R. helvetica (n = 9) Roe deer (n = 10); raccoon (n = 1); dog (n = 2); boar (n = 1)

Coxiella spp. (n = 3) C. burnetii found Dog (n = 2), raccoon (n = 1)

Francisella spp. (n = 1) F. tularensis (n = 1) Dog (n = 1)

Anaplasma spp. (n = 15) A. phagocytophilum (n = 12) Roe deer (n = 10); dog (n = 1); boar (n = 1)

Staphylococcus spp. (n = 8) Not conducted Dog (n = 5); boar (n = 2); raccoon (n = 1)
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Indirect immunofluorescence assay (IIFA) of pets and pet
owners
One of 54 dogs (1.9%) was seropositive for anti-B. hense-
lae-antibodies (IgG) (titer: 1:640); in the respective tick,
no B. henselae DNA was detected. One dog serum was
found to be positive for Rickettsia conorii-antibodies
(titer: 1:128); in the respective tick, Rickettsia helvetica
DNA was detected. For all other dogs, antibodies against
Anaplasma phagocytophilum, Borrelia spp., Leptospira
spp., Coxiella burnetii, Francisella tularensis and Rickett-
sia rickettsii were not detected.
In five dog owners, anti-B. henselae-antibodies (IgG)

were found (titers: 4 × 1:160, 1 × 1:320). All of the re-
spective dogs, however, were seronegative, and, more-
over, the remaining six dog owners did not show
antibodies against B. henselae. No antibodies against
Anaplasma phagocytophilum, Rickettsia typhi, Rickettsia
rickettsii, Borrelia burgdorferi, Francisella tularensis,
Coxiella burnetii or Leptospira spp. were found in the
sera of the dog owners whose dogs were infested with
ticks harboring a particular pathogen’s DNA.

Discussion
Ticks and tick-borne diseases remain a remarkable
health threat for humans and animals in modern days.
In this study, seven zoonotic potentially human patho-
genic genera (Bartonella spp., Spirochaetaceae, Ana-
plasma spp., Rickettsia spp., Coxiella spp., Francisella
spp. and Staphylococcus spp.) were found in ticks feed-
ing on pets and wild animals in Hesse, Germany, and
identified using NGS and classical PCR diagnostics for
microbiome profiling.
By conducting a literature search including 19 published

studies, Bartonella spp. DNA was formerly detected in
about 15% of ticks (reviewed in [62]). In the present study,
Bartonella DNA was found to be present in ~10% of all
ticks (n = 18 of 189 ticks in total) suggesting a similar
prevalence of Bartonella spp. in ticks collected at different
locations in the state of Hesse, Germany. DNA of the

ruminant-associated B. schoenbuchensis and B. capreoli was
detected in 7.4% and 0.5% of the ticks collected from roe
deer, respectively. Furthermore, DNA of B. schoenbuchensis
(25.6%), B. capreoli (10.3%) and DNA from both Bartonella
spp. (7.7%) were found in the blood of roe deer. In ticks
collected from nine of those Bartonella-positive animals,
no Bartonella spp. was detectable indicating that these
negative ticks cleared the infection or that there were not
enough pathogens in the ticks to be detected by the applied
PCRs. The deer ked (Lipoptena cervi) is suspected to be the
main vector for B. schoenbuchensis [22, 23, 30, 63–65] and
represents a common ectoparasite of roe deer and other
cervids [2] which serve as reservoir hosts for the
ruminant-associated B. schoenbuchensis, B. capreoli, B. cho-
melii and B. bovis [22–29, 66]. It remains unclear to which
extent these Bartonella spp. can cause diseases in their res-
ervoir or accidental human hosts but, in general, Bartonella
spp. are known to cause chronic asymptomatic infections
in their mammalian reservoir hosts [30, 31]. Bartonella
schoenbuchensis is suspected to cause unspecific symptoms
like muscle pain and fever in humans as it was isolated
from one patient with a history of tick bites in which no
other causative agent was detected [32]. Bartonella DNA
was detected in ticks collected from three animals whose
blood samples were free from Bartonella DNA, indicating
that the infection might have been acquired elsewhere. This
result is in-line with another study where B. henselae
DNA-positive and negative ticks were removed from dogs
at the same time, with this observation leading to the hy-
pothesis that the DNA-positive ticks had already acquired
the B. henselae infection before feeding on these dogs [67].
Several studies suggest that vertical transmission of

Bartonella spp. in ticks can occur so that even larvae
can possibly transmit these pathogens. Bartonella DNA
was detected in unfed adult I. persulcatus [68], in unen-
gorged larvae and nymphs of Dermacentor variabilis
and I. scapularis ticks [8], in unfed I. ricinus adults and
nymphs [69] and in questing I. ricinus ticks collected
from France [5], indicating that these ticks acquired the

Table 4 Co-infections with various pathogens found in ticks taken from wild animals

Host species Spirochaetaceae Anaplasma spp. Staphylococcus spp. Rickettsia spp. Coxiella spp. Bartonella spp.

Boar + + + - - -

Raccoon - - + + + -

Roe deer + + - - - +

Roe deer + + - - - +

Roe deer + + - - - +

Roe deer + + - + - -

Roe deer - + - - - +

Roe deer + + - - - -

Roe deer - + - + - -

Key: + positive; - negative

Regier et al. Parasites & Vectors           (2019) 12:11 Page 12 of 16



pathogen by vertical transmission. Further hints arguing
for ticks as vectors for Bartonella spp. are co-infections
of animals with multiple tick-borne pathogens. Chomel
et al. [70] reported, that a dog suffering from B. clarrid-
geiae endocarditis was not only Bartonella seropositive
but also seropositive for Anaplasma phagocytophila
which is usually transmitted by ticks [70]. Multiple
co-infections with tick-borne pathogens such as Ehrli-
chia spp., Babesia canis, Bartonella vinsonii and Rickett-
sia rickettsii were found in dogs which were heavily
exposed to ticks [71]. Furthermore, dogs suffering from
endocarditis caused by Bartonella spp. were found to
have high antibody titers against several tick-borne path-
ogens (Anaplasma phagocytophilum, Rickettsia rickettsii,
Ehrlichia canis and Borrelia burgdorferi [72]). However,
the fact that B. henselae was only detected in three ticks,
leads to the conclusion that there is a low risk of acquir-
ing B. henselae infections by tick bites, at least in the
herein sampled area.
The microbiome analysis presented here reveals that,

besides Bartonella spp., six other potentially pathogenic
genera were detected by NGS. Spirochaetaceae (17.1%),
Rickettsia spp. (19.7%), Coxiella spp. (3.9%), Francisella
spp. (1.3%), Anaplasma spp. (19.7%) and Staphylococcus
spp. (10.5%) were also identified in ticks. These results
coincide with several studies investigating the micro-
biome of ticks worldwide. Francisella spp., Coxiella spp.,
Rickettsia spp. and Shigella spp. were detected in two
tick species collected from humans in Turkey [6] and
Coxiella spp., Rickettsia spp., Anaplasma spp., Ehrlichia
spp., Wolbachia spp., Mycobacteria spp., Pseudomonas
spp., Staphylococcus spp., Acinetobacter spp., Klebsiella
spp. and Leptospira spp. were found in ticks removed
from domestic animals in Malaysia [7]. In Indiana, USA,
Francisella spp., Rickettsia spp. and Bartonella spp. were
detected in ticks removed from small rodents [8], Ana-
plasma spp., Borrelia spp., Coxiella spp., Ehrlichia spp.,
Francisella spp. and Rickettsia spp. were found in quest-
ing ticks collected by flagging in France [9] and ticks
collected from dogs and the environment in France,
Senegal and USA showed presence of Rickettsia spp.,
Coxiella spp. and Bacillus spp. [11]. All these pathogens
are known to be transmitted by ticks, occur worldwide
and can cause infections in humans. Our results suggest
that there is no huge difference between the tick micro-
biome in warmer regions e.g. Turkey and Malaysia [6, 7]
and our sampling sites in Hesse, Germany.
Confirmatory PCRs conducted depending on the NGS

results revealed the presence of Borrelia garinii, Borrelia
miyamotoi, Rickettsia helvetica, Francisella tularensis
and Anaplasma phagocytophilum; these results were
widely congruent with those from the NGS approach.
All of these bacterial species can cause unspecific febrile
illnesses in humans and probably also in pets [73–81].

Furthermore, Anaplasma phagocytophilum was detected
in the blood of eight roe deer. Compared to the average
prevalence of Borrelia burgdorferi (sensu lato) in quest-
ing ticks in Europe (12.3% [82]), the DNA-prevalence in
this study is quite low. A possible explanation for this
phenomenon could be that, in contrast to most other
studies, we examined feeding ticks from different verte-
brate species and it has been shown that the comple-
ment system of several vertebrates, especially ruminants,
can effectively eliminate Lyme disease spirochetes inside
the feeding ticks [83, 84].
Nine ticks showed co-infections with two or more

pathogens. Co-infections of ticks with different Borrelia
spp. or Borrelia spp. and other pathogens such as Ana-
plasma phagocytophilum or Rickettsia spp. are not rare
[85] and they can alter the course of human infection or
the response to a certain antimicrobial therapy. Patients
with chronic, therapy-resistant Lyme disease showed
co-infections with B. henselae leading to the assumption
that infections with multiple microorganisms might
cause irregular responses to antibiotic therapies [40].
From this, knowledge about co-infections of ticks with
various pathogens, even when limited to a relatively
small area as in our study, is mandatory to guide for best
antimicrobial treatment of patients after tick exposure.
A limitation of our study is the fact that blood samples

were taken at the same time point as tick collection was
performed. From this, pathogens detected in those ticks
might not have induced an actual serological response in
infected hosts as ticks feed on dogs normally for only 2–
10 days [2]. Furthermore, since we decided to work on
feeding ticks, there are two possibilities by nature where
the detected bacteria might derive from: (i) from the
tick, which can possibly act as a vector and transmit
those pathogens to different vertebrates; or (ii) the path-
ogens were already present in the blood of the host ani-
mal and were ingested while feeding.
Anti-Bartonella antibodies can be found in up to

16.1% of healthy blood donors [86]. In five of 11 dog
owners investigated herein, anti-B. henselae-IgG anti-
bodies were detected with titers between 1:160 to 1:320,
resulting in an antibody prevalence of ~45%. Such rela-
tively low titers might be an indicator for a former infec-
tion by Bartonella spp. and the percentage of B.
henselae-positive dog owners seems to be elevated.
However, it has to be mentioned that this elevated sero-
prevalence might also be caused by exposure to other
Bartonella spp. as exact data on cross-reactivity of hu-
man anti-Bartonella antibodies with B. henselae antigen
(which is used for serodiagnostics) are not available.

Conclusions
In summary, our data provide an overview of different
pathogens circulating in ticks in central Germany

Regier et al. Parasites & Vectors           (2019) 12:11 Page 13 of 16



(federal state of Hesse) and suggest a low incidence of
Bartonella spp. in animals and their ectoparasites. Mem-
bers of several pathogenic genera were found in ticks
and also in wild and domestic animals by PCR and NGS
techniques with Illumina short read and Nanopore long
read sequencing, and this indicates a potential infection
risk for humans and animals. Even though the number
of samples used herein was too small to evaluate the epi-
demiology of different tick-borne diseases, knowledge of
the presence of pathogens in ticks might allow to moni-
tor circulating pathogens that could harm humans and
animals. Ectoparasite control and an increased attention
toward possible tick-borne infection are crucial to the
prevention of (or at least early diagnosis of ) tick-borne
infections in humans and animals.
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