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Abstract

The generation, alteration, recognition, and erasure of epigenetic modifications of DNA are 

fundamental to controlling gene expression in mammals. These covalent DNA modifications 

include cytosine methylation by AdoMet-dependent methyltransferases and 5-methylcytosine 

oxidation by Fe(II)-dependent and α-ketoglutarate-dependent dioxygenases. Sequence-specific 

transcription factors are responsible for interpreting the modification status of specific regions of 

chromatin. This review focuses on recent developments in characterizing the functional and 

structural links between the modification status of two DNA bases: 5-methylcytosine and 5-

methyluracil (thymine).

Introduction

Five chemical forms of cytosine have been found in the DNA of higher organisms, including 

unmodified cytosine (C), 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC) and 5-carboxylcytosine (5caC) (Figure 1a) [1–5]. While some of these 

modifications may affect the strength of base pairing C:G hydrogen (H) bonds [6–8], these 

chemical forms are equivalent in terms of base pairing specificity and protein coding. 

However, the various forms of cytosine can vary substantially in how they interact with 

transcription factors and other DNA-binding proteins, and in their influence on gene 

expression. There is great interest in the effects of these modifications in epigenetic 

regulation, development and differentiation, neuron function, and diseases [9,10]. In general, 

the post-synthetic modifications (or ‘epigenetic marks’) are added to cytosine in situ, 

following its incorporation into DNA in the unmodified form. DNA methyltransferases 

(Dnmts) modify specific cytosines to 5mC, usually within the sequence contexts CpG 

[11,12] or CpA [13,14•] (Figure 1b). A subset of these 5mC residues are then converted to 

5hmC, 5fC, and 5caC in consecutive Fe(II)-dependent and α-ketoglutarate-dependent 

oxidation reactions by the ten-eleven translocation (Tet) dioxygenases [2–4].
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Like 5mC, thymine contains a methyl group at C5 (Figure 1c). Thus CpA/TpG is an 

intrinsically hemimethylated DNA element. Cytosine methylation of CpA, by Dnmt3, 

generates a pseudo-symmetric fully-methylated 5mCpA/TpG dinucleotide. Further 

modification by Tet enzymes on both 5mC and T [15,16] can yield CpA/TpG sites having 5-

hydroxymethyl (Figure 1d), 5-formyl or 5-carboxyl modifications on both 5mC and T.

In this review, we focus on the mechanisms for recognizing 5mCpG, 5mCpA, TpG, and 

their respective oxidative forms, in DNA. These modifications all protrude into the major 

groove of DNA, the primary recognition surface for proteins, and change its atomic shape 

and pattern of electrostatic charges. In principle, such changes can alter protein binding to 

specific recognition sequences in DNA, by strengthening interactions, weakening them, or 

abolishing them altogether. This, in turn, can modulate gene expression and thus affect 

cellular metabolism and differentiation and, on a broader scale, influence an organism’s 

development, aging and disease processes.

Several well-characterized classes of mammalian proteins interact with DNA in a 

methylation-responsive manner (Table 1). Two recent large-scale studies used SELEX-based 

approaches to reveal that DNA binding by proteins of the homeodomain, basic leucine 

zipper domain (bZIP), and tumor suppressor p53 families can be increased or decreased by 

cytosine methylation within the binding sequence [17••,18••]. There is thus a growing 

number of transcriptional regulators that have adapted to respond to different cytosine 

modification states, potentially acting as direct epigenetic sensors to instruct downstream 

events.

MBD proteins

Methyl-binding domain proteins (MBDs) recognize fully-methylated CpG sequences, in 

which both DNA strands contain 5mC (5mCpG/5mCpG) [19]. The MBD domain of MeCP2 

binds the symmetrically methylated CpG site using two arginines, each of which H-bonds to 

a guanine [20]. These two arginines also each make van der Waals contacts with the methyl 

group of the neighboring 5mC of the same DNA strand and form what we termed ‘5mC–

Arg–G triads’ [21] (Figure 2a).

MeCP2 also binds methylated 5mCpA/TpG sites [22–25,26•,27••], with similar affinity to 

that of fully-methylated 5mCpG sites [28•], suggesting that ‘methyl–Arg–G triads’ would be 

a more appropriate name. Likewise, the MBD domain of MBD4 binds dinucleotides 

containing fully-methylated 5mCpG, and even to G:T mismatches occurring in the CpG 

context (5mCpG/TpG) [29]. In all three cases (5mCpG/5mCpG, 5mCpA/TpG, and 5mCpG/

TpG), there are two symmetrically-positioned methyl groups, suggesting that the MBD 

proteins simultaneously recognize the two methyl groups on opposite strands. The 

5mCpA/TpG binding may allow MeCP2 to control transcription in a ‘rheostat-like’ manner, 

in response to Dnmt3a activity, fine-tuning the cell-type-specific transcription of genes that 

are critical for brain function [14•].
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C2H2 zinc finger (ZF) proteins

Two decades ago, Holliday argued that ‘sequences longer than CpG would be necessary for 

the regulation of gene expression by methylation’ [30]. Indeed, the recognition of some 

sequence-specific transcription factors is blocked by cytosine methylation only within the 

context of a longer specific sequence (e.g., the proteins CTCF [31,32] and Myc [33]). By 

contrast, certain Cys2-His2 (C2H2) zinc finger (ZF) proteins bind preferentially to DNA 

when CpG sites embedded within their recognition sequences are methylated [34]. The 

structures of several ZF domains bound to 5mC-containing DNA have been solved, 

including the transcription factors Kaiso, Zfp57, Klf4 (Krüppel-like factor 4), Egr1 (growth 

response protein 1), WT1 (Wilms tumor protein 1), and CTCF [35–39,40••]. Kaiso 

recognizes either methylated CpG dinucleotides [41] or an unmodified sequence with a TpG 

in the place of 5mCpG [42]. Arg511 of the Kaiso ZF domain interacts with the 5mCpG and 

TpG dinucleotides in a similar fashion [35], forming a methyl–Arg–G triad [21] (Figure 2b) 

like the two arginines of MBD. Similarly, Zfp57 uses a pair of methyl–Arg–G triads to 

recognize 5mCpG and TpG dinucleotides on two DNA strands (Figure 2c).

Like Kaiso, the consensus-binding sequence element for Klf4 contains either CpG, which 

can be methylated, or TpG, which is intrinsically methylated on one strand (Figure 2d). Klf4 

is one of the four Yamanaka reprogramming factors [43], and like the other three (Myc, 

Oct4, and Sox2), contains TpG/CpA in its consensus recognition sequence [44]. These two 

different categories of 5-methyl-bearing sites may play distinct roles in development: non-

CpG (mainly CpA) methylation disappears upon induced differentiation of embryonic stem 

cells, and is restored in induced pluripotent stem cells by reprogramming factors [45] that 

recognize CpA (or 5mCpA)-containing sequences.

Both Egr1 and WT1 bind similar consensus DNA sequence containing two CpG sites, each 

having high affinity for the methylated form of the sequence (Figure 2e,f), but exhibiting 

much-reduced affinity when either 5hmC or 5fC is present. This indicates that both Egr1 and 

WT1 differentiate primarily between the oxidized and unoxidized forms of 5mC, rather than 

between methylated and unmethylated C [38]. By contrast, 5caC affects the two proteins 

differently, greatly reducing binding by Egr1 but not by WT1 (Figure 2g). This difference 

can be ascribed to electrostatic interactions. In Egr1, a glutamate (E354) repels the 

negatively-charged carboxylate of 5caC, while the corresponding glutamine of WT1 (Q369) 

interacts favorably with the carboxylate (Figure 2h). Analogous residues to Egr1 E354 are 

found in MBD proteins (D121/E137 of MeCP2), Kaiso (E535), Zfp57 (E182), Klf4 (E446) 

(Figure 2a–d), and p53 (D281) (Figure 2i, see below). Acidic residues, aspartate and 

glutamate, are used sparingly in protein–DNA interactions [46], in part because of 

unfavorable electrostatic interaction with DNA phosphate groups, but juxtaposing an acidic 

residue with cytosine can specifically repel the negatively-charged carboxylate of 5caC.

Aspartate for cytosine and glutamate for 5-methlycytosine in C2H2 ZFs

A phage display study of Egr1 (also known as Zif268) revealed that aspartate (D), rather 

than glutamate (E) in the wild type, distinctly prefers binding to unmodified cytosine [47]. 

This observation led Choo and Klug to comment that ‘The physical basis for the interaction 
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of aspartate/glutamate and cytosine is not yet clear, since hydrogen bonding contacts 

between these groups have yet to be observed in zinc finger cocrystal structure’ [48]. In 

bacterial one-hybrid experiments, where only unmodified bases were present, D was again 

found to preferentially juxtapose to cytosine [49].

We tested D/E interaction with cytosine/5mC in two important, 5mC-responsive regulatory 

proteins: Klf4 and CTCF [40••,50•]. Klf4 is one member of the specificity protein/Krüppel-

like factor (Sp/Klf) family of ZF transcription factors, and the 5mC-interacting E446 of Klf4 

is invariant among family members [37]. In the corresponding position of mouse Klf1, the 

neonatal anemia (Nan) mouse carries an E-to-D mutation (E339D) [51]. As with Klf4, ChIP-

seq data for wild type Klf1 has the consensus-binding sequence containing either C or T as 

the base recognized by the wild type (E339), while the mutant (D339) displayed increased 

specificity for (unmodified) cytosine [52•]. We generated a corresponding E446D mutant in 

Klf4. The wild type (E446) has roughly equal binding affinity for 5mC or T, while the 

mutant (D446) has a preference for unmodified cytosine, due to decreased affinity for 5mC 

[50•]. The carboxylate group of D446 forms H-bonds with unmodified cytosine’s exocyclic 

N4 amino group and with its ring carbon C5 atom (Figure 2j). Both of these interactions 

would favor cytosine over thymine, and the latter one could explain the D446 preference for 

unmodified cytosine. By contrast, the wild-type E446 interacts with neither the 5mC N4 

nitrogen nor the thymine O4 oxygen (Figure 2d).

The CTCF protein influences global chromatin architecture by sequence-specific DNA 

binding, via a tandem array of eleven C2H2 ZFs, and is present at ~80 000 sites in 

mammalian genomes [53,54]. ChIP experiments uncovered a broad CTCF-binding motif 

that contains a 12–15 bp consensus sequence [55–57]. Comparison to bisulfite sequencing 

data of various human cell types indicated that ~40% of variable CTCF binding is linked to 

differential DNA methylation, concentrated at the two conserved Cyt positions (2 and 12) 

within the 15-bp recognition sequence [58]. CTCF binding to the H19 imprinting control 

region sequence was inhibited by DNA methylation at a single CpG site [31,32,59], 

corresponding to position 2. Two negatively charged residues, D451 and E362 of CTCF, 

recognize, respectively, the two invariant cytosines at positions 2 and 12 [40••] (Figure 2k). 

The binding affinity for the oligonucleotide methylated at C2 was drastically reduced (by a 

factor of 23), while affinity was slightly increased when methylated at C12 (by a factor of 

1.5) [40••] (Figure 2l). The distinct effects of methylation at positions 2 and 12 on binding 

affinity are due to the amino acids used in the interaction, with D452 preferring C and E362 

preferring 5mC (Figure 2k).

p53 protein

The human tumor suppressor protein p53 binds as a tetramer to two repeated DNA sites, 

with each monomer recognizing a pentamer repeat TGCC(C/T) [60]. Each p53 monomer 

uses a methyl–Arg–G triad to recognize the TpG dinucleotide (Figure 2i). Thus three very 

different structural classes of DNA binding domains, in MBD, C2H2 ZFs, and p53, use the 

same methyl–Arg–G triad [21]. Substituting TpG with 5mCpG results in the largest 

observed increase of binding affinity by p53; by contrast, substitution with unmodified CpG 

reduces binding by an order of magnitude [18••].
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Basic-helix–loop–helix (bHLH) transcription factors

The basic-helix–loop–helix (bHLH) transcription factor MYC, together with its binding 

partner MAX, regulates gene expression by binding to enhancer-box (E-box) elements (5′-

CACGTG-3′) that contain a central CpG dinucleotide. Methylation of the central CpG 

greatly inhibits DNA binding by MAX [33]. However, unexpectedly, MAX exhibits the 

greatest affinity for an E-box containing 5caC (which, as noted above, is negatively 

charged), and much reduced affinities for the corresponding 5mC, 5hmC or 5fC forms [61•]. 

For context, 5caC is found at low levels (1–10% that of 5hmC), and preferentially 

accumulates at enhancers and other distal regulatory regions [62–67]. Interestingly, MAX 

Arg36 recognizes 5caC using a 5caC–Arg–G triad (Figure 2m), and the nearest other MAX 

residues to the carboxylate group are Arg60, Arg33 and Lys40, which yield a basic 

environment ideal for electrostatic attraction to the two carboxylate groups of 

symmetrically-modified 5caC:G base pairs. Given the similarities between the bHLH 

domains of MAX and its binding partners, and the structural conservation of the critical 

amino acids whether partnered with MYC or other proteins, it is likely that the ability to 

discriminate among 5mC oxidation states applies to most (if not all) MAX heterodimers, 

and to the extended MYC family of bHLH transcription factors. Thus, 5caC has the potential 

to function epigenetically by repelling acidic residues of MBDs and ZFs, but not of neutral 

(uncharged Gln in WT1) or positive side chains (MAX). In addition, 5fC and 5caC in DNA 

retard transcriptional elongation by Pol II; we note that the polymerase II subunit Rpb2 also 

uses a glutamine to hydrogen bond with the carboxylate of 5caC (Figure 2n) [68]. These 

observations suggest that transcription factors, as well as Pol II itself, may act as direct 

epigenetic sensors for DNA modifications.

One of the mammalian 5mC dioxygenases, Tet3, has its binding sites enriched for a 

sequence motif (5′-TCACGTGA-3′) at the transcription start sites of genes, particularly 

those involved in lysosome function [69]. Interestingly, this 8-bp sequence motif contains an 

E-box, and perfectly matches the recognition sequence for TFEB, another bHLH 

transcription factor and the master regulator of lysosomal genes. It is not yet known if the 

TFEB recognition sequences are modified (methylated or 5-carboxylated) in cells, 

particularly those sites associated with Tet3. It is conceivable that the DNA-binding domain 

of TFEB, which resembles that of MAX, binds to 5caC generated by Tet3 within this 

sequence motif. Besides the dioxygenase domain, Tet3 contains a DNA-binding CXXC 

domain, which binds 5caC (Figure 2o), though in a different sequence context [69,70]. The 

relationship of the transcription factor TFEB with Tet3 echoes that of WT1 with Tet2, in that 

WT1 displays high affinity for 5mC or 5caC but much reduced affinity for 5hmC or 5fC 

[38]. WT1 and Tet2 physically interact with one another [71,72], so WT1 may recruit Tet2 

to its targets (containing 5mC) and/or Tet2 — together with its product (5caC) — could 

recruit WT1.

Basic leucine-zipper (bZIP) transcription factor family

A classic basic leucine-zipper (bZIP) family transcription factor, activator protein 1 (AP-1), 

is substantially involved in gene regulation and controls such critical phenomena as 

oncogenesis, cell proliferation, and apoptosis [73,74]. Like MYC/MAX, AP-1 is a dimeric 
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complex that comprises members of the Jun, Fos, ATF (activating transcription factor) and 

MAF (musculoaponeurotic fibrosarcoma) protein families [74]. AP-1 complexes include 

homodimers and heterodimers; for example, Jun/Jun and Jun/Fos activate a set of genes by 

binding a 7-bp element known as TRE (5′-TGAGTCA-3′), as well as a methylated 

response element known as meTRE (5′-MGAGTCA-3′ where M = 5mC) with a 

methylated CpG replacing the 5′ TpG dinucleotide [75–77]. Thus, the TRE and meTRE 

elements each contain two methyl groups at nucleotide positions 1 and 5 from the 5′ end, 

resulting in four methyl groups symmetrically positioned at base pair (bp) positions 1, 3, 5, 

and 7 (Figure 3a).

Epstein–Barr Virus (EBV) is a human-specific B cell-infecting gamma-herpesvirus [78,79]. 

An EBV transcription factor, Zta (also called EB1, BZLF1, or ZEBRA) was the first 

example of a sequence-specific transcription factor that preferentially binds methylated 

cytosine residues within a specific sequence, reverses epigenetic silencing and activates gene 

transcription [80]. The EBV virion genome is unmethylated, but becomes heavily 

methylated during the latent stage of the virus cycle [81–83]. Early lytic cycle activation 

depends upon the Zta homodimer preferentially recognizing methylated promoters 

containing meZREs, notable examples of which are meZRE1 (5′-TGAGMCA-3′) and 

meZRE2 (5′-TGAGMGA-3′) [80,84–86]. Significantly, this element contains two methyl 

groups at nucleotide positions 1 and 5 (Figure 3a), with a methylated cytosine in place of 

one of the inner thymine residues of the AP-1 element, resulting in the four spatially 

equivalent methyl groups. These methyl groups are in van der Waals contact with a 

conserved di-alanine in AP-1 dimer (Ala265 and Ala266 in Jun; Figure 3b), or with the 

corresponding Zta residues Ala185 and Ser186 (via its side chain carbon Cβ atom) (Figure 

3c) [87•]. These analyses demonstrate a novel mechanism of 5mC/T recognition in a 

methylation-dependent, spatial and sequence-specific approach by bZIP transcription 

factors.

Besides binding 7-bp TRE elements (TGA-G-TCA), AP-1 Jun or Fos proteins can form 

heterodimers with ATF to recognize cAMP-response elements (CRE; TGA-CG-TCA) [74], 

which are also recognized by CRE-binding (CREB) transcription factors [88,89]. The 

difference between TRE and CRE elements is the one bp expansion in the central C:G bp to 

a CpG dinucleotide. Interestingly, CpG methylation decreased the affinity of ATF4, while 

replacing the outer T with 5mC led to greatly increased affinity [18••]. ChIP-seq data of 

CREB in hippocampal neurons identified a non-canonical CRE motif [90], where the inner 

A:T at bp-3 is replaced by G:C — methylation of the cytosine at bp-3 would restore the 

symmetrically positioned methyl groups. In addition, while methylation sensitivity was not 

seen for C/EBPβ binding to TTG-CG-CAA [18••], its binding was inhibited by 5hmC in the 

central CpG dinucleotide [91]. Indeed, the expanded central CpG dinucleotide potentially 

allows the CpG methylation/oxidation status to play a modulating role (e.g., see MAX 

above).

Homeodomain transcription factors

Homeodomain proteins are the family of transcription factors most-recently characterized as 

having preferential binding of methylated DNA [17••]. This class of proteins was enriched in 
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factors playing central roles in embryonic and organismal development [92]. Crystal 

structures of the homeodomain proteins HOXB13, CDX1, CDX2, and LHX4 revealed a pair 

of hydrophobic residues making van der Waals contacts to the two methyl groups of duplex 

5mCpG dinucleotides (Figure 3d) [17••]. HOXB13 also forms complexes with the TALE-

class homeodomain protein MEIS1 [93], which recognizes a sequence motif containing two 

pairs of CpA/TpG sites (Figure 3e). MEIS1, like other proteins referred to above that 

recognize TpG, uses two neighboring arginines with each forming a methyl–Arg–G triad 

(Figure 3e). The observation made with HOXB13–MEIS1 complex could be extended to 

other TALE-mediated HOX complexes [18••], such as HOXB1–PBX1 [94] or HOXA9–

PBX1 [95] (Figure 3f). Whether 5mCpG can replace the TpG, and the effects on MEIS1 or 

PBX1 binding, have yet to be tested.

SRA domains

The SET and RING finger associated (SRA) domains of UHRF1 and UHRF2 recognize 

hemimethylated CpG sequences, which contain 5mC in only one strand, such as arise during 

DNA replication [96–98]. UHRF1 (residues 124–628) binds to 5hmC DNA with >10-fold 

weaker affinity than to 5mC DNA [99], while UHRF2 (whether the SRA domain or full-

length protein) showed small or no difference in binding affinity between the two 

modifications [100,131]. In addition, UHRF2 can directly and specifically bind A:5hmU in 
vitro (in contrast to A:5mU, which is A:T) [15]. The SRA domain uses a DNA recognition 

mode vastly different from that of other classes discussed above. Specifically, the SRA 

domain uses base flipping [101,102] to interact with DNA, similarly to DNA-modifying 

enzymes such as DNA methyltransferases, DNA glycosylases and Tet dioxygenases. Besides 

the SRA domain, UHRF1 contains a Tudor-PHD domain for binding one of three ligands: 

histone H3 methylated at Lys9 (H3K9, which is associated with methylated DNA) [103–

107], an internal loop region of UHRF1 for allosteric regulation [108•], or DNA ligase 1 

[109••] which is needed for the ligation of Okazaki fragments that are formed on the lagging 

template strand during DNA replication. UHRF1 also contains a C-terminal RING domain 

for E3 ligase activity that can ubiquitylate histone H3 [110,111], which is recognized by 

maintenance methyltransferase DNMT1 [112,113,114••]. Because UHRF1 is an important 

epigenetic regulator, maintaining DNA methylation and histone modifications in the cell, 

recent cancer research supports expression levels of UHRF1 serving as a universal 

diagnostic and prognostic biomarker [115], suggesting that better understanding of its 

activities is important.

N6-methyladenine in mammalian DNA and RNA

This section is brief due to space restrictions, but it has recently become clear that 

mammalian DNA can be methylated on adenines at the N6 position (N6mA) [116•,117•,

118•]. This methylation is presumably subject to oxidative removal by Tet-like 

dioxygeneases [119]. Unlike the case for cytosine, however, Tet action on N6mA results in 

restoration of adenine (direct demethylation), involving formation of an N6-hydroxymethyl 

intermediate followed by spontaneous release of formal-dehyde. This differs from the series 

of oxidative states on 5mC, required because the cytosine C5 atom is an inert carbon. Very 

little is known about the ways in which N6mA DNA methyl marks are established, 
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maintained, altered, or read in mammals, and which DNA-binding proteins are sensitive to 

those marks. We expect this to be a very active area of research over the next several years. 

However some hints as to a possible readout mechanism are provided by the better-studied 

detection of N6mA in RNA. This often involves an N6mA methyltransferase complex 

(METTL3–METTL14) [120,121], demethylases/dioxygenases (FTO and ALKBH5) 

[122,123], and N6mA-specific RNA-binding YTH domain proteins [124–127]. The YTH 

domain is a conserved 100–150-residue polypeptide [128], in which the N6mA methyl 

group is bound within a ‘cage’ of aromatic residues [129].

Summary

It is well established that methylation patterns are replicated, following semi-conservative 

DNA replication, via the selective recognition of hemi-methylated CpG dinucleotides at 

replication forks by DNMT1/UHRF1 complexes. This involves reading methyl marks on 

both DNA and associated histones, and mono-ubiquitination of histone H3. However, an 

unresolved fundamental question is how, and indeed whether, the pattern of oxidized 5mC 

derivatives is propagated at CpG and CpA sites. Many DNA binding proteins recognize 

consensus-binding elements, containing either CpG/CpG (which can be methylated on both 

strands), or TpG/CpA (which is intrinsically methylated on one strand, may be methylated 

on the other strand, and can be further modified on both strands). Because the methyl–Arg–

G triad recognizes both 5mC and T, perhaps TpG dinucleotides are selected for when it is 

advantageous for a particular DNA sequence to be treated as if it is permanently methylated; 

this might even occur via targeted 5mC deamination [130] during development. On the other 

hand, the substitution of T by C (as in the cases of AP-1 and Zta) provides an opportunity 

for regulation by methylation and demethylation.

Transcription factors have adapted to respond to different states of cytosine modification, 

and gene activity is controlled on a finer ‘dimmer’ by these modifications than a simple ‘on’ 

or ‘off’ switch. For example, the DNA binding bHLH domain of MAX is responsive to all 

forms of modified CpG within its E-box recognition sequence, displaying the highest 

affinity for cognate sequences containing a central 5caC or unmodified C, with reduced 

affinity for 5fC and much lower affinity for 5mC or 5hmC. Progressive Tet-mediated 

oxidation of 5mC may thus be a way to titrate transcriptional activity in a graded and 

reversible fashion, with the 5mC form of such sites being the ‘off’ position and Tet-mediated 

oxidation steps a way of progressively increasing affinity for the binding site while moving 

towards 5caC. As many promoters are controlled by multiple transcription factors, several of 

which can have different patterns of methylation responsiveness, a very large number of 

combinatorial regulatory outputs is possible. In sum, a growing number of transcriptional 

regulators are being recognized as being responsive to different cytosine modification states, 

potentially acting as direct epigenetic sensors to instruct downstream events.
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Figure 1. 
Methylation and oxidation in 5′-CpG-3′ and 5′-CpA-3′ dinucleotides. (a) DNA 

methyltransferases (DNMTs) convert C to 5-methylC (5mC). Tet dioxygenases then convert 

5mC to 5-hydroxymethylC (5hmC), 5-formylC (5fC), and 5-carboxyC (5caC) in three 

consecutive Fe(II)-dependent and α-ketoglutarate-dependent oxidation reactions, without 

release of formaldehyde (Top). Tet dioxygenases can also convert thymine (5mU) to 5hmU, 

and potentially to 5fU and 5caU (Bottom). (b) CpG/CpG can be methylated on both strands; 

while TpG/CpA is intrinsically methylated on one strand (T, 5mU), and the C on the other 

strand may be methylated as well. (c) 5mC and 5mU (T) contain a methyl group (yellow 

sphere) in spatially equivalent positions at C5. (d) Dnmt3A and Dnmt3B can methylate 

cytosine in the context of a CpA/TpG dinucleotide. Tet dioxygenases can oxidize both 5mC 

and T (5mU).
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Figure 2. 
Examples of methyl-Arg-Gua recognition and 5caC recognition. (a) MBD domain of 

MeCP2. PDB codes are given, DNA recognition sequences are shown with M = 5mC, and 

key interactions of each DNA strand are shown above and below the recognition sequence. 

(b) Kaiso (ZF), (c) Zfp57 (ZF), (d) Klf4 (ZF), (e) Egr1 (ZF) and (f) WT1 (ZF). (g) Effects of 

binding of DNA with 5caC against Egr1 and WT1. (h) WT1 (Q369) recognition of DNA 

with 5caC. (i) The p53 proteins recognize TpG, which can be replaced by 5mCpG. (j) Klf4 

mutant (D446) interacts with unmodified cytosine. (k) In CTCF (ZF), D451 and E362 

recognize, respectively, unmodified cytosine at position 2 and 5mC at position 12. (l) Effects 

of methylation at specific sites on binding by CTCF. (m) MAX (bHLH) recognition of 5caC. 

(n) Pol II recognition of 5caC. (o) Tet3 CXXC domain recognition of 5caC.
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Figure 3. 
Examples of methyl group recognition via van der Waals contacts. (a) Aligned DNA 

response elements with spatially equivalent methyl groups from T (5mU) or M (5mC). (b,c) 
Recognition of the four spatially constrained methyl groups of meTRE by Jun/Jun dimer 

(bZIP) or meZRE-2 by Zta dimer (bZIP). (d) Recognition of the two methyl groups of 

5mCpG duplex by HOXB13 (homeodomain). (e) Homeodomain protein MEIS1 recognizes 

TpG via methyl–Arg–Gua triad. (f) HOXA9–PBX1 in complex with DNA. Both proteins 

could have preferential binding of methylated DNA. A methyl group (in yellow sphere) is 

modeled onto unmodified cytosine.
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