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Abstract

Fludioxonil is a phenylpyrrole pesticide that is applied to fruit and vegetable crops post-harvest to 

minimize losses to mold, both during transport and at point of sale. Its effectiveness is reflected in 

the dramatic increase in its production/usage since its introduction in 1994, an increase that has 

peaked in recent years as it became licenced for use abroad. Recently, doubts as to the nature of its 

mechanism of action have been raised. Given that the pesticide has long been known to induce 

stress intermediates in target and non-target organisms alike, the lack of a firmly established 

mechanism might be cause for concern. Troubling reports further delineate a capacity to disrupt 

hepatic, endocrine and neurological systems, indicating that fludioxonil may represent a health 

threat to consumers. In the absence of a clear, safe mechanism of action, fludioxonil should be re-

evaluated for its potential to impact human health.
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Introduction

Fungal diseases of fruit-bearing plants and vegetables are a serious concern for those who 

grow, transport and sell these commodities. Fungal infection leads to losses in the yield, 

quality and potential shelf-life of virtually every agricultural product, and modern 

monoculture techniques tend to exacerbate the vulnerability of crops to the spread of such 

pathogens. Beyond simply impacting the appearance, taste and nutritional value of harvested 
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products, infection with many common fungal pathogens can contaminate crops with 

hazardous mycotoxins, rendering them inedible and unsalable. In order to combat these 

issues, modern agrochemical concerns have sought to develop fungicides that maximize 

efficacy yet expose humans, animals and the crops themselves to a minimal toxicological 

impact.

Fludioxonil is one of two existing commercial phenylpyrrole fungicides (the other being 

fenpiclonil) derived from the antibiotic pyrrolnitrin (Arima et al., 1964; Kilani and Fillinger, 

2016; Gehmann et al., 1990). Fludioxonil is currently cleared for application to over 900 

agricultural products and is included, often as the primary ingredient, in over 30 different 

pesticide formulations produced by Syngenta, Bayer and (formerly) Monsanto (Code of 

Federal Regulations for Fludioxonil, 2005). While originally licensed for use in the 

preservation of seed stocks, the use of this fungicide has expanded substantially in recent 

years to include a variety of agricultural and domestic treatments, including post-harvest 

applications. In 2014, sales of fludioxonil exceeded 250 million US dollars, establishing 

fludioxonil as a major force, and numerous international markets have chosen to permit 

fludioxonil use since then. As Kilani and Fillinger published an in depth review of the 

phenylpyrroles in 2016 (Kilani and Fillinger, 2016), focusing upon the success of these 

fungicides and the fact that crop pathogens have been surprisingly slow to develop immunity 

in the field, we are not inclined to dispute or rehash this review. Instead we will focus upon 

what is known regarding the phenylpyrrole mechanism of action and observations that may 

tend to call into question the conclusion that they are toxic to fungi alone.

Fludioxonil has long been purported to act by inhibiting class lll hybrid histidine kinases 

(HHK) that are peculiar to fUngi. These HHKs act to regulate the HOG osmolarity response 

pathway (Yoshimi et al., 2005), and were believed to respond to fludioxonil by triggering an 

overproduction of glycerol that caused cells to burst (Lew, 2010). This model went 

unquestioned for many years because rare instances of fludioxonil resistance, usually 

induced artificially under laboratory conditions, were most frequently derived from 

mutations in the Hog1 pathway(Ochiai et al., 2001). Further, the class lll HHKs were 

requisite for sensitivity (Kojima et al., 2004; Yoshimi et al., 2005), while constitutively 

active forms of these HHKs conferred fluidioxonil resistance (Furukawa et al., 2012). These 

HHKs were not found in plants, animals or humans, and were touted for two decades as the 

putative target of fludioxonil, since recombinant expression of the same HHK gene in 

previously resistant species, like Saccharomyces cerevisea, engenders fludioxonil sensitivity 

(Motoyama, Ohira, et al., 2005; Motoyama, Kadokura, et al., 2005). Were this indeed true, 

fludioxonil would seem an optimal choice for post-harvest applications, but the details of 

this mechanism remained elusive.

It is notable that several other classes of anti-fungals, including the dicarboximides, 

polyketides and the aromatic antifungals, show evidence of working along similar lines, 

signaling through the HOG pathway (Vetcher et al., 2007; Yoshimi et al., 2005). It is 

possible that all of their mechanisms of toxicity are derived from some common root (Table 

1). While action through the HOG pathway is not in question, Lawry et al furnished 

evidence against direct action upon the HHK as the operative mechanism of fludioxonil 

(Lawry et al., 2017). As of this writing, promotional materials for fludioxonil within the 
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pesticide industry exclusively mention an alternate model in which fludioxonil acts by 

inhibiting transport-associated phosphorylation of glucose, derived from work published in 

1995 (Jespers and Dewaard, 1995) (though only fenpiclonil was investigated). Such a mode 

of action would pose as little risk to non-target organisms as the previously proposed 

mechanism, but evaluating the validity of this new claim requires the perspective of a 

complete record of research into the phenylpyrroles.

History

Researchers from Eli Lilly first isolated pyrrolnitrin from Pseudomonas pyrrocinia in 1964. 

This molecule, metabolized from tryptophan, was found to have anti-fungal properties, but 

was not considered viable as a pesticide due to photochemical instability (Arima et al., 1964; 

Arima et al., 1965).

The mechanism by which pyrrolnitrin inhibited cellular function was reported at that time to 

be inhibition of the mitochondrial electron transport chain, predominantly impacting 

respiration of mitochondria at complex I (Wong and Airall, 1970; Wong, Horng and Gordee, 

1971). Inhibition at this complex can cause electrons to “short-circuit” to molecular oxygen, 

generating the damaging reactive oxygen species (ROS) superoxide (Murphy, 2009). 

Though primarily investigated with respect to fungicidal applications, this tendency to 

induce ROS was described first in mammalian cells (Coleman et al., 2012) and in isolated 

mitochondria (Syromyatnikov et al., 2017; Wong and Airall, 1970).

In 1993, fludioxonil was engineered by Ciba-Geigy (now Syngenta). Their intention was 

never to alter its mode of action, but rather to amend pyrrolnitrin’s tendency to photodecay 

rapidly in the environment (Leadbitter, 1994). In this they were successful: fludioxonil was 

both incredibly hydrophobic and unreactive, persisting for weeks after application (Figure 

1). The strength of its anti-fungal effect was undiminished.

In 1997, Ciba-Geigy first proposed that accumulation of cellular glycerol was responsible 

for the mechanism of fludioxonil action, and outlined its ability to trigger the HOG 

osmoregulation pathway, which does not have an analog in animals (Pillonel and Meyer, 

1997). Solid proof for this conjecture was not forthcoming, but sensitive yeast cells were 

seen to shed quantities of glycerol upon lysis. This mode of action was touted as evidence 

that fludioxonil posed little risk to the health of off-target organisms, and the initial reports 

supporting such a fungus-specific mechanism are likely to have figured into the EPA’s 

acceptance of this product, the proliferation of novel, prescribed applications and the 

commensurate demand.

Ongoing research into fludioxonil, however, uncovered flaws in the mechanism proffered by 

Ciba-Geigy/Syngenta. In 2007 it was proven that disruption of glutathione (GSH) 

homeostasis (which serves to buffer nitrosative, oxidative and aldehydic stressors) in fungi 

synergistically enhances the activity of fludioxonil. This suggested that damage derived from 

these stressors, or the fungal response to them, may figure prominently in the mechanism of 

fludioxonil toxicity, possibly overshadowing an osmoregulation mechanism (Kim et al., 

2007b, 2007a). In 2008, it was shown that the osmoregulation pathway of Botrytis cinerea 
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was specifically dispensable with regard to its sensitivity to fludioxonil. The fungus was 

seen to retain sensitivity in isolates from which this pathway had been deleted (Liu, Leroux 

and Fillinger, 2008). Further, fludioxonil activity is synergistically enhanced by compounds 

that interfere with mitochondrial respiration and anti-oxidation systems, while 

overproduction of elements that suppress such damage substantially inhibit activity. These 

findings seem to suggest that the original mechanism of activity determined for pyrrolnitrin 

in 1970 may remain relevant to the drug action of fludioxonil today, and stress 

intermediates, oxidative or otherwise, may be a factor in that activity (Kim et al., 2010).

A study by Upadya in 2013 invalidated claims that fludioxonil killed fungi by causing the 

overproduction of glycerol. In C. neoformans and B. cinera, glycerol content was identical 

between sensitive and resistant isolates treated with fludioxonil. While elements of the 

osmoregulation pathway may be activated by fludioxonil, overproduction of glycerol is not 

requisite for the sensitivity of fungi to this fungicide (Upadhya et al., 2013; Li et al., 2014).

Finally, in 2016, Lawry et. al. demonstrated that fludioxonil activates the HOG pathway by 

suppressing the kinase activity of a group III HHK, causing it to convert into a phosphatase. 

This drug effect could not be triggered directly in vitro using the purified HHK, however, 

suggesting that fludioxonil might act indirectly through an as yet uncharacterized upstream 

target (Lawry et al., 2017). HHKs often serve as sensor kinases with especially sensitive 

sentinel cysteine thiols reacting to elevations of reactive stress molecules such as ROS, nitric 

oxide (NO) or aldehydic stressors (derived from lipid oxidation or glycolytic imbalance)

(Wong, Chen and Gan, 2015; Hancock et al., 2006). If the HHKs governing fungal HOG 

pathways are responding to an increase in stress molecules, it means that fludioxonil 

exercises its action by induction of these stress molecules in target fungal pathogens (Figure 

1). It remains to be determined whether this previously unappreciated cellular stress might 

pose a risk of toxicity to non-target organisms and cells. Evidence for such adverse health 

effects would certainly call into question the presumptions that fostered the wide-spread 

acceptance of fludioxonil for use on fruits and vegetables, especially in post-harvest 

applications.

Evidence for adverse health effects

In 2012, human glial cells and neuronal cells incubated with fludioxonil showed losses in 

membrane potential and ATP production at concentrations well below those considered 

toxic. Cellular thiol levels dropped and GSH peroxidase and superoxide dismutase were 

transcriptionally induced (Coleman et al., 2012)- all characteristic indicators of severe 

oxidative damage. A year later, toxicologists characterized fludioxonil as an endocrine 

disruptor in human breast cancer cells. It also impacted their overall viability and 

proliferation though an undetermined mechanism (Teng et al., 2013). During that same year, 

NADPH oxidase mutants of Alternaria alternata that were resistant to fludioxonil were 

found to be similarly resistant to the dicarboximide fungicide vinclozolin (Yang and Chung, 

2013). This raises the possibility that these fungicides may operate through the same 

pathway. Authors speculated this pathway was either respondent to oxidative insult or acted 

to produce it. This is especially relevant here because vinclozolin was established to be an 

anti-androgen endocrine disruptor (Gray, Ostby and Kelce, 1994) in 1994, and its use has 
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been disallowed for most applications in the US since 2003 (van Ravenzwaay et al., 2013). 

The capacity for vinclozolin to induce endocrine abnormalities is now well accepted, with 

evidence of accompanying oxidative stress detected in vivo (Reddy, 2014).

When the pesticide fludioxonil first went through regulatory review by the EPA, it was 

posited that fludioxonil acted primarily through activation of the HOG1 osmoregulation 

pathway by direct interaction with fUngal-specific HHKs. This mechanism, unchallenged at 

the time, argued for its safety- comparable perhaps to antibiotics that specifically target 

bacterial cell walls. As this relatively benign mechanism has now been called into question, 

it may be prudent to reconsider a series of reports claiming fludioxonil exposure was 

harmful in non-target organisms. Evidence seems to suggest that part of the mechanism 

involves or causes disruption of electron transport (respiration) in mitochondria, the mode of 

action advanced for pyrrolnitrin back in 1972 (Lambowitz and Slayman, 1972). Inhibition of 

electron transport at complex 1 is known to catalyze the creation of superoxide, which is 

swiftly converted by superoxide dismutase (SOD) to hydrogen peroxide. As fludioxonil has 

been shown to inhibit catalase, the normal means by which cells neutralize peroxide, H2O2 

might be expected to become elevated in the cytosol (Karadag and Ozhan, 2015). Whether 

ROS represent the direct mechanism of fludioxonil action or a side-effect, accumulation of 

these damaging molecules in any cell type is undesireable, with potential to cause single- 

and double-strand breaks in DNA and inactivate critical enzymes (Ojha and Srivastava, 

2014).

In mammals, the liver absorbs and neutralizes many contaminants that could threaten 

cellular processes. Strongly hydrophobic molecules introduced into the GI tract are rendered 

soluble by bile salts during digestion and thus they are delivered into the hepatobiliary 

system (Moghimipour, Ameri and Handali, 2015). This is relevant to fludixonil toxicity 

because the modifications made to pyrrolnitrin to stabilize this pesticide also rendered it 

exceptionally hydrophobic. Aside from the potential for damage to the liver due to an 

induced, chronic stress state, prolonged stress to hepatocytes can translate into stress signals 

like nitric oxide (NO) and methyglyoxal (MG) being exported body-wide (Xinyun Xu, 2010; 

Kuo, Abe and Schroeder, 1997; Akaike, 2000). This could contribute to a variety of disease 

states, dependent upon a similarly extensive variety of genetic variations in overall and 

organ-specific responses to oxidative stress. The number of diseases that are co-morbid with 

elevated NO alone, including autism (Sweeten et al., 2004), rheumatoid arthritis, diabetes, 

inflammatory bowel disease, and multiple sclerosis (Parkinson, Mitrovic and Merrill, 1997)) 

is substantial and worthy of consideration.

In 2016, the EPA’s own ToxCast “toxicity forecaster” screen, which uses high-throughput 

bioassays to evaluate potentially toxic side effects of environmentally-relevant small 

molecules (Shah et al., 2016; Kavlock et al., 2012), identified fludioxonil as an inducer of 

oxidative damage by measurements of mitochondrial mass and histone phosphorylation in 

hepatocytes. Some researchers have begun to question the safety of fludioxonil as evidence 

of oxidative stress and endocrine disruption accrues. Mere confirmation of these phenomena 

does not inform us regarding the actual mechanism by which fludioxonil acts, however, and 

this piece of the puzzle needs to fall into place to fully understand the impact this pesticide 

may have on human health.
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Recent discoveries germane to pesticide toxicity

In 2014, inhibition of mitochondrial respiration at complex I was identified as the likely 

cause of neurotoxicity in chlorpyrifos, an organophosphate insecticide (Salama et al., 2014). 

Two years later, a decade long study by researchers at UCLA established that 

organophosphate insecticides could be causally linked to Parkinson’s disease in individuals 

with certain (not uncommon) neuronal Nitric Oxide Synthase gene variants (Paul et al., 

2016). Thus, in an organophosphate pesticide, environmental exposure is thought to suppress 

mitochondrial respiration, and in humans with specific gene variants this demonstrably leads 

to one of many neurological diseases with a previously unknown cause. This case may not 

be isolated. Oxidative stress has been known to be a mechanism of toxicity in many 

pesticides since at least 2004, and the implication of oxidative, nitrosative and aldehydic 

stresses in an impressive list of ailments and disorders has been deduced as well (Abdollahi 

et al., 2004). (eg: lupus, COPD (Ryan, Nissim and Winyard, 2014), and Parkinson’s disease 

(Hwang, 2013)).

The induction of oxidative stress by pesticides has been demonstrated numerous times, most 

recently in the pesticides Maneb and Paraquat (Shukla et al., 2015). It has been argued that 

excessive NO could represent a symptom rather than a cause of diseases, but in MRL-lpr/lpr 

mice, which are naturally very prone to autoimmune dysfunction (Gu et al., 1998), elevated 

NO precedes the development of any such disease states. Furthermore, if you inhibit the 

production of excessive NO in these mice by inhibiting NO synthase, this prevents or at least 

attenuates the disease states that they normally develop (Gilkeson et al., 1997). This suggests 

that oxidative/nitrosative stress could be a precursor for any number of autoimmune 

endocrine disorders, neurological disorders, or inflammatory disorders, possibly dependent 

on genetic factors that render certain subpopulations at greater risk, yet not so much so that 

these genes would be considered causal.

The aggregative impact of synergistic toxins

That the toxic impact of pesticides hinges upon the dosage absorbed is undeniable. This 

point is echoed and emphasized by essentially every producer of pesticide chemicals. 

Unfortunately, pesticide toxicity testing remains, largely, piecemeal, and seldom are synergy 

or aggregate toxicity considered. This may be a critical oversight. Further, measurements of 

toxicity often focus solely upon lethal dosages and carcinogenesis. Damage to the body’s 

capacity to manage oxidative, nitrosative, or aldehydic stress has only recently entered into 

considerations of toxicity, and there almost exclusively with pharmaceuticals.

These two factors may be of immediate concern considering that a product applied 

extensively to com and soy crops, Roundup, has been demonstrated to impact mitochondrial 

respiration as well (Peixoto, 2005). Imidicloprid, a popular insecticide, has been found to 

induce NO production in brain, liver and nerve cells (Duzguner and Erdogan, 2012) - a fact 

that should be concerning. Even if we ignore these major players in the agrochemical world, 

and focus upon fungicides alone, we discover that there are literally dozens that share 

elements of their putative mode of action with fludioxonil (Table 1). Moreover, many 

fungicides are known to be more effective when applied alongside pesticides that deplete 
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anti-oxidant capacity or that disable stress response pathways (Kim et al., 2007a, 2007b), so 

concern over the possiblility of synergistic exacerbation of toxicity does not seem 

groundless.

For decades there has been debate regarding the risks posed by pesticides in our food supply. 

Despite reports finding no difference in nutrition between organic and non-organic foods, or 

downplaying health consequences of pesticides, the latest reports describe an impact upon 

human health such that an organic diet promotes optimal health status and decreases the risk 

of developing chronic disease (Hurtado-Barroso et al., 2017). Perhaps, with this in mind, it 

is time to exercise the same level of vigilance we apply to pharmaceuticals to those 

fungicides that are liberally applied to our food post-harvest. At the very least, an effort to 

clarify specific mechanisms of widely used pesticides seems in order, such that the most 

dangerous of these toxins may be limited or removed from our food stream. In place of 

dangerous post-harvest fungicides, safe and edible polysaccharide coatings have recently 

been developed that seal and protect food surfaces from fungal infection, and these would 

seem to be a realistic, healthier alternative. (Hassan et al., 2018)

Supplementary Material
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Highlights

The mechanism by which fludioxonil kills fungi remains unknown.

• The theoretical mechanism, long supported by the agrochemical industry and 

safe for off-target organisms, has been called into question by recent research.

• The action of fludioxonil is associated with indicators of severe oxidative 

stress and has been linked to disruption of endocrine processes.

• Many pesticides may act along analogous pathways, leading to a strong 

potential for aggregative or synergistic toxicity, with potential to impact 

human health.
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Figure 1. Theoretical mechanism of fludioxonil action.
We postulate that instead of acting directly upon a prototypical hybrid histidine kinase 

(HHK), fludioxonil instead creates a stress state in affected cells. Stress intermediates 

derived from this state are then detected via their modification of sentinel cysteines present 

in the HHK, inducing a structural shift that favors the phosphatase activity of the HHK over 

the kinase activity. Dephosphorylation of Ypd1 directly activates the HOG1 cascade, 

interfering with cell cycle and glycerol production pathways and swiftly rendering the cell 

non-viable. This model is based in part on published data (Lawry et al., 2017).
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Table 1.

Fungicides with actions similar to fludioxonil

Class of fungicide Examples Mode of action Notes

Phenylpyrrole Fludioxonil, Fenpiclonil Inhibition of respiration in 
mitochondria

Requires HOG1 pathway

Dicarboxamide Procymidone, Vinclozolin Inhibition of respiration in 
mitochondria

Induces ROS

Carboxamide Caboxin, Boscalid, Flutolanil Inhibition of respiration in 
mitochondria

Elevates NO in plants

Qols (Strobilurin) Azoxystrobin, Fenamidone Inhibition of respiration in 
mitochondria

Elevates NO in plants

Chloronitriles/Phthalonitriles Chlorothalonil Inhibition of respiration in 
mitochondria

Depletes GSH, reaction with 
thiols

2,6-dinitroanilines Fluazinam Inhibition of respiration in 
mitochondria

reaction with thiols

Cyanoimidizole Cyazofamid Inhibition of respiration in 
mitochondria

Polyketide Ambruticin Acts on HOG1 pathway(?)

Aromatic hydrocarbon Pentachloronitro-benzene (PCNB) Induces ROS
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